/* * Copyright (C) 2009-2011, Frederic Weisbecker * * Handle the callchains from the stream in an ad-hoc radix tree and then * sort them in an rbtree. * * Using a radix for code path provides a fast retrieval and factorizes * memory use. Also that lets us use the paths in a hierarchical graph view. * */ #include #include #include #include #include #include "util.h" #include "callchain.h" bool ip_callchain__valid(struct ip_callchain *chain, const event_t *event) { unsigned int chain_size = event->header.size; chain_size -= (unsigned long)&event->ip.__more_data - (unsigned long)event; return chain->nr * sizeof(u64) <= chain_size; } #define chain_for_each_child(child, parent) \ list_for_each_entry(child, &parent->children, brothers) #define chain_for_each_child_safe(child, next, parent) \ list_for_each_entry_safe(child, next, &parent->children, brothers) static void rb_insert_callchain(struct rb_root *root, struct callchain_node *chain, enum chain_mode mode) { struct rb_node **p = &root->rb_node; struct rb_node *parent = NULL; struct callchain_node *rnode; u64 chain_cumul = cumul_hits(chain); while (*p) { u64 rnode_cumul; parent = *p; rnode = rb_entry(parent, struct callchain_node, rb_node); rnode_cumul = cumul_hits(rnode); switch (mode) { case CHAIN_FLAT: if (rnode->hit < chain->hit) p = &(*p)->rb_left; else p = &(*p)->rb_right; break; case CHAIN_GRAPH_ABS: /* Falldown */ case CHAIN_GRAPH_REL: if (rnode_cumul < chain_cumul) p = &(*p)->rb_left; else p = &(*p)->rb_right; break; case CHAIN_NONE: default: break; } } rb_link_node(&chain->rb_node, parent, p); rb_insert_color(&chain->rb_node, root); } static void __sort_chain_flat(struct rb_root *rb_root, struct callchain_node *node, u64 min_hit) { struct callchain_node *child; chain_for_each_child(child, node) __sort_chain_flat(rb_root, child, min_hit); if (node->hit && node->hit >= min_hit) rb_insert_callchain(rb_root, node, CHAIN_FLAT); } /* * Once we get every callchains from the stream, we can now * sort them by hit */ static void sort_chain_flat(struct rb_root *rb_root, struct callchain_root *root, u64 min_hit, struct callchain_param *param __used) { __sort_chain_flat(rb_root, &root->node, min_hit); } static void __sort_chain_graph_abs(struct callchain_node *node, u64 min_hit) { struct callchain_node *child; node->rb_root = RB_ROOT; chain_for_each_child(child, node) { __sort_chain_graph_abs(child, min_hit); if (cumul_hits(child) >= min_hit) rb_insert_callchain(&node->rb_root, child, CHAIN_GRAPH_ABS); } } static void sort_chain_graph_abs(struct rb_root *rb_root, struct callchain_root *chain_root, u64 min_hit, struct callchain_param *param __used) { __sort_chain_graph_abs(&chain_root->node, min_hit); rb_root->rb_node = chain_root->node.rb_root.rb_node; } static void __sort_chain_graph_rel(struct callchain_node *node, double min_percent) { struct callchain_node *child; u64 min_hit; node->rb_root = RB_ROOT; min_hit = ceil(node->children_hit * min_percent); chain_for_each_child(child, node) { __sort_chain_graph_rel(child, min_percent); if (cumul_hits(child) >= min_hit) rb_insert_callchain(&node->rb_root, child, CHAIN_GRAPH_REL); } } static void sort_chain_graph_rel(struct rb_root *rb_root, struct callchain_root *chain_root, u64 min_hit __used, struct callchain_param *param) { __sort_chain_graph_rel(&chain_root->node, param->min_percent / 100.0); rb_root->rb_node = chain_root->node.rb_root.rb_node; } int register_callchain_param(struct callchain_param *param) { switch (param->mode) { case CHAIN_GRAPH_ABS: param->sort = sort_chain_graph_abs; break; case CHAIN_GRAPH_REL: param->sort = sort_chain_graph_rel; break; case CHAIN_FLAT: param->sort = sort_chain_flat; break; case CHAIN_NONE: default: return -1; } return 0; } /* * Create a child for a parent. If inherit_children, then the new child * will become the new parent of it's parent children */ static struct callchain_node * create_child(struct callchain_node *parent, bool inherit_children) { struct callchain_node *new; new = zalloc(sizeof(*new)); if (!new) { perror("not enough memory to create child for code path tree"); return NULL; } new->parent = parent; INIT_LIST_HEAD(&new->children); INIT_LIST_HEAD(&new->val); if (inherit_children) { struct callchain_node *next; list_splice(&parent->children, &new->children); INIT_LIST_HEAD(&parent->children); chain_for_each_child(next, new) next->parent = new; } list_add_tail(&new->brothers, &parent->children); return new; } /* * Fill the node with callchain values */ static void fill_node(struct callchain_node *node, struct callchain_cursor *cursor) { struct callchain_cursor_node *cursor_node; node->val_nr = cursor->nr - cursor->pos; if (!node->val_nr) pr_warning("Warning: empty node in callchain tree\n"); cursor_node = callchain_cursor_current(cursor); while (cursor_node) { struct callchain_list *call; call = zalloc(sizeof(*call)); if (!call) { perror("not enough memory for the code path tree"); return; } call->ip = cursor_node->ip; call->ms.sym = cursor_node->sym; call->ms.map = cursor_node->map; list_add_tail(&call->list, &node->val); callchain_cursor_advance(cursor); cursor_node = callchain_cursor_current(cursor); } } static void add_child(struct callchain_node *parent, struct callchain_cursor *cursor, u64 period) { struct callchain_node *new; new = create_child(parent, false); fill_node(new, cursor); new->children_hit = 0; new->hit = period; } /* * Split the parent in two parts (a new child is created) and * give a part of its callchain to the created child. * Then create another child to host the given callchain of new branch */ static void split_add_child(struct callchain_node *parent, struct callchain_cursor *cursor, struct callchain_list *to_split, u64 idx_parents, u64 idx_local, u64 period) { struct callchain_node *new; struct list_head *old_tail; unsigned int idx_total = idx_parents + idx_local; /* split */ new = create_child(parent, true); /* split the callchain and move a part to the new child */ old_tail = parent->val.prev; list_del_range(&to_split->list, old_tail); new->val.next = &to_split->list; new->val.prev = old_tail; to_split->list.prev = &new->val; old_tail->next = &new->val; /* split the hits */ new->hit = parent->hit; new->children_hit = parent->children_hit; parent->children_hit = cumul_hits(new); new->val_nr = parent->val_nr - idx_local; parent->val_nr = idx_local; /* create a new child for the new branch if any */ if (idx_total < cursor->nr) { parent->hit = 0; add_child(parent, cursor, period); parent->children_hit += period; } else { parent->hit = period; } } static int append_chain(struct callchain_node *root, struct callchain_cursor *cursor, u64 period); static void append_chain_children(struct callchain_node *root, struct callchain_cursor *cursor, u64 period) { struct callchain_node *rnode; /* lookup in childrens */ chain_for_each_child(rnode, root) { unsigned int ret = append_chain(rnode, cursor, period); if (!ret) goto inc_children_hit; } /* nothing in children, add to the current node */ add_child(root, cursor, period); inc_children_hit: root->children_hit += period; } static int append_chain(struct callchain_node *root, struct callchain_cursor *cursor, u64 period) { struct callchain_cursor_node *curr_snap = cursor->curr; struct callchain_list *cnode; u64 start = cursor->pos; bool found = false; u64 matches; /* * Lookup in the current node * If we have a symbol, then compare the start to match * anywhere inside a function. */ list_for_each_entry(cnode, &root->val, list) { struct callchain_cursor_node *node; struct symbol *sym; node = callchain_cursor_current(cursor); if (!node) break; sym = node->sym; if (cnode->ms.sym && sym) { if (cnode->ms.sym->start != sym->start) break; } else if (cnode->ip != node->ip) break; if (!found) found = true; callchain_cursor_advance(cursor); } /* matches not, relay on the parent */ if (!found) { cursor->curr = curr_snap; cursor->pos = start; return -1; } matches = cursor->pos - start; /* we match only a part of the node. Split it and add the new chain */ if (matches < root->val_nr) { split_add_child(root, cursor, cnode, start, matches, period); return 0; } /* we match 100% of the path, increment the hit */ if (matches == root->val_nr && cursor->pos == cursor->nr) { root->hit += period; return 0; } /* We match the node and still have a part remaining */ append_chain_children(root, cursor, period); return 0; } int callchain_append(struct callchain_root *root, struct callchain_cursor *cursor, u64 period) { if (!cursor->nr) return 0; callchain_cursor_commit(cursor); append_chain_children(&root->node, cursor, period); if (cursor->nr > root->max_depth) root->max_depth = cursor->nr; return 0; } static int merge_chain_branch(struct callchain_cursor *cursor, struct callchain_node *dst, struct callchain_node *src) { struct callchain_cursor_node **old_last = cursor->last; struct callchain_node *child, *next_child; struct callchain_list *list, *next_list; int old_pos = cursor->nr; int err = 0; list_for_each_entry_safe(list, next_list, &src->val, list) { callchain_cursor_append(cursor, list->ip, list->ms.map, list->ms.sym); list_del(&list->list); free(list); } if (src->hit) { callchain_cursor_commit(cursor); append_chain_children(dst, cursor, src->hit); } chain_for_each_child_safe(child, next_child, src) { err = merge_chain_branch(cursor, dst, child); if (err) break; list_del(&child->brothers); free(child); } cursor->nr = old_pos; cursor->last = old_last; return err; } int callchain_merge(struct callchain_cursor *cursor, struct callchain_root *dst, struct callchain_root *src) { return merge_chain_branch(cursor, &dst->node, &src->node); } int callchain_cursor_append(struct callchain_cursor *cursor, u64 ip, struct map *map, struct symbol *sym) { struct callchain_cursor_node *node = *cursor->last; if (!node) { node = calloc(sizeof(*node), 1); if (!node) return -ENOMEM; *cursor->last = node; } node->ip = ip; node->map = map; node->sym = sym; cursor->nr++; cursor->last = &node->next; return 0; }