/* * Copyright 2008 Advanced Micro Devices, Inc. * Copyright 2008 Red Hat Inc. * Copyright 2009 Jerome Glisse. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Dave Airlie * Alex Deucher * Jerome Glisse */ #include #include #include #include #include "radeon_reg.h" #include "radeon.h" #include "radeon_asic.h" #include "r100d.h" #include "rs100d.h" #include "rv200d.h" #include "rv250d.h" #include "atom.h" #include #include #include "r100_reg_safe.h" #include "rn50_reg_safe.h" /* Firmware Names */ #define FIRMWARE_R100 "radeon/R100_cp.bin" #define FIRMWARE_R200 "radeon/R200_cp.bin" #define FIRMWARE_R300 "radeon/R300_cp.bin" #define FIRMWARE_R420 "radeon/R420_cp.bin" #define FIRMWARE_RS690 "radeon/RS690_cp.bin" #define FIRMWARE_RS600 "radeon/RS600_cp.bin" #define FIRMWARE_R520 "radeon/R520_cp.bin" MODULE_FIRMWARE(FIRMWARE_R100); MODULE_FIRMWARE(FIRMWARE_R200); MODULE_FIRMWARE(FIRMWARE_R300); MODULE_FIRMWARE(FIRMWARE_R420); MODULE_FIRMWARE(FIRMWARE_RS690); MODULE_FIRMWARE(FIRMWARE_RS600); MODULE_FIRMWARE(FIRMWARE_R520); #include "r100_track.h" /* This files gather functions specifics to: * r100,rv100,rs100,rv200,rs200,r200,rv250,rs300,rv280 * and others in some cases. */ static bool r100_is_in_vblank(struct radeon_device *rdev, int crtc) { if (crtc == 0) { if (RREG32(RADEON_CRTC_STATUS) & RADEON_CRTC_VBLANK_CUR) return true; else return false; } else { if (RREG32(RADEON_CRTC2_STATUS) & RADEON_CRTC2_VBLANK_CUR) return true; else return false; } } static bool r100_is_counter_moving(struct radeon_device *rdev, int crtc) { u32 vline1, vline2; if (crtc == 0) { vline1 = (RREG32(RADEON_CRTC_VLINE_CRNT_VLINE) >> 16) & RADEON_CRTC_V_TOTAL; vline2 = (RREG32(RADEON_CRTC_VLINE_CRNT_VLINE) >> 16) & RADEON_CRTC_V_TOTAL; } else { vline1 = (RREG32(RADEON_CRTC2_VLINE_CRNT_VLINE) >> 16) & RADEON_CRTC_V_TOTAL; vline2 = (RREG32(RADEON_CRTC2_VLINE_CRNT_VLINE) >> 16) & RADEON_CRTC_V_TOTAL; } if (vline1 != vline2) return true; else return false; } /** * r100_wait_for_vblank - vblank wait asic callback. * * @rdev: radeon_device pointer * @crtc: crtc to wait for vblank on * * Wait for vblank on the requested crtc (r1xx-r4xx). */ void r100_wait_for_vblank(struct radeon_device *rdev, int crtc) { unsigned i = 0; if (crtc >= rdev->num_crtc) return; if (crtc == 0) { if (!(RREG32(RADEON_CRTC_GEN_CNTL) & RADEON_CRTC_EN)) return; } else { if (!(RREG32(RADEON_CRTC2_GEN_CNTL) & RADEON_CRTC2_EN)) return; } /* depending on when we hit vblank, we may be close to active; if so, * wait for another frame. */ while (r100_is_in_vblank(rdev, crtc)) { if (i++ % 100 == 0) { if (!r100_is_counter_moving(rdev, crtc)) break; } } while (!r100_is_in_vblank(rdev, crtc)) { if (i++ % 100 == 0) { if (!r100_is_counter_moving(rdev, crtc)) break; } } } /** * r100_page_flip - pageflip callback. * * @rdev: radeon_device pointer * @crtc_id: crtc to cleanup pageflip on * @crtc_base: new address of the crtc (GPU MC address) * * Does the actual pageflip (r1xx-r4xx). * During vblank we take the crtc lock and wait for the update_pending * bit to go high, when it does, we release the lock, and allow the * double buffered update to take place. */ void r100_page_flip(struct radeon_device *rdev, int crtc_id, u64 crtc_base) { struct radeon_crtc *radeon_crtc = rdev->mode_info.crtcs[crtc_id]; u32 tmp = ((u32)crtc_base) | RADEON_CRTC_OFFSET__OFFSET_LOCK; int i; /* Lock the graphics update lock */ /* update the scanout addresses */ WREG32(RADEON_CRTC_OFFSET + radeon_crtc->crtc_offset, tmp); /* Wait for update_pending to go high. */ for (i = 0; i < rdev->usec_timeout; i++) { if (RREG32(RADEON_CRTC_OFFSET + radeon_crtc->crtc_offset) & RADEON_CRTC_OFFSET__GUI_TRIG_OFFSET) break; udelay(1); } DRM_DEBUG("Update pending now high. Unlocking vupdate_lock.\n"); /* Unlock the lock, so double-buffering can take place inside vblank */ tmp &= ~RADEON_CRTC_OFFSET__OFFSET_LOCK; WREG32(RADEON_CRTC_OFFSET + radeon_crtc->crtc_offset, tmp); } /** * r100_page_flip_pending - check if page flip is still pending * * @rdev: radeon_device pointer * @crtc_id: crtc to check * * Check if the last pagefilp is still pending (r1xx-r4xx). * Returns the current update pending status. */ bool r100_page_flip_pending(struct radeon_device *rdev, int crtc_id) { struct radeon_crtc *radeon_crtc = rdev->mode_info.crtcs[crtc_id]; /* Return current update_pending status: */ return !!(RREG32(RADEON_CRTC_OFFSET + radeon_crtc->crtc_offset) & RADEON_CRTC_OFFSET__GUI_TRIG_OFFSET); } /** * r100_pm_get_dynpm_state - look up dynpm power state callback. * * @rdev: radeon_device pointer * * Look up the optimal power state based on the * current state of the GPU (r1xx-r5xx). * Used for dynpm only. */ void r100_pm_get_dynpm_state(struct radeon_device *rdev) { int i; rdev->pm.dynpm_can_upclock = true; rdev->pm.dynpm_can_downclock = true; switch (rdev->pm.dynpm_planned_action) { case DYNPM_ACTION_MINIMUM: rdev->pm.requested_power_state_index = 0; rdev->pm.dynpm_can_downclock = false; break; case DYNPM_ACTION_DOWNCLOCK: if (rdev->pm.current_power_state_index == 0) { rdev->pm.requested_power_state_index = rdev->pm.current_power_state_index; rdev->pm.dynpm_can_downclock = false; } else { if (rdev->pm.active_crtc_count > 1) { for (i = 0; i < rdev->pm.num_power_states; i++) { if (rdev->pm.power_state[i].flags & RADEON_PM_STATE_SINGLE_DISPLAY_ONLY) continue; else if (i >= rdev->pm.current_power_state_index) { rdev->pm.requested_power_state_index = rdev->pm.current_power_state_index; break; } else { rdev->pm.requested_power_state_index = i; break; } } } else rdev->pm.requested_power_state_index = rdev->pm.current_power_state_index - 1; } /* don't use the power state if crtcs are active and no display flag is set */ if ((rdev->pm.active_crtc_count > 0) && (rdev->pm.power_state[rdev->pm.requested_power_state_index].clock_info[0].flags & RADEON_PM_MODE_NO_DISPLAY)) { rdev->pm.requested_power_state_index++; } break; case DYNPM_ACTION_UPCLOCK: if (rdev->pm.current_power_state_index == (rdev->pm.num_power_states - 1)) { rdev->pm.requested_power_state_index = rdev->pm.current_power_state_index; rdev->pm.dynpm_can_upclock = false; } else { if (rdev->pm.active_crtc_count > 1) { for (i = (rdev->pm.num_power_states - 1); i >= 0; i--) { if (rdev->pm.power_state[i].flags & RADEON_PM_STATE_SINGLE_DISPLAY_ONLY) continue; else if (i <= rdev->pm.current_power_state_index) { rdev->pm.requested_power_state_index = rdev->pm.current_power_state_index; break; } else { rdev->pm.requested_power_state_index = i; break; } } } else rdev->pm.requested_power_state_index = rdev->pm.current_power_state_index + 1; } break; case DYNPM_ACTION_DEFAULT: rdev->pm.requested_power_state_index = rdev->pm.default_power_state_index; rdev->pm.dynpm_can_upclock = false; break; case DYNPM_ACTION_NONE: default: DRM_ERROR("Requested mode for not defined action\n"); return; } /* only one clock mode per power state */ rdev->pm.requested_clock_mode_index = 0; DRM_DEBUG_DRIVER("Requested: e: %d m: %d p: %d\n", rdev->pm.power_state[rdev->pm.requested_power_state_index]. clock_info[rdev->pm.requested_clock_mode_index].sclk, rdev->pm.power_state[rdev->pm.requested_power_state_index]. clock_info[rdev->pm.requested_clock_mode_index].mclk, rdev->pm.power_state[rdev->pm.requested_power_state_index]. pcie_lanes); } /** * r100_pm_init_profile - Initialize power profiles callback. * * @rdev: radeon_device pointer * * Initialize the power states used in profile mode * (r1xx-r3xx). * Used for profile mode only. */ void r100_pm_init_profile(struct radeon_device *rdev) { /* default */ rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_off_ps_idx = rdev->pm.default_power_state_index; rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_on_ps_idx = rdev->pm.default_power_state_index; rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_DEFAULT_IDX].dpms_on_cm_idx = 0; /* low sh */ rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_off_ps_idx = 0; rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_on_ps_idx = 0; rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_LOW_SH_IDX].dpms_on_cm_idx = 0; /* mid sh */ rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_off_ps_idx = 0; rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_on_ps_idx = 0; rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_MID_SH_IDX].dpms_on_cm_idx = 0; /* high sh */ rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_off_ps_idx = 0; rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_on_ps_idx = rdev->pm.default_power_state_index; rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_HIGH_SH_IDX].dpms_on_cm_idx = 0; /* low mh */ rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_off_ps_idx = 0; rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_on_ps_idx = rdev->pm.default_power_state_index; rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_LOW_MH_IDX].dpms_on_cm_idx = 0; /* mid mh */ rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_off_ps_idx = 0; rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_on_ps_idx = rdev->pm.default_power_state_index; rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_MID_MH_IDX].dpms_on_cm_idx = 0; /* high mh */ rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_off_ps_idx = 0; rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_on_ps_idx = rdev->pm.default_power_state_index; rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_off_cm_idx = 0; rdev->pm.profiles[PM_PROFILE_HIGH_MH_IDX].dpms_on_cm_idx = 0; } /** * r100_pm_misc - set additional pm hw parameters callback. * * @rdev: radeon_device pointer * * Set non-clock parameters associated with a power state * (voltage, pcie lanes, etc.) (r1xx-r4xx). */ void r100_pm_misc(struct radeon_device *rdev) { int requested_index = rdev->pm.requested_power_state_index; struct radeon_power_state *ps = &rdev->pm.power_state[requested_index]; struct radeon_voltage *voltage = &ps->clock_info[0].voltage; u32 tmp, sclk_cntl, sclk_cntl2, sclk_more_cntl; if ((voltage->type == VOLTAGE_GPIO) && (voltage->gpio.valid)) { if (ps->misc & ATOM_PM_MISCINFO_VOLTAGE_DROP_SUPPORT) { tmp = RREG32(voltage->gpio.reg); if (voltage->active_high) tmp |= voltage->gpio.mask; else tmp &= ~(voltage->gpio.mask); WREG32(voltage->gpio.reg, tmp); if (voltage->delay) udelay(voltage->delay); } else { tmp = RREG32(voltage->gpio.reg); if (voltage->active_high) tmp &= ~voltage->gpio.mask; else tmp |= voltage->gpio.mask; WREG32(voltage->gpio.reg, tmp); if (voltage->delay) udelay(voltage->delay); } } sclk_cntl = RREG32_PLL(SCLK_CNTL); sclk_cntl2 = RREG32_PLL(SCLK_CNTL2); sclk_cntl2 &= ~REDUCED_SPEED_SCLK_SEL(3); sclk_more_cntl = RREG32_PLL(SCLK_MORE_CNTL); sclk_more_cntl &= ~VOLTAGE_DELAY_SEL(3); if (ps->misc & ATOM_PM_MISCINFO_ASIC_REDUCED_SPEED_SCLK_EN) { sclk_more_cntl |= REDUCED_SPEED_SCLK_EN; if (ps->misc & ATOM_PM_MISCINFO_DYN_CLK_3D_IDLE) sclk_cntl2 |= REDUCED_SPEED_SCLK_MODE; else sclk_cntl2 &= ~REDUCED_SPEED_SCLK_MODE; if (ps->misc & ATOM_PM_MISCINFO_DYNAMIC_CLOCK_DIVIDER_BY_2) sclk_cntl2 |= REDUCED_SPEED_SCLK_SEL(0); else if (ps->misc & ATOM_PM_MISCINFO_DYNAMIC_CLOCK_DIVIDER_BY_4) sclk_cntl2 |= REDUCED_SPEED_SCLK_SEL(2); } else sclk_more_cntl &= ~REDUCED_SPEED_SCLK_EN; if (ps->misc & ATOM_PM_MISCINFO_ASIC_DYNAMIC_VOLTAGE_EN) { sclk_more_cntl |= IO_CG_VOLTAGE_DROP; if (voltage->delay) { sclk_more_cntl |= VOLTAGE_DROP_SYNC; switch (voltage->delay) { case 33: sclk_more_cntl |= VOLTAGE_DELAY_SEL(0); break; case 66: sclk_more_cntl |= VOLTAGE_DELAY_SEL(1); break; case 99: sclk_more_cntl |= VOLTAGE_DELAY_SEL(2); break; case 132: sclk_more_cntl |= VOLTAGE_DELAY_SEL(3); break; } } else sclk_more_cntl &= ~VOLTAGE_DROP_SYNC; } else sclk_more_cntl &= ~IO_CG_VOLTAGE_DROP; if (ps->misc & ATOM_PM_MISCINFO_DYNAMIC_HDP_BLOCK_EN) sclk_cntl &= ~FORCE_HDP; else sclk_cntl |= FORCE_HDP; WREG32_PLL(SCLK_CNTL, sclk_cntl); WREG32_PLL(SCLK_CNTL2, sclk_cntl2); WREG32_PLL(SCLK_MORE_CNTL, sclk_more_cntl); /* set pcie lanes */ if ((rdev->flags & RADEON_IS_PCIE) && !(rdev->flags & RADEON_IS_IGP) && rdev->asic->pm.set_pcie_lanes && (ps->pcie_lanes != rdev->pm.power_state[rdev->pm.current_power_state_index].pcie_lanes)) { radeon_set_pcie_lanes(rdev, ps->pcie_lanes); DRM_DEBUG_DRIVER("Setting: p: %d\n", ps->pcie_lanes); } } /** * r100_pm_prepare - pre-power state change callback. * * @rdev: radeon_device pointer * * Prepare for a power state change (r1xx-r4xx). */ void r100_pm_prepare(struct radeon_device *rdev) { struct drm_device *ddev = rdev->ddev; struct drm_crtc *crtc; struct radeon_crtc *radeon_crtc; u32 tmp; /* disable any active CRTCs */ list_for_each_entry(crtc, &ddev->mode_config.crtc_list, head) { radeon_crtc = to_radeon_crtc(crtc); if (radeon_crtc->enabled) { if (radeon_crtc->crtc_id) { tmp = RREG32(RADEON_CRTC2_GEN_CNTL); tmp |= RADEON_CRTC2_DISP_REQ_EN_B; WREG32(RADEON_CRTC2_GEN_CNTL, tmp); } else { tmp = RREG32(RADEON_CRTC_GEN_CNTL); tmp |= RADEON_CRTC_DISP_REQ_EN_B; WREG32(RADEON_CRTC_GEN_CNTL, tmp); } } } } /** * r100_pm_finish - post-power state change callback. * * @rdev: radeon_device pointer * * Clean up after a power state change (r1xx-r4xx). */ void r100_pm_finish(struct radeon_device *rdev) { struct drm_device *ddev = rdev->ddev; struct drm_crtc *crtc; struct radeon_crtc *radeon_crtc; u32 tmp; /* enable any active CRTCs */ list_for_each_entry(crtc, &ddev->mode_config.crtc_list, head) { radeon_crtc = to_radeon_crtc(crtc); if (radeon_crtc->enabled) { if (radeon_crtc->crtc_id) { tmp = RREG32(RADEON_CRTC2_GEN_CNTL); tmp &= ~RADEON_CRTC2_DISP_REQ_EN_B; WREG32(RADEON_CRTC2_GEN_CNTL, tmp); } else { tmp = RREG32(RADEON_CRTC_GEN_CNTL); tmp &= ~RADEON_CRTC_DISP_REQ_EN_B; WREG32(RADEON_CRTC_GEN_CNTL, tmp); } } } } /** * r100_gui_idle - gui idle callback. * * @rdev: radeon_device pointer * * Check of the GUI (2D/3D engines) are idle (r1xx-r5xx). * Returns true if idle, false if not. */ bool r100_gui_idle(struct radeon_device *rdev) { if (RREG32(RADEON_RBBM_STATUS) & RADEON_RBBM_ACTIVE) return false; else return true; } /* hpd for digital panel detect/disconnect */ /** * r100_hpd_sense - hpd sense callback. * * @rdev: radeon_device pointer * @hpd: hpd (hotplug detect) pin * * Checks if a digital monitor is connected (r1xx-r4xx). * Returns true if connected, false if not connected. */ bool r100_hpd_sense(struct radeon_device *rdev, enum radeon_hpd_id hpd) { bool connected = false; switch (hpd) { case RADEON_HPD_1: if (RREG32(RADEON_FP_GEN_CNTL) & RADEON_FP_DETECT_SENSE) connected = true; break; case RADEON_HPD_2: if (RREG32(RADEON_FP2_GEN_CNTL) & RADEON_FP2_DETECT_SENSE) connected = true; break; default: break; } return connected; } /** * r100_hpd_set_polarity - hpd set polarity callback. * * @rdev: radeon_device pointer * @hpd: hpd (hotplug detect) pin * * Set the polarity of the hpd pin (r1xx-r4xx). */ void r100_hpd_set_polarity(struct radeon_device *rdev, enum radeon_hpd_id hpd) { u32 tmp; bool connected = r100_hpd_sense(rdev, hpd); switch (hpd) { case RADEON_HPD_1: tmp = RREG32(RADEON_FP_GEN_CNTL); if (connected) tmp &= ~RADEON_FP_DETECT_INT_POL; else tmp |= RADEON_FP_DETECT_INT_POL; WREG32(RADEON_FP_GEN_CNTL, tmp); break; case RADEON_HPD_2: tmp = RREG32(RADEON_FP2_GEN_CNTL); if (connected) tmp &= ~RADEON_FP2_DETECT_INT_POL; else tmp |= RADEON_FP2_DETECT_INT_POL; WREG32(RADEON_FP2_GEN_CNTL, tmp); break; default: break; } } /** * r100_hpd_init - hpd setup callback. * * @rdev: radeon_device pointer * * Setup the hpd pins used by the card (r1xx-r4xx). * Set the polarity, and enable the hpd interrupts. */ void r100_hpd_init(struct radeon_device *rdev) { struct drm_device *dev = rdev->ddev; struct drm_connector *connector; unsigned enable = 0; list_for_each_entry(connector, &dev->mode_config.connector_list, head) { struct radeon_connector *radeon_connector = to_radeon_connector(connector); enable |= 1 << radeon_connector->hpd.hpd; radeon_hpd_set_polarity(rdev, radeon_connector->hpd.hpd); } radeon_irq_kms_enable_hpd(rdev, enable); } /** * r100_hpd_fini - hpd tear down callback. * * @rdev: radeon_device pointer * * Tear down the hpd pins used by the card (r1xx-r4xx). * Disable the hpd interrupts. */ void r100_hpd_fini(struct radeon_device *rdev) { struct drm_device *dev = rdev->ddev; struct drm_connector *connector; unsigned disable = 0; list_for_each_entry(connector, &dev->mode_config.connector_list, head) { struct radeon_connector *radeon_connector = to_radeon_connector(connector); disable |= 1 << radeon_connector->hpd.hpd; } radeon_irq_kms_disable_hpd(rdev, disable); } /* * PCI GART */ void r100_pci_gart_tlb_flush(struct radeon_device *rdev) { /* TODO: can we do somethings here ? */ /* It seems hw only cache one entry so we should discard this * entry otherwise if first GPU GART read hit this entry it * could end up in wrong address. */ } int r100_pci_gart_init(struct radeon_device *rdev) { int r; if (rdev->gart.ptr) { WARN(1, "R100 PCI GART already initialized\n"); return 0; } /* Initialize common gart structure */ r = radeon_gart_init(rdev); if (r) return r; rdev->gart.table_size = rdev->gart.num_gpu_pages * 4; rdev->asic->gart.tlb_flush = &r100_pci_gart_tlb_flush; rdev->asic->gart.set_page = &r100_pci_gart_set_page; return radeon_gart_table_ram_alloc(rdev); } int r100_pci_gart_enable(struct radeon_device *rdev) { uint32_t tmp; radeon_gart_restore(rdev); /* discard memory request outside of configured range */ tmp = RREG32(RADEON_AIC_CNTL) | RADEON_DIS_OUT_OF_PCI_GART_ACCESS; WREG32(RADEON_AIC_CNTL, tmp); /* set address range for PCI address translate */ WREG32(RADEON_AIC_LO_ADDR, rdev->mc.gtt_start); WREG32(RADEON_AIC_HI_ADDR, rdev->mc.gtt_end); /* set PCI GART page-table base address */ WREG32(RADEON_AIC_PT_BASE, rdev->gart.table_addr); tmp = RREG32(RADEON_AIC_CNTL) | RADEON_PCIGART_TRANSLATE_EN; WREG32(RADEON_AIC_CNTL, tmp); r100_pci_gart_tlb_flush(rdev); DRM_INFO("PCI GART of %uM enabled (table at 0x%016llX).\n", (unsigned)(rdev->mc.gtt_size >> 20), (unsigned long long)rdev->gart.table_addr); rdev->gart.ready = true; return 0; } void r100_pci_gart_disable(struct radeon_device *rdev) { uint32_t tmp; /* discard memory request outside of configured range */ tmp = RREG32(RADEON_AIC_CNTL) | RADEON_DIS_OUT_OF_PCI_GART_ACCESS; WREG32(RADEON_AIC_CNTL, tmp & ~RADEON_PCIGART_TRANSLATE_EN); WREG32(RADEON_AIC_LO_ADDR, 0); WREG32(RADEON_AIC_HI_ADDR, 0); } int r100_pci_gart_set_page(struct radeon_device *rdev, int i, uint64_t addr) { u32 *gtt = rdev->gart.ptr; if (i < 0 || i > rdev->gart.num_gpu_pages) { return -EINVAL; } gtt[i] = cpu_to_le32(lower_32_bits(addr)); return 0; } void r100_pci_gart_fini(struct radeon_device *rdev) { radeon_gart_fini(rdev); r100_pci_gart_disable(rdev); radeon_gart_table_ram_free(rdev); } int r100_irq_set(struct radeon_device *rdev) { uint32_t tmp = 0; if (!rdev->irq.installed) { WARN(1, "Can't enable IRQ/MSI because no handler is installed\n"); WREG32(R_000040_GEN_INT_CNTL, 0); return -EINVAL; } if (atomic_read(&rdev->irq.ring_int[RADEON_RING_TYPE_GFX_INDEX])) { tmp |= RADEON_SW_INT_ENABLE; } if (rdev->irq.crtc_vblank_int[0] || atomic_read(&rdev->irq.pflip[0])) { tmp |= RADEON_CRTC_VBLANK_MASK; } if (rdev->irq.crtc_vblank_int[1] || atomic_read(&rdev->irq.pflip[1])) { tmp |= RADEON_CRTC2_VBLANK_MASK; } if (rdev->irq.hpd[0]) { tmp |= RADEON_FP_DETECT_MASK; } if (rdev->irq.hpd[1]) { tmp |= RADEON_FP2_DETECT_MASK; } WREG32(RADEON_GEN_INT_CNTL, tmp); return 0; } void r100_irq_disable(struct radeon_device *rdev) { u32 tmp; WREG32(R_000040_GEN_INT_CNTL, 0); /* Wait and acknowledge irq */ mdelay(1); tmp = RREG32(R_000044_GEN_INT_STATUS); WREG32(R_000044_GEN_INT_STATUS, tmp); } static uint32_t r100_irq_ack(struct radeon_device *rdev) { uint32_t irqs = RREG32(RADEON_GEN_INT_STATUS); uint32_t irq_mask = RADEON_SW_INT_TEST | RADEON_CRTC_VBLANK_STAT | RADEON_CRTC2_VBLANK_STAT | RADEON_FP_DETECT_STAT | RADEON_FP2_DETECT_STAT; if (irqs) { WREG32(RADEON_GEN_INT_STATUS, irqs); } return irqs & irq_mask; } int r100_irq_process(struct radeon_device *rdev) { uint32_t status, msi_rearm; bool queue_hotplug = false; status = r100_irq_ack(rdev); if (!status) { return IRQ_NONE; } if (rdev->shutdown) { return IRQ_NONE; } while (status) { /* SW interrupt */ if (status & RADEON_SW_INT_TEST) { radeon_fence_process(rdev, RADEON_RING_TYPE_GFX_INDEX); } /* Vertical blank interrupts */ if (status & RADEON_CRTC_VBLANK_STAT) { if (rdev->irq.crtc_vblank_int[0]) { drm_handle_vblank(rdev->ddev, 0); rdev->pm.vblank_sync = true; wake_up(&rdev->irq.vblank_queue); } if (atomic_read(&rdev->irq.pflip[0])) radeon_crtc_handle_flip(rdev, 0); } if (status & RADEON_CRTC2_VBLANK_STAT) { if (rdev->irq.crtc_vblank_int[1]) { drm_handle_vblank(rdev->ddev, 1); rdev->pm.vblank_sync = true; wake_up(&rdev->irq.vblank_queue); } if (atomic_read(&rdev->irq.pflip[1])) radeon_crtc_handle_flip(rdev, 1); } if (status & RADEON_FP_DETECT_STAT) { queue_hotplug = true; DRM_DEBUG("HPD1\n"); } if (status & RADEON_FP2_DETECT_STAT) { queue_hotplug = true; DRM_DEBUG("HPD2\n"); } status = r100_irq_ack(rdev); } if (queue_hotplug) schedule_work(&rdev->hotplug_work); if (rdev->msi_enabled) { switch (rdev->family) { case CHIP_RS400: case CHIP_RS480: msi_rearm = RREG32(RADEON_AIC_CNTL) & ~RS400_MSI_REARM; WREG32(RADEON_AIC_CNTL, msi_rearm); WREG32(RADEON_AIC_CNTL, msi_rearm | RS400_MSI_REARM); break; default: WREG32(RADEON_MSI_REARM_EN, RV370_MSI_REARM_EN); break; } } return IRQ_HANDLED; } u32 r100_get_vblank_counter(struct radeon_device *rdev, int crtc) { if (crtc == 0) return RREG32(RADEON_CRTC_CRNT_FRAME); else return RREG32(RADEON_CRTC2_CRNT_FRAME); } /* Who ever call radeon_fence_emit should call ring_lock and ask * for enough space (today caller are ib schedule and buffer move) */ void r100_fence_ring_emit(struct radeon_device *rdev, struct radeon_fence *fence) { struct radeon_ring *ring = &rdev->ring[fence->ring]; /* We have to make sure that caches are flushed before * CPU might read something from VRAM. */ radeon_ring_write(ring, PACKET0(RADEON_RB3D_DSTCACHE_CTLSTAT, 0)); radeon_ring_write(ring, RADEON_RB3D_DC_FLUSH_ALL); radeon_ring_write(ring, PACKET0(RADEON_RB3D_ZCACHE_CTLSTAT, 0)); radeon_ring_write(ring, RADEON_RB3D_ZC_FLUSH_ALL); /* Wait until IDLE & CLEAN */ radeon_ring_write(ring, PACKET0(RADEON_WAIT_UNTIL, 0)); radeon_ring_write(ring, RADEON_WAIT_2D_IDLECLEAN | RADEON_WAIT_3D_IDLECLEAN); radeon_ring_write(ring, PACKET0(RADEON_HOST_PATH_CNTL, 0)); radeon_ring_write(ring, rdev->config.r100.hdp_cntl | RADEON_HDP_READ_BUFFER_INVALIDATE); radeon_ring_write(ring, PACKET0(RADEON_HOST_PATH_CNTL, 0)); radeon_ring_write(ring, rdev->config.r100.hdp_cntl); /* Emit fence sequence & fire IRQ */ radeon_ring_write(ring, PACKET0(rdev->fence_drv[fence->ring].scratch_reg, 0)); radeon_ring_write(ring, fence->seq); radeon_ring_write(ring, PACKET0(RADEON_GEN_INT_STATUS, 0)); radeon_ring_write(ring, RADEON_SW_INT_FIRE); } bool r100_semaphore_ring_emit(struct radeon_device *rdev, struct radeon_ring *ring, struct radeon_semaphore *semaphore, bool emit_wait) { /* Unused on older asics, since we don't have semaphores or multiple rings */ BUG(); return false; } int r100_copy_blit(struct radeon_device *rdev, uint64_t src_offset, uint64_t dst_offset, unsigned num_gpu_pages, struct radeon_fence **fence) { struct radeon_ring *ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]; uint32_t cur_pages; uint32_t stride_bytes = RADEON_GPU_PAGE_SIZE; uint32_t pitch; uint32_t stride_pixels; unsigned ndw; int num_loops; int r = 0; /* radeon limited to 16k stride */ stride_bytes &= 0x3fff; /* radeon pitch is /64 */ pitch = stride_bytes / 64; stride_pixels = stride_bytes / 4; num_loops = DIV_ROUND_UP(num_gpu_pages, 8191); /* Ask for enough room for blit + flush + fence */ ndw = 64 + (10 * num_loops); r = radeon_ring_lock(rdev, ring, ndw); if (r) { DRM_ERROR("radeon: moving bo (%d) asking for %u dw.\n", r, ndw); return -EINVAL; } while (num_gpu_pages > 0) { cur_pages = num_gpu_pages; if (cur_pages > 8191) { cur_pages = 8191; } num_gpu_pages -= cur_pages; /* pages are in Y direction - height page width in X direction - width */ radeon_ring_write(ring, PACKET3(PACKET3_BITBLT_MULTI, 8)); radeon_ring_write(ring, RADEON_GMC_SRC_PITCH_OFFSET_CNTL | RADEON_GMC_DST_PITCH_OFFSET_CNTL | RADEON_GMC_SRC_CLIPPING | RADEON_GMC_DST_CLIPPING | RADEON_GMC_BRUSH_NONE | (RADEON_COLOR_FORMAT_ARGB8888 << 8) | RADEON_GMC_SRC_DATATYPE_COLOR | RADEON_ROP3_S | RADEON_DP_SRC_SOURCE_MEMORY | RADEON_GMC_CLR_CMP_CNTL_DIS | RADEON_GMC_WR_MSK_DIS); radeon_ring_write(ring, (pitch << 22) | (src_offset >> 10)); radeon_ring_write(ring, (pitch << 22) | (dst_offset >> 10)); radeon_ring_write(ring, (0x1fff) | (0x1fff << 16)); radeon_ring_write(ring, 0); radeon_ring_write(ring, (0x1fff) | (0x1fff << 16)); radeon_ring_write(ring, num_gpu_pages); radeon_ring_write(ring, num_gpu_pages); radeon_ring_write(ring, cur_pages | (stride_pixels << 16)); } radeon_ring_write(ring, PACKET0(RADEON_DSTCACHE_CTLSTAT, 0)); radeon_ring_write(ring, RADEON_RB2D_DC_FLUSH_ALL); radeon_ring_write(ring, PACKET0(RADEON_WAIT_UNTIL, 0)); radeon_ring_write(ring, RADEON_WAIT_2D_IDLECLEAN | RADEON_WAIT_HOST_IDLECLEAN | RADEON_WAIT_DMA_GUI_IDLE); if (fence) { r = radeon_fence_emit(rdev, fence, RADEON_RING_TYPE_GFX_INDEX); } radeon_ring_unlock_commit(rdev, ring); return r; } static int r100_cp_wait_for_idle(struct radeon_device *rdev) { unsigned i; u32 tmp; for (i = 0; i < rdev->usec_timeout; i++) { tmp = RREG32(R_000E40_RBBM_STATUS); if (!G_000E40_CP_CMDSTRM_BUSY(tmp)) { return 0; } udelay(1); } return -1; } void r100_ring_start(struct radeon_device *rdev, struct radeon_ring *ring) { int r; r = radeon_ring_lock(rdev, ring, 2); if (r) { return; } radeon_ring_write(ring, PACKET0(RADEON_ISYNC_CNTL, 0)); radeon_ring_write(ring, RADEON_ISYNC_ANY2D_IDLE3D | RADEON_ISYNC_ANY3D_IDLE2D | RADEON_ISYNC_WAIT_IDLEGUI | RADEON_ISYNC_CPSCRATCH_IDLEGUI); radeon_ring_unlock_commit(rdev, ring); } /* Load the microcode for the CP */ static int r100_cp_init_microcode(struct radeon_device *rdev) { const char *fw_name = NULL; int err; DRM_DEBUG_KMS("\n"); if ((rdev->family == CHIP_R100) || (rdev->family == CHIP_RV100) || (rdev->family == CHIP_RV200) || (rdev->family == CHIP_RS100) || (rdev->family == CHIP_RS200)) { DRM_INFO("Loading R100 Microcode\n"); fw_name = FIRMWARE_R100; } else if ((rdev->family == CHIP_R200) || (rdev->family == CHIP_RV250) || (rdev->family == CHIP_RV280) || (rdev->family == CHIP_RS300)) { DRM_INFO("Loading R200 Microcode\n"); fw_name = FIRMWARE_R200; } else if ((rdev->family == CHIP_R300) || (rdev->family == CHIP_R350) || (rdev->family == CHIP_RV350) || (rdev->family == CHIP_RV380) || (rdev->family == CHIP_RS400) || (rdev->family == CHIP_RS480)) { DRM_INFO("Loading R300 Microcode\n"); fw_name = FIRMWARE_R300; } else if ((rdev->family == CHIP_R420) || (rdev->family == CHIP_R423) || (rdev->family == CHIP_RV410)) { DRM_INFO("Loading R400 Microcode\n"); fw_name = FIRMWARE_R420; } else if ((rdev->family == CHIP_RS690) || (rdev->family == CHIP_RS740)) { DRM_INFO("Loading RS690/RS740 Microcode\n"); fw_name = FIRMWARE_RS690; } else if (rdev->family == CHIP_RS600) { DRM_INFO("Loading RS600 Microcode\n"); fw_name = FIRMWARE_RS600; } else if ((rdev->family == CHIP_RV515) || (rdev->family == CHIP_R520) || (rdev->family == CHIP_RV530) || (rdev->family == CHIP_R580) || (rdev->family == CHIP_RV560) || (rdev->family == CHIP_RV570)) { DRM_INFO("Loading R500 Microcode\n"); fw_name = FIRMWARE_R520; } err = request_firmware(&rdev->me_fw, fw_name, rdev->dev); if (err) { printk(KERN_ERR "radeon_cp: Failed to load firmware \"%s\"\n", fw_name); } else if (rdev->me_fw->size % 8) { printk(KERN_ERR "radeon_cp: Bogus length %zu in firmware \"%s\"\n", rdev->me_fw->size, fw_name); err = -EINVAL; release_firmware(rdev->me_fw); rdev->me_fw = NULL; } return err; } u32 r100_gfx_get_rptr(struct radeon_device *rdev, struct radeon_ring *ring) { u32 rptr; if (rdev->wb.enabled) rptr = le32_to_cpu(rdev->wb.wb[ring->rptr_offs/4]); else rptr = RREG32(RADEON_CP_RB_RPTR); return rptr; } u32 r100_gfx_get_wptr(struct radeon_device *rdev, struct radeon_ring *ring) { u32 wptr; wptr = RREG32(RADEON_CP_RB_WPTR); return wptr; } void r100_gfx_set_wptr(struct radeon_device *rdev, struct radeon_ring *ring) { WREG32(RADEON_CP_RB_WPTR, ring->wptr); (void)RREG32(RADEON_CP_RB_WPTR); } static void r100_cp_load_microcode(struct radeon_device *rdev) { const __be32 *fw_data; int i, size; if (r100_gui_wait_for_idle(rdev)) { printk(KERN_WARNING "Failed to wait GUI idle while " "programming pipes. Bad things might happen.\n"); } if (rdev->me_fw) { size = rdev->me_fw->size / 4; fw_data = (const __be32 *)&rdev->me_fw->data[0]; WREG32(RADEON_CP_ME_RAM_ADDR, 0); for (i = 0; i < size; i += 2) { WREG32(RADEON_CP_ME_RAM_DATAH, be32_to_cpup(&fw_data[i])); WREG32(RADEON_CP_ME_RAM_DATAL, be32_to_cpup(&fw_data[i + 1])); } } } int r100_cp_init(struct radeon_device *rdev, unsigned ring_size) { struct radeon_ring *ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]; unsigned rb_bufsz; unsigned rb_blksz; unsigned max_fetch; unsigned pre_write_timer; unsigned pre_write_limit; unsigned indirect2_start; unsigned indirect1_start; uint32_t tmp; int r; if (r100_debugfs_cp_init(rdev)) { DRM_ERROR("Failed to register debugfs file for CP !\n"); } if (!rdev->me_fw) { r = r100_cp_init_microcode(rdev); if (r) { DRM_ERROR("Failed to load firmware!\n"); return r; } } /* Align ring size */ rb_bufsz = order_base_2(ring_size / 8); ring_size = (1 << (rb_bufsz + 1)) * 4; r100_cp_load_microcode(rdev); r = radeon_ring_init(rdev, ring, ring_size, RADEON_WB_CP_RPTR_OFFSET, RADEON_CP_PACKET2); if (r) { return r; } /* Each time the cp read 1024 bytes (16 dword/quadword) update * the rptr copy in system ram */ rb_blksz = 9; /* cp will read 128bytes at a time (4 dwords) */ max_fetch = 1; ring->align_mask = 16 - 1; /* Write to CP_RB_WPTR will be delayed for pre_write_timer clocks */ pre_write_timer = 64; /* Force CP_RB_WPTR write if written more than one time before the * delay expire */ pre_write_limit = 0; /* Setup the cp cache like this (cache size is 96 dwords) : * RING 0 to 15 * INDIRECT1 16 to 79 * INDIRECT2 80 to 95 * So ring cache size is 16dwords (> (2 * max_fetch = 2 * 4dwords)) * indirect1 cache size is 64dwords (> (2 * max_fetch = 2 * 4dwords)) * indirect2 cache size is 16dwords (> (2 * max_fetch = 2 * 4dwords)) * Idea being that most of the gpu cmd will be through indirect1 buffer * so it gets the bigger cache. */ indirect2_start = 80; indirect1_start = 16; /* cp setup */ WREG32(0x718, pre_write_timer | (pre_write_limit << 28)); tmp = (REG_SET(RADEON_RB_BUFSZ, rb_bufsz) | REG_SET(RADEON_RB_BLKSZ, rb_blksz) | REG_SET(RADEON_MAX_FETCH, max_fetch)); #ifdef __BIG_ENDIAN tmp |= RADEON_BUF_SWAP_32BIT; #endif WREG32(RADEON_CP_RB_CNTL, tmp | RADEON_RB_NO_UPDATE); /* Set ring address */ DRM_INFO("radeon: ring at 0x%016lX\n", (unsigned long)ring->gpu_addr); WREG32(RADEON_CP_RB_BASE, ring->gpu_addr); /* Force read & write ptr to 0 */ WREG32(RADEON_CP_RB_CNTL, tmp | RADEON_RB_RPTR_WR_ENA | RADEON_RB_NO_UPDATE); WREG32(RADEON_CP_RB_RPTR_WR, 0); ring->wptr = 0; WREG32(RADEON_CP_RB_WPTR, ring->wptr); /* set the wb address whether it's enabled or not */ WREG32(R_00070C_CP_RB_RPTR_ADDR, S_00070C_RB_RPTR_ADDR((rdev->wb.gpu_addr + RADEON_WB_CP_RPTR_OFFSET) >> 2)); WREG32(R_000774_SCRATCH_ADDR, rdev->wb.gpu_addr + RADEON_WB_SCRATCH_OFFSET); if (rdev->wb.enabled) WREG32(R_000770_SCRATCH_UMSK, 0xff); else { tmp |= RADEON_RB_NO_UPDATE; WREG32(R_000770_SCRATCH_UMSK, 0); } WREG32(RADEON_CP_RB_CNTL, tmp); udelay(10); /* Set cp mode to bus mastering & enable cp*/ WREG32(RADEON_CP_CSQ_MODE, REG_SET(RADEON_INDIRECT2_START, indirect2_start) | REG_SET(RADEON_INDIRECT1_START, indirect1_start)); WREG32(RADEON_CP_RB_WPTR_DELAY, 0); WREG32(RADEON_CP_CSQ_MODE, 0x00004D4D); WREG32(RADEON_CP_CSQ_CNTL, RADEON_CSQ_PRIBM_INDBM); /* at this point everything should be setup correctly to enable master */ pci_set_master(rdev->pdev); radeon_ring_start(rdev, RADEON_RING_TYPE_GFX_INDEX, &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]); r = radeon_ring_test(rdev, RADEON_RING_TYPE_GFX_INDEX, ring); if (r) { DRM_ERROR("radeon: cp isn't working (%d).\n", r); return r; } ring->ready = true; radeon_ttm_set_active_vram_size(rdev, rdev->mc.real_vram_size); if (!ring->rptr_save_reg /* not resuming from suspend */ && radeon_ring_supports_scratch_reg(rdev, ring)) { r = radeon_scratch_get(rdev, &ring->rptr_save_reg); if (r) { DRM_ERROR("failed to get scratch reg for rptr save (%d).\n", r); ring->rptr_save_reg = 0; } } return 0; } void r100_cp_fini(struct radeon_device *rdev) { if (r100_cp_wait_for_idle(rdev)) { DRM_ERROR("Wait for CP idle timeout, shutting down CP.\n"); } /* Disable ring */ r100_cp_disable(rdev); radeon_scratch_free(rdev, rdev->ring[RADEON_RING_TYPE_GFX_INDEX].rptr_save_reg); radeon_ring_fini(rdev, &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]); DRM_INFO("radeon: cp finalized\n"); } void r100_cp_disable(struct radeon_device *rdev) { /* Disable ring */ radeon_ttm_set_active_vram_size(rdev, rdev->mc.visible_vram_size); rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ready = false; WREG32(RADEON_CP_CSQ_MODE, 0); WREG32(RADEON_CP_CSQ_CNTL, 0); WREG32(R_000770_SCRATCH_UMSK, 0); if (r100_gui_wait_for_idle(rdev)) { printk(KERN_WARNING "Failed to wait GUI idle while " "programming pipes. Bad things might happen.\n"); } } /* * CS functions */ int r100_reloc_pitch_offset(struct radeon_cs_parser *p, struct radeon_cs_packet *pkt, unsigned idx, unsigned reg) { int r; u32 tile_flags = 0; u32 tmp; struct radeon_cs_reloc *reloc; u32 value; r = radeon_cs_packet_next_reloc(p, &reloc, 0); if (r) { DRM_ERROR("No reloc for ib[%d]=0x%04X\n", idx, reg); radeon_cs_dump_packet(p, pkt); return r; } value = radeon_get_ib_value(p, idx); tmp = value & 0x003fffff; tmp += (((u32)reloc->gpu_offset) >> 10); if (!(p->cs_flags & RADEON_CS_KEEP_TILING_FLAGS)) { if (reloc->tiling_flags & RADEON_TILING_MACRO) tile_flags |= RADEON_DST_TILE_MACRO; if (reloc->tiling_flags & RADEON_TILING_MICRO) { if (reg == RADEON_SRC_PITCH_OFFSET) { DRM_ERROR("Cannot src blit from microtiled surface\n"); radeon_cs_dump_packet(p, pkt); return -EINVAL; } tile_flags |= RADEON_DST_TILE_MICRO; } tmp |= tile_flags; p->ib.ptr[idx] = (value & 0x3fc00000) | tmp; } else p->ib.ptr[idx] = (value & 0xffc00000) | tmp; return 0; } int r100_packet3_load_vbpntr(struct radeon_cs_parser *p, struct radeon_cs_packet *pkt, int idx) { unsigned c, i; struct radeon_cs_reloc *reloc; struct r100_cs_track *track; int r = 0; volatile uint32_t *ib; u32 idx_value; ib = p->ib.ptr; track = (struct r100_cs_track *)p->track; c = radeon_get_ib_value(p, idx++) & 0x1F; if (c > 16) { DRM_ERROR("Only 16 vertex buffers are allowed %d\n", pkt->opcode); radeon_cs_dump_packet(p, pkt); return -EINVAL; } track->num_arrays = c; for (i = 0; i < (c - 1); i+=2, idx+=3) { r = radeon_cs_packet_next_reloc(p, &reloc, 0); if (r) { DRM_ERROR("No reloc for packet3 %d\n", pkt->opcode); radeon_cs_dump_packet(p, pkt); return r; } idx_value = radeon_get_ib_value(p, idx); ib[idx+1] = radeon_get_ib_value(p, idx + 1) + ((u32)reloc->gpu_offset); track->arrays[i + 0].esize = idx_value >> 8; track->arrays[i + 0].robj = reloc->robj; track->arrays[i + 0].esize &= 0x7F; r = radeon_cs_packet_next_reloc(p, &reloc, 0); if (r) { DRM_ERROR("No reloc for packet3 %d\n", pkt->opcode); radeon_cs_dump_packet(p, pkt); return r; } ib[idx+2] = radeon_get_ib_value(p, idx + 2) + ((u32)reloc->gpu_offset); track->arrays[i + 1].robj = reloc->robj; track->arrays[i + 1].esize = idx_value >> 24; track->arrays[i + 1].esize &= 0x7F; } if (c & 1) { r = radeon_cs_packet_next_reloc(p, &reloc, 0); if (r) { DRM_ERROR("No reloc for packet3 %d\n", pkt->opcode); radeon_cs_dump_packet(p, pkt); return r; } idx_value = radeon_get_ib_value(p, idx); ib[idx+1] = radeon_get_ib_value(p, idx + 1) + ((u32)reloc->gpu_offset); track->arrays[i + 0].robj = reloc->robj; track->arrays[i + 0].esize = idx_value >> 8; track->arrays[i + 0].esize &= 0x7F; } return r; } int r100_cs_parse_packet0(struct radeon_cs_parser *p, struct radeon_cs_packet *pkt, const unsigned *auth, unsigned n, radeon_packet0_check_t check) { unsigned reg; unsigned i, j, m; unsigned idx; int r; idx = pkt->idx + 1; reg = pkt->reg; /* Check that register fall into register range * determined by the number of entry (n) in the * safe register bitmap. */ if (pkt->one_reg_wr) { if ((reg >> 7) > n) { return -EINVAL; } } else { if (((reg + (pkt->count << 2)) >> 7) > n) { return -EINVAL; } } for (i = 0; i <= pkt->count; i++, idx++) { j = (reg >> 7); m = 1 << ((reg >> 2) & 31); if (auth[j] & m) { r = check(p, pkt, idx, reg); if (r) { return r; } } if (pkt->one_reg_wr) { if (!(auth[j] & m)) { break; } } else { reg += 4; } } return 0; } /** * r100_cs_packet_next_vline() - parse userspace VLINE packet * @parser: parser structure holding parsing context. * * Userspace sends a special sequence for VLINE waits. * PACKET0 - VLINE_START_END + value * PACKET0 - WAIT_UNTIL +_value * RELOC (P3) - crtc_id in reloc. * * This function parses this and relocates the VLINE START END * and WAIT UNTIL packets to the correct crtc. * It also detects a switched off crtc and nulls out the * wait in that case. */ int r100_cs_packet_parse_vline(struct radeon_cs_parser *p) { struct drm_mode_object *obj; struct drm_crtc *crtc; struct radeon_crtc *radeon_crtc; struct radeon_cs_packet p3reloc, waitreloc; int crtc_id; int r; uint32_t header, h_idx, reg; volatile uint32_t *ib; ib = p->ib.ptr; /* parse the wait until */ r = radeon_cs_packet_parse(p, &waitreloc, p->idx); if (r) return r; /* check its a wait until and only 1 count */ if (waitreloc.reg != RADEON_WAIT_UNTIL || waitreloc.count != 0) { DRM_ERROR("vline wait had illegal wait until segment\n"); return -EINVAL; } if (radeon_get_ib_value(p, waitreloc.idx + 1) != RADEON_WAIT_CRTC_VLINE) { DRM_ERROR("vline wait had illegal wait until\n"); return -EINVAL; } /* jump over the NOP */ r = radeon_cs_packet_parse(p, &p3reloc, p->idx + waitreloc.count + 2); if (r) return r; h_idx = p->idx - 2; p->idx += waitreloc.count + 2; p->idx += p3reloc.count + 2; header = radeon_get_ib_value(p, h_idx); crtc_id = radeon_get_ib_value(p, h_idx + 5); reg = R100_CP_PACKET0_GET_REG(header); obj = drm_mode_object_find(p->rdev->ddev, crtc_id, DRM_MODE_OBJECT_CRTC); if (!obj) { DRM_ERROR("cannot find crtc %d\n", crtc_id); return -ENOENT; } crtc = obj_to_crtc(obj); radeon_crtc = to_radeon_crtc(crtc); crtc_id = radeon_crtc->crtc_id; if (!crtc->enabled) { /* if the CRTC isn't enabled - we need to nop out the wait until */ ib[h_idx + 2] = PACKET2(0); ib[h_idx + 3] = PACKET2(0); } else if (crtc_id == 1) { switch (reg) { case AVIVO_D1MODE_VLINE_START_END: header &= ~R300_CP_PACKET0_REG_MASK; header |= AVIVO_D2MODE_VLINE_START_END >> 2; break; case RADEON_CRTC_GUI_TRIG_VLINE: header &= ~R300_CP_PACKET0_REG_MASK; header |= RADEON_CRTC2_GUI_TRIG_VLINE >> 2; break; default: DRM_ERROR("unknown crtc reloc\n"); return -EINVAL; } ib[h_idx] = header; ib[h_idx + 3] |= RADEON_ENG_DISPLAY_SELECT_CRTC1; } return 0; } static int r100_get_vtx_size(uint32_t vtx_fmt) { int vtx_size; vtx_size = 2; /* ordered according to bits in spec */ if (vtx_fmt & RADEON_SE_VTX_FMT_W0) vtx_size++; if (vtx_fmt & RADEON_SE_VTX_FMT_FPCOLOR) vtx_size += 3; if (vtx_fmt & RADEON_SE_VTX_FMT_FPALPHA) vtx_size++; if (vtx_fmt & RADEON_SE_VTX_FMT_PKCOLOR) vtx_size++; if (vtx_fmt & RADEON_SE_VTX_FMT_FPSPEC) vtx_size += 3; if (vtx_fmt & RADEON_SE_VTX_FMT_FPFOG) vtx_size++; if (vtx_fmt & RADEON_SE_VTX_FMT_PKSPEC) vtx_size++; if (vtx_fmt & RADEON_SE_VTX_FMT_ST0) vtx_size += 2; if (vtx_fmt & RADEON_SE_VTX_FMT_ST1) vtx_size += 2; if (vtx_fmt & RADEON_SE_VTX_FMT_Q1) vtx_size++; if (vtx_fmt & RADEON_SE_VTX_FMT_ST2) vtx_size += 2; if (vtx_fmt & RADEON_SE_VTX_FMT_Q2) vtx_size++; if (vtx_fmt & RADEON_SE_VTX_FMT_ST3) vtx_size += 2; if (vtx_fmt & RADEON_SE_VTX_FMT_Q3) vtx_size++; if (vtx_fmt & RADEON_SE_VTX_FMT_Q0) vtx_size++; /* blend weight */ if (vtx_fmt & (0x7 << 15)) vtx_size += (vtx_fmt >> 15) & 0x7; if (vtx_fmt & RADEON_SE_VTX_FMT_N0) vtx_size += 3; if (vtx_fmt & RADEON_SE_VTX_FMT_XY1) vtx_size += 2; if (vtx_fmt & RADEON_SE_VTX_FMT_Z1) vtx_size++; if (vtx_fmt & RADEON_SE_VTX_FMT_W1) vtx_size++; if (vtx_fmt & RADEON_SE_VTX_FMT_N1) vtx_size++; if (vtx_fmt & RADEON_SE_VTX_FMT_Z) vtx_size++; return vtx_size; } static int r100_packet0_check(struct radeon_cs_parser *p, struct radeon_cs_packet *pkt, unsigned idx, unsigned reg) { struct radeon_cs_reloc *reloc; struct r100_cs_track *track; volatile uint32_t *ib; uint32_t tmp; int r; int i, face; u32 tile_flags = 0; u32 idx_value; ib = p->ib.ptr; track = (struct r100_cs_track *)p->track; idx_value = radeon_get_ib_value(p, idx); switch (reg) { case RADEON_CRTC_GUI_TRIG_VLINE: r = r100_cs_packet_parse_vline(p); if (r) { DRM_ERROR("No reloc for ib[%d]=0x%04X\n", idx, reg); radeon_cs_dump_packet(p, pkt); return r; } break; /* FIXME: only allow PACKET3 blit? easier to check for out of * range access */ case RADEON_DST_PITCH_OFFSET: case RADEON_SRC_PITCH_OFFSET: r = r100_reloc_pitch_offset(p, pkt, idx, reg); if (r) return r; break; case RADEON_RB3D_DEPTHOFFSET: r = radeon_cs_packet_next_reloc(p, &reloc, 0); if (r) { DRM_ERROR("No reloc for ib[%d]=0x%04X\n", idx, reg); radeon_cs_dump_packet(p, pkt); return r; } track->zb.robj = reloc->robj; track->zb.offset = idx_value; track->zb_dirty = true; ib[idx] = idx_value + ((u32)reloc->gpu_offset); break; case RADEON_RB3D_COLOROFFSET: r = radeon_cs_packet_next_reloc(p, &reloc, 0); if (r) { DRM_ERROR("No reloc for ib[%d]=0x%04X\n", idx, reg); radeon_cs_dump_packet(p, pkt); return r; } track->cb[0].robj = reloc->robj; track->cb[0].offset = idx_value; track->cb_dirty = true; ib[idx] = idx_value + ((u32)reloc->gpu_offset); break; case RADEON_PP_TXOFFSET_0: case RADEON_PP_TXOFFSET_1: case RADEON_PP_TXOFFSET_2: i = (reg - RADEON_PP_TXOFFSET_0) / 24; r = radeon_cs_packet_next_reloc(p, &reloc, 0); if (r) { DRM_ERROR("No reloc for ib[%d]=0x%04X\n", idx, reg); radeon_cs_dump_packet(p, pkt); return r; } if (!(p->cs_flags & RADEON_CS_KEEP_TILING_FLAGS)) { if (reloc->tiling_flags & RADEON_TILING_MACRO) tile_flags |= RADEON_TXO_MACRO_TILE; if (reloc->tiling_flags & RADEON_TILING_MICRO) tile_flags |= RADEON_TXO_MICRO_TILE_X2; tmp = idx_value & ~(0x7 << 2); tmp |= tile_flags; ib[idx] = tmp + ((u32)reloc->gpu_offset); } else ib[idx] = idx_value + ((u32)reloc->gpu_offset); track->textures[i].robj = reloc->robj; track->tex_dirty = true; break; case RADEON_PP_CUBIC_OFFSET_T0_0: case RADEON_PP_CUBIC_OFFSET_T0_1: case RADEON_PP_CUBIC_OFFSET_T0_2: case RADEON_PP_CUBIC_OFFSET_T0_3: case RADEON_PP_CUBIC_OFFSET_T0_4: i = (reg - RADEON_PP_CUBIC_OFFSET_T0_0) / 4; r = radeon_cs_packet_next_reloc(p, &reloc, 0); if (r) { DRM_ERROR("No reloc for ib[%d]=0x%04X\n", idx, reg); radeon_cs_dump_packet(p, pkt); return r; } track->textures[0].cube_info[i].offset = idx_value; ib[idx] = idx_value + ((u32)reloc->gpu_offset); track->textures[0].cube_info[i].robj = reloc->robj; track->tex_dirty = true; break; case RADEON_PP_CUBIC_OFFSET_T1_0: case RADEON_PP_CUBIC_OFFSET_T1_1: case RADEON_PP_CUBIC_OFFSET_T1_2: case RADEON_PP_CUBIC_OFFSET_T1_3: case RADEON_PP_CUBIC_OFFSET_T1_4: i = (reg - RADEON_PP_CUBIC_OFFSET_T1_0) / 4; r = radeon_cs_packet_next_reloc(p, &reloc, 0); if (r) { DRM_ERROR("No reloc for ib[%d]=0x%04X\n", idx, reg); radeon_cs_dump_packet(p, pkt); return r; } track->textures[1].cube_info[i].offset = idx_value; ib[idx] = idx_value + ((u32)reloc->gpu_offset); track->textures[1].cube_info[i].robj = reloc->robj; track->tex_dirty = true; break; case RADEON_PP_CUBIC_OFFSET_T2_0: case RADEON_PP_CUBIC_OFFSET_T2_1: case RADEON_PP_CUBIC_OFFSET_T2_2: case RADEON_PP_CUBIC_OFFSET_T2_3: case RADEON_PP_CUBIC_OFFSET_T2_4: i = (reg - RADEON_PP_CUBIC_OFFSET_T2_0) / 4; r = radeon_cs_packet_next_reloc(p, &reloc, 0); if (r) { DRM_ERROR("No reloc for ib[%d]=0x%04X\n", idx, reg); radeon_cs_dump_packet(p, pkt); return r; } track->textures[2].cube_info[i].offset = idx_value; ib[idx] = idx_value + ((u32)reloc->gpu_offset); track->textures[2].cube_info[i].robj = reloc->robj; track->tex_dirty = true; break; case RADEON_RE_WIDTH_HEIGHT: track->maxy = ((idx_value >> 16) & 0x7FF); track->cb_dirty = true; track->zb_dirty = true; break; case RADEON_RB3D_COLORPITCH: r = radeon_cs_packet_next_reloc(p, &reloc, 0); if (r) { DRM_ERROR("No reloc for ib[%d]=0x%04X\n", idx, reg); radeon_cs_dump_packet(p, pkt); return r; } if (!(p->cs_flags & RADEON_CS_KEEP_TILING_FLAGS)) { if (reloc->tiling_flags & RADEON_TILING_MACRO) tile_flags |= RADEON_COLOR_TILE_ENABLE; if (reloc->tiling_flags & RADEON_TILING_MICRO) tile_flags |= RADEON_COLOR_MICROTILE_ENABLE; tmp = idx_value & ~(0x7 << 16); tmp |= tile_flags; ib[idx] = tmp; } else ib[idx] = idx_value; track->cb[0].pitch = idx_value & RADEON_COLORPITCH_MASK; track->cb_dirty = true; break; case RADEON_RB3D_DEPTHPITCH: track->zb.pitch = idx_value & RADEON_DEPTHPITCH_MASK; track->zb_dirty = true; break; case RADEON_RB3D_CNTL: switch ((idx_value >> RADEON_RB3D_COLOR_FORMAT_SHIFT) & 0x1f) { case 7: case 8: case 9: case 11: case 12: track->cb[0].cpp = 1; break; case 3: case 4: case 15: track->cb[0].cpp = 2; break; case 6: track->cb[0].cpp = 4; break; default: DRM_ERROR("Invalid color buffer format (%d) !\n", ((idx_value >> RADEON_RB3D_COLOR_FORMAT_SHIFT) & 0x1f)); return -EINVAL; } track->z_enabled = !!(idx_value & RADEON_Z_ENABLE); track->cb_dirty = true; track->zb_dirty = true; break; case RADEON_RB3D_ZSTENCILCNTL: switch (idx_value & 0xf) { case 0: track->zb.cpp = 2; break; case 2: case 3: case 4: case 5: case 9: case 11: track->zb.cpp = 4; break; default: break; } track->zb_dirty = true; break; case RADEON_RB3D_ZPASS_ADDR: r = radeon_cs_packet_next_reloc(p, &reloc, 0); if (r) { DRM_ERROR("No reloc for ib[%d]=0x%04X\n", idx, reg); radeon_cs_dump_packet(p, pkt); return r; } ib[idx] = idx_value + ((u32)reloc->gpu_offset); break; case RADEON_PP_CNTL: { uint32_t temp = idx_value >> 4; for (i = 0; i < track->num_texture; i++) track->textures[i].enabled = !!(temp & (1 << i)); track->tex_dirty = true; } break; case RADEON_SE_VF_CNTL: track->vap_vf_cntl = idx_value; break; case RADEON_SE_VTX_FMT: track->vtx_size = r100_get_vtx_size(idx_value); break; case RADEON_PP_TEX_SIZE_0: case RADEON_PP_TEX_SIZE_1: case RADEON_PP_TEX_SIZE_2: i = (reg - RADEON_PP_TEX_SIZE_0) / 8; track->textures[i].width = (idx_value & RADEON_TEX_USIZE_MASK) + 1; track->textures[i].height = ((idx_value & RADEON_TEX_VSIZE_MASK) >> RADEON_TEX_VSIZE_SHIFT) + 1; track->tex_dirty = true; break; case RADEON_PP_TEX_PITCH_0: case RADEON_PP_TEX_PITCH_1: case RADEON_PP_TEX_PITCH_2: i = (reg - RADEON_PP_TEX_PITCH_0) / 8; track->textures[i].pitch = idx_value + 32; track->tex_dirty = true; break; case RADEON_PP_TXFILTER_0: case RADEON_PP_TXFILTER_1: case RADEON_PP_TXFILTER_2: i = (reg - RADEON_PP_TXFILTER_0) / 24; track->textures[i].num_levels = ((idx_value & RADEON_MAX_MIP_LEVEL_MASK) >> RADEON_MAX_MIP_LEVEL_SHIFT); tmp = (idx_value >> 23) & 0x7; if (tmp == 2 || tmp == 6) track->textures[i].roundup_w = false; tmp = (idx_value >> 27) & 0x7; if (tmp == 2 || tmp == 6) track->textures[i].roundup_h = false; track->tex_dirty = true; break; case RADEON_PP_TXFORMAT_0: case RADEON_PP_TXFORMAT_1: case RADEON_PP_TXFORMAT_2: i = (reg - RADEON_PP_TXFORMAT_0) / 24; if (idx_value & RADEON_TXFORMAT_NON_POWER2) { track->textures[i].use_pitch = 1; } else { track->textures[i].use_pitch = 0; track->textures[i].width = 1 << ((idx_value >> RADEON_TXFORMAT_WIDTH_SHIFT) & RADEON_TXFORMAT_WIDTH_MASK); track->textures[i].height = 1 << ((idx_value >> RADEON_TXFORMAT_HEIGHT_SHIFT) & RADEON_TXFORMAT_HEIGHT_MASK); } if (idx_value & RADEON_TXFORMAT_CUBIC_MAP_ENABLE) track->textures[i].tex_coord_type = 2; switch ((idx_value & RADEON_TXFORMAT_FORMAT_MASK)) { case RADEON_TXFORMAT_I8: case RADEON_TXFORMAT_RGB332: case RADEON_TXFORMAT_Y8: track->textures[i].cpp = 1; track->textures[i].compress_format = R100_TRACK_COMP_NONE; break; case RADEON_TXFORMAT_AI88: case RADEON_TXFORMAT_ARGB1555: case RADEON_TXFORMAT_RGB565: case RADEON_TXFORMAT_ARGB4444: case RADEON_TXFORMAT_VYUY422: case RADEON_TXFORMAT_YVYU422: case RADEON_TXFORMAT_SHADOW16: case RADEON_TXFORMAT_LDUDV655: case RADEON_TXFORMAT_DUDV88: track->textures[i].cpp = 2; track->textures[i].compress_format = R100_TRACK_COMP_NONE; break; case RADEON_TXFORMAT_ARGB8888: case RADEON_TXFORMAT_RGBA8888: case RADEON_TXFORMAT_SHADOW32: case RADEON_TXFORMAT_LDUDUV8888: track->textures[i].cpp = 4; track->textures[i].compress_format = R100_TRACK_COMP_NONE; break; case RADEON_TXFORMAT_DXT1: track->textures[i].cpp = 1; track->textures[i].compress_format = R100_TRACK_COMP_DXT1; break; case RADEON_TXFORMAT_DXT23: case RADEON_TXFORMAT_DXT45: track->textures[i].cpp = 1; track->textures[i].compress_format = R100_TRACK_COMP_DXT35; break; } track->textures[i].cube_info[4].width = 1 << ((idx_value >> 16) & 0xf); track->textures[i].cube_info[4].height = 1 << ((idx_value >> 20) & 0xf); track->tex_dirty = true; break; case RADEON_PP_CUBIC_FACES_0: case RADEON_PP_CUBIC_FACES_1: case RADEON_PP_CUBIC_FACES_2: tmp = idx_value; i = (reg - RADEON_PP_CUBIC_FACES_0) / 4; for (face = 0; face < 4; face++) { track->textures[i].cube_info[face].width = 1 << ((tmp >> (face * 8)) & 0xf); track->textures[i].cube_info[face].height = 1 << ((tmp >> ((face * 8) + 4)) & 0xf); } track->tex_dirty = true; break; default: printk(KERN_ERR "Forbidden register 0x%04X in cs at %d\n", reg, idx); return -EINVAL; } return 0; } int r100_cs_track_check_pkt3_indx_buffer(struct radeon_cs_parser *p, struct radeon_cs_packet *pkt, struct radeon_bo *robj) { unsigned idx; u32 value; idx = pkt->idx + 1; value = radeon_get_ib_value(p, idx + 2); if ((value + 1) > radeon_bo_size(robj)) { DRM_ERROR("[drm] Buffer too small for PACKET3 INDX_BUFFER " "(need %u have %lu) !\n", value + 1, radeon_bo_size(robj)); return -EINVAL; } return 0; } static int r100_packet3_check(struct radeon_cs_parser *p, struct radeon_cs_packet *pkt) { struct radeon_cs_reloc *reloc; struct r100_cs_track *track; unsigned idx; volatile uint32_t *ib; int r; ib = p->ib.ptr; idx = pkt->idx + 1; track = (struct r100_cs_track *)p->track; switch (pkt->opcode) { case PACKET3_3D_LOAD_VBPNTR: r = r100_packet3_load_vbpntr(p, pkt, idx); if (r) return r; break; case PACKET3_INDX_BUFFER: r = radeon_cs_packet_next_reloc(p, &reloc, 0); if (r) { DRM_ERROR("No reloc for packet3 %d\n", pkt->opcode); radeon_cs_dump_packet(p, pkt); return r; } ib[idx+1] = radeon_get_ib_value(p, idx+1) + ((u32)reloc->gpu_offset); r = r100_cs_track_check_pkt3_indx_buffer(p, pkt, reloc->robj); if (r) { return r; } break; case 0x23: /* 3D_RNDR_GEN_INDX_PRIM on r100/r200 */ r = radeon_cs_packet_next_reloc(p, &reloc, 0); if (r) { DRM_ERROR("No reloc for packet3 %d\n", pkt->opcode); radeon_cs_dump_packet(p, pkt); return r; } ib[idx] = radeon_get_ib_value(p, idx) + ((u32)reloc->gpu_offset); track->num_arrays = 1; track->vtx_size = r100_get_vtx_size(radeon_get_ib_value(p, idx + 2)); track->arrays[0].robj = reloc->robj; track->arrays[0].esize = track->vtx_size; track->max_indx = radeon_get_ib_value(p, idx+1); track->vap_vf_cntl = radeon_get_ib_value(p, idx+3); track->immd_dwords = pkt->count - 1; r = r100_cs_track_check(p->rdev, track); if (r) return r; break; case PACKET3_3D_DRAW_IMMD: if (((radeon_get_ib_value(p, idx + 1) >> 4) & 0x3) != 3) { DRM_ERROR("PRIM_WALK must be 3 for IMMD draw\n"); return -EINVAL; } track->vtx_size = r100_get_vtx_size(radeon_get_ib_value(p, idx + 0)); track->vap_vf_cntl = radeon_get_ib_value(p, idx + 1); track->immd_dwords = pkt->count - 1; r = r100_cs_track_check(p->rdev, track); if (r) return r; break; /* triggers drawing using in-packet vertex data */ case PACKET3_3D_DRAW_IMMD_2: if (((radeon_get_ib_value(p, idx) >> 4) & 0x3) != 3) { DRM_ERROR("PRIM_WALK must be 3 for IMMD draw\n"); return -EINVAL; } track->vap_vf_cntl = radeon_get_ib_value(p, idx); track->immd_dwords = pkt->count; r = r100_cs_track_check(p->rdev, track); if (r) return r; break; /* triggers drawing using in-packet vertex data */ case PACKET3_3D_DRAW_VBUF_2: track->vap_vf_cntl = radeon_get_ib_value(p, idx); r = r100_cs_track_check(p->rdev, track); if (r) return r; break; /* triggers drawing of vertex buffers setup elsewhere */ case PACKET3_3D_DRAW_INDX_2: track->vap_vf_cntl = radeon_get_ib_value(p, idx); r = r100_cs_track_check(p->rdev, track); if (r) return r; break; /* triggers drawing using indices to vertex buffer */ case PACKET3_3D_DRAW_VBUF: track->vap_vf_cntl = radeon_get_ib_value(p, idx + 1); r = r100_cs_track_check(p->rdev, track); if (r) return r; break; /* triggers drawing of vertex buffers setup elsewhere */ case PACKET3_3D_DRAW_INDX: track->vap_vf_cntl = radeon_get_ib_value(p, idx + 1); r = r100_cs_track_check(p->rdev, track); if (r) return r; break; /* triggers drawing using indices to vertex buffer */ case PACKET3_3D_CLEAR_HIZ: case PACKET3_3D_CLEAR_ZMASK: if (p->rdev->hyperz_filp != p->filp) return -EINVAL; break; case PACKET3_NOP: break; default: DRM_ERROR("Packet3 opcode %x not supported\n", pkt->opcode); return -EINVAL; } return 0; } int r100_cs_parse(struct radeon_cs_parser *p) { struct radeon_cs_packet pkt; struct r100_cs_track *track; int r; track = kzalloc(sizeof(*track), GFP_KERNEL); if (!track) return -ENOMEM; r100_cs_track_clear(p->rdev, track); p->track = track; do { r = radeon_cs_packet_parse(p, &pkt, p->idx); if (r) { return r; } p->idx += pkt.count + 2; switch (pkt.type) { case RADEON_PACKET_TYPE0: if (p->rdev->family >= CHIP_R200) r = r100_cs_parse_packet0(p, &pkt, p->rdev->config.r100.reg_safe_bm, p->rdev->config.r100.reg_safe_bm_size, &r200_packet0_check); else r = r100_cs_parse_packet0(p, &pkt, p->rdev->config.r100.reg_safe_bm, p->rdev->config.r100.reg_safe_bm_size, &r100_packet0_check); break; case RADEON_PACKET_TYPE2: break; case RADEON_PACKET_TYPE3: r = r100_packet3_check(p, &pkt); break; default: DRM_ERROR("Unknown packet type %d !\n", pkt.type); return -EINVAL; } if (r) return r; } while (p->idx < p->chunks[p->chunk_ib_idx].length_dw); return 0; } static void r100_cs_track_texture_print(struct r100_cs_track_texture *t) { DRM_ERROR("pitch %d\n", t->pitch); DRM_ERROR("use_pitch %d\n", t->use_pitch); DRM_ERROR("width %d\n", t->width); DRM_ERROR("width_11 %d\n", t->width_11); DRM_ERROR("height %d\n", t->height); DRM_ERROR("height_11 %d\n", t->height_11); DRM_ERROR("num levels %d\n", t->num_levels); DRM_ERROR("depth %d\n", t->txdepth); DRM_ERROR("bpp %d\n", t->cpp); DRM_ERROR("coordinate type %d\n", t->tex_coord_type); DRM_ERROR("width round to power of 2 %d\n", t->roundup_w); DRM_ERROR("height round to power of 2 %d\n", t->roundup_h); DRM_ERROR("compress format %d\n", t->compress_format); } static int r100_track_compress_size(int compress_format, int w, int h) { int block_width, block_height, block_bytes; int wblocks, hblocks; int min_wblocks; int sz; block_width = 4; block_height = 4; switch (compress_format) { case R100_TRACK_COMP_DXT1: block_bytes = 8; min_wblocks = 4; break; default: case R100_TRACK_COMP_DXT35: block_bytes = 16; min_wblocks = 2; break; } hblocks = (h + block_height - 1) / block_height; wblocks = (w + block_width - 1) / block_width; if (wblocks < min_wblocks) wblocks = min_wblocks; sz = wblocks * hblocks * block_bytes; return sz; } static int r100_cs_track_cube(struct radeon_device *rdev, struct r100_cs_track *track, unsigned idx) { unsigned face, w, h; struct radeon_bo *cube_robj; unsigned long size; unsigned compress_format = track->textures[idx].compress_format; for (face = 0; face < 5; face++) { cube_robj = track->textures[idx].cube_info[face].robj; w = track->textures[idx].cube_info[face].width; h = track->textures[idx].cube_info[face].height; if (compress_format) { size = r100_track_compress_size(compress_format, w, h); } else size = w * h; size *= track->textures[idx].cpp; size += track->textures[idx].cube_info[face].offset; if (size > radeon_bo_size(cube_robj)) { DRM_ERROR("Cube texture offset greater than object size %lu %lu\n", size, radeon_bo_size(cube_robj)); r100_cs_track_texture_print(&track->textures[idx]); return -1; } } return 0; } static int r100_cs_track_texture_check(struct radeon_device *rdev, struct r100_cs_track *track) { struct radeon_bo *robj; unsigned long size; unsigned u, i, w, h, d; int ret; for (u = 0; u < track->num_texture; u++) { if (!track->textures[u].enabled) continue; if (track->textures[u].lookup_disable) continue; robj = track->textures[u].robj; if (robj == NULL) { DRM_ERROR("No texture bound to unit %u\n", u); return -EINVAL; } size = 0; for (i = 0; i <= track->textures[u].num_levels; i++) { if (track->textures[u].use_pitch) { if (rdev->family < CHIP_R300) w = (track->textures[u].pitch / track->textures[u].cpp) / (1 << i); else w = track->textures[u].pitch / (1 << i); } else { w = track->textures[u].width; if (rdev->family >= CHIP_RV515) w |= track->textures[u].width_11; w = w / (1 << i); if (track->textures[u].roundup_w) w = roundup_pow_of_two(w); } h = track->textures[u].height; if (rdev->family >= CHIP_RV515) h |= track->textures[u].height_11; h = h / (1 << i); if (track->textures[u].roundup_h) h = roundup_pow_of_two(h); if (track->textures[u].tex_coord_type == 1) { d = (1 << track->textures[u].txdepth) / (1 << i); if (!d) d = 1; } else { d = 1; } if (track->textures[u].compress_format) { size += r100_track_compress_size(track->textures[u].compress_format, w, h) * d; /* compressed textures are block based */ } else size += w * h * d; } size *= track->textures[u].cpp; switch (track->textures[u].tex_coord_type) { case 0: case 1: break; case 2: if (track->separate_cube) { ret = r100_cs_track_cube(rdev, track, u); if (ret) return ret; } else size *= 6; break; default: DRM_ERROR("Invalid texture coordinate type %u for unit " "%u\n", track->textures[u].tex_coord_type, u); return -EINVAL; } if (size > radeon_bo_size(robj)) { DRM_ERROR("Texture of unit %u needs %lu bytes but is " "%lu\n", u, size, radeon_bo_size(robj)); r100_cs_track_texture_print(&track->textures[u]); return -EINVAL; } } return 0; } int r100_cs_track_check(struct radeon_device *rdev, struct r100_cs_track *track) { unsigned i; unsigned long size; unsigned prim_walk; unsigned nverts; unsigned num_cb = track->cb_dirty ? track->num_cb : 0; if (num_cb && !track->zb_cb_clear && !track->color_channel_mask && !track->blend_read_enable) num_cb = 0; for (i = 0; i < num_cb; i++) { if (track->cb[i].robj == NULL) { DRM_ERROR("[drm] No buffer for color buffer %d !\n", i); return -EINVAL; } size = track->cb[i].pitch * track->cb[i].cpp * track->maxy; size += track->cb[i].offset; if (size > radeon_bo_size(track->cb[i].robj)) { DRM_ERROR("[drm] Buffer too small for color buffer %d " "(need %lu have %lu) !\n", i, size, radeon_bo_size(track->cb[i].robj)); DRM_ERROR("[drm] color buffer %d (%u %u %u %u)\n", i, track->cb[i].pitch, track->cb[i].cpp, track->cb[i].offset, track->maxy); return -EINVAL; } } track->cb_dirty = false; if (track->zb_dirty && track->z_enabled) { if (track->zb.robj == NULL) { DRM_ERROR("[drm] No buffer for z buffer !\n"); return -EINVAL; } size = track->zb.pitch * track->zb.cpp * track->maxy; size += track->zb.offset; if (size > radeon_bo_size(track->zb.robj)) { DRM_ERROR("[drm] Buffer too small for z buffer " "(need %lu have %lu) !\n", size, radeon_bo_size(track->zb.robj)); DRM_ERROR("[drm] zbuffer (%u %u %u %u)\n", track->zb.pitch, track->zb.cpp, track->zb.offset, track->maxy); return -EINVAL; } } track->zb_dirty = false; if (track->aa_dirty && track->aaresolve) { if (track->aa.robj == NULL) { DRM_ERROR("[drm] No buffer for AA resolve buffer %d !\n", i); return -EINVAL; } /* I believe the format comes from colorbuffer0. */ size = track->aa.pitch * track->cb[0].cpp * track->maxy; size += track->aa.offset; if (size > radeon_bo_size(track->aa.robj)) { DRM_ERROR("[drm] Buffer too small for AA resolve buffer %d " "(need %lu have %lu) !\n", i, size, radeon_bo_size(track->aa.robj)); DRM_ERROR("[drm] AA resolve buffer %d (%u %u %u %u)\n", i, track->aa.pitch, track->cb[0].cpp, track->aa.offset, track->maxy); return -EINVAL; } } track->aa_dirty = false; prim_walk = (track->vap_vf_cntl >> 4) & 0x3; if (track->vap_vf_cntl & (1 << 14)) { nverts = track->vap_alt_nverts; } else { nverts = (track->vap_vf_cntl >> 16) & 0xFFFF; } switch (prim_walk) { case 1: for (i = 0; i < track->num_arrays; i++) { size = track->arrays[i].esize * track->max_indx * 4; if (track->arrays[i].robj == NULL) { DRM_ERROR("(PW %u) Vertex array %u no buffer " "bound\n", prim_walk, i); return -EINVAL; } if (size > radeon_bo_size(track->arrays[i].robj)) { dev_err(rdev->dev, "(PW %u) Vertex array %u " "need %lu dwords have %lu dwords\n", prim_walk, i, size >> 2, radeon_bo_size(track->arrays[i].robj) >> 2); DRM_ERROR("Max indices %u\n", track->max_indx); return -EINVAL; } } break; case 2: for (i = 0; i < track->num_arrays; i++) { size = track->arrays[i].esize * (nverts - 1) * 4; if (track->arrays[i].robj == NULL) { DRM_ERROR("(PW %u) Vertex array %u no buffer " "bound\n", prim_walk, i); return -EINVAL; } if (size > radeon_bo_size(track->arrays[i].robj)) { dev_err(rdev->dev, "(PW %u) Vertex array %u " "need %lu dwords have %lu dwords\n", prim_walk, i, size >> 2, radeon_bo_size(track->arrays[i].robj) >> 2); return -EINVAL; } } break; case 3: size = track->vtx_size * nverts; if (size != track->immd_dwords) { DRM_ERROR("IMMD draw %u dwors but needs %lu dwords\n", track->immd_dwords, size); DRM_ERROR("VAP_VF_CNTL.NUM_VERTICES %u, VTX_SIZE %u\n", nverts, track->vtx_size); return -EINVAL; } break; default: DRM_ERROR("[drm] Invalid primitive walk %d for VAP_VF_CNTL\n", prim_walk); return -EINVAL; } if (track->tex_dirty) { track->tex_dirty = false; return r100_cs_track_texture_check(rdev, track); } return 0; } void r100_cs_track_clear(struct radeon_device *rdev, struct r100_cs_track *track) { unsigned i, face; track->cb_dirty = true; track->zb_dirty = true; track->tex_dirty = true; track->aa_dirty = true; if (rdev->family < CHIP_R300) { track->num_cb = 1; if (rdev->family <= CHIP_RS200) track->num_texture = 3; else track->num_texture = 6; track->maxy = 2048; track->separate_cube = 1; } else { track->num_cb = 4; track->num_texture = 16; track->maxy = 4096; track->separate_cube = 0; track->aaresolve = false; track->aa.robj = NULL; } for (i = 0; i < track->num_cb; i++) { track->cb[i].robj = NULL; track->cb[i].pitch = 8192; track->cb[i].cpp = 16; track->cb[i].offset = 0; } track->z_enabled = true; track->zb.robj = NULL; track->zb.pitch = 8192; track->zb.cpp = 4; track->zb.offset = 0; track->vtx_size = 0x7F; track->immd_dwords = 0xFFFFFFFFUL; track->num_arrays = 11; track->max_indx = 0x00FFFFFFUL; for (i = 0; i < track->num_arrays; i++) { track->arrays[i].robj = NULL; track->arrays[i].esize = 0x7F; } for (i = 0; i < track->num_texture; i++) { track->textures[i].compress_format = R100_TRACK_COMP_NONE; track->textures[i].pitch = 16536; track->textures[i].width = 16536; track->textures[i].height = 16536; track->textures[i].width_11 = 1 << 11; track->textures[i].height_11 = 1 << 11; track->textures[i].num_levels = 12; if (rdev->family <= CHIP_RS200) { track->textures[i].tex_coord_type = 0; track->textures[i].txdepth = 0; } else { track->textures[i].txdepth = 16; track->textures[i].tex_coord_type = 1; } track->textures[i].cpp = 64; track->textures[i].robj = NULL; /* CS IB emission code makes sure texture unit are disabled */ track->textures[i].enabled = false; track->textures[i].lookup_disable = false; track->textures[i].roundup_w = true; track->textures[i].roundup_h = true; if (track->separate_cube) for (face = 0; face < 5; face++) { track->textures[i].cube_info[face].robj = NULL; track->textures[i].cube_info[face].width = 16536; track->textures[i].cube_info[face].height = 16536; track->textures[i].cube_info[face].offset = 0; } } } /* * Global GPU functions */ static void r100_errata(struct radeon_device *rdev) { rdev->pll_errata = 0; if (rdev->family == CHIP_RV200 || rdev->family == CHIP_RS200) { rdev->pll_errata |= CHIP_ERRATA_PLL_DUMMYREADS; } if (rdev->family == CHIP_RV100 || rdev->family == CHIP_RS100 || rdev->family == CHIP_RS200) { rdev->pll_errata |= CHIP_ERRATA_PLL_DELAY; } } static int r100_rbbm_fifo_wait_for_entry(struct radeon_device *rdev, unsigned n) { unsigned i; uint32_t tmp; for (i = 0; i < rdev->usec_timeout; i++) { tmp = RREG32(RADEON_RBBM_STATUS) & RADEON_RBBM_FIFOCNT_MASK; if (tmp >= n) { return 0; } DRM_UDELAY(1); } return -1; } int r100_gui_wait_for_idle(struct radeon_device *rdev) { unsigned i; uint32_t tmp; if (r100_rbbm_fifo_wait_for_entry(rdev, 64)) { printk(KERN_WARNING "radeon: wait for empty RBBM fifo failed !" " Bad things might happen.\n"); } for (i = 0; i < rdev->usec_timeout; i++) { tmp = RREG32(RADEON_RBBM_STATUS); if (!(tmp & RADEON_RBBM_ACTIVE)) { return 0; } DRM_UDELAY(1); } return -1; } int r100_mc_wait_for_idle(struct radeon_device *rdev) { unsigned i; uint32_t tmp; for (i = 0; i < rdev->usec_timeout; i++) { /* read MC_STATUS */ tmp = RREG32(RADEON_MC_STATUS); if (tmp & RADEON_MC_IDLE) { return 0; } DRM_UDELAY(1); } return -1; } bool r100_gpu_is_lockup(struct radeon_device *rdev, struct radeon_ring *ring) { u32 rbbm_status; rbbm_status = RREG32(R_000E40_RBBM_STATUS); if (!G_000E40_GUI_ACTIVE(rbbm_status)) { radeon_ring_lockup_update(rdev, ring); return false; } return radeon_ring_test_lockup(rdev, ring); } /* required on r1xx, r2xx, r300, r(v)350, r420/r481, rs400/rs480 */ void r100_enable_bm(struct radeon_device *rdev) { uint32_t tmp; /* Enable bus mastering */ tmp = RREG32(RADEON_BUS_CNTL) & ~RADEON_BUS_MASTER_DIS; WREG32(RADEON_BUS_CNTL, tmp); } void r100_bm_disable(struct radeon_device *rdev) { u32 tmp; /* disable bus mastering */ tmp = RREG32(R_000030_BUS_CNTL); WREG32(R_000030_BUS_CNTL, (tmp & 0xFFFFFFFF) | 0x00000044); mdelay(1); WREG32(R_000030_BUS_CNTL, (tmp & 0xFFFFFFFF) | 0x00000042); mdelay(1); WREG32(R_000030_BUS_CNTL, (tmp & 0xFFFFFFFF) | 0x00000040); tmp = RREG32(RADEON_BUS_CNTL); mdelay(1); pci_clear_master(rdev->pdev); mdelay(1); } int r100_asic_reset(struct radeon_device *rdev) { struct r100_mc_save save; u32 status, tmp; int ret = 0; status = RREG32(R_000E40_RBBM_STATUS); if (!G_000E40_GUI_ACTIVE(status)) { return 0; } r100_mc_stop(rdev, &save); status = RREG32(R_000E40_RBBM_STATUS); dev_info(rdev->dev, "(%s:%d) RBBM_STATUS=0x%08X\n", __func__, __LINE__, status); /* stop CP */ WREG32(RADEON_CP_CSQ_CNTL, 0); tmp = RREG32(RADEON_CP_RB_CNTL); WREG32(RADEON_CP_RB_CNTL, tmp | RADEON_RB_RPTR_WR_ENA); WREG32(RADEON_CP_RB_RPTR_WR, 0); WREG32(RADEON_CP_RB_WPTR, 0); WREG32(RADEON_CP_RB_CNTL, tmp); /* save PCI state */ pci_save_state(rdev->pdev); /* disable bus mastering */ r100_bm_disable(rdev); WREG32(R_0000F0_RBBM_SOFT_RESET, S_0000F0_SOFT_RESET_SE(1) | S_0000F0_SOFT_RESET_RE(1) | S_0000F0_SOFT_RESET_PP(1) | S_0000F0_SOFT_RESET_RB(1)); RREG32(R_0000F0_RBBM_SOFT_RESET); mdelay(500); WREG32(R_0000F0_RBBM_SOFT_RESET, 0); mdelay(1); status = RREG32(R_000E40_RBBM_STATUS); dev_info(rdev->dev, "(%s:%d) RBBM_STATUS=0x%08X\n", __func__, __LINE__, status); /* reset CP */ WREG32(R_0000F0_RBBM_SOFT_RESET, S_0000F0_SOFT_RESET_CP(1)); RREG32(R_0000F0_RBBM_SOFT_RESET); mdelay(500); WREG32(R_0000F0_RBBM_SOFT_RESET, 0); mdelay(1); status = RREG32(R_000E40_RBBM_STATUS); dev_info(rdev->dev, "(%s:%d) RBBM_STATUS=0x%08X\n", __func__, __LINE__, status); /* restore PCI & busmastering */ pci_restore_state(rdev->pdev); r100_enable_bm(rdev); /* Check if GPU is idle */ if (G_000E40_SE_BUSY(status) || G_000E40_RE_BUSY(status) || G_000E40_TAM_BUSY(status) || G_000E40_PB_BUSY(status)) { dev_err(rdev->dev, "failed to reset GPU\n"); ret = -1; } else dev_info(rdev->dev, "GPU reset succeed\n"); r100_mc_resume(rdev, &save); return ret; } void r100_set_common_regs(struct radeon_device *rdev) { struct drm_device *dev = rdev->ddev; bool force_dac2 = false; u32 tmp; /* set these so they don't interfere with anything */ WREG32(RADEON_OV0_SCALE_CNTL, 0); WREG32(RADEON_SUBPIC_CNTL, 0); WREG32(RADEON_VIPH_CONTROL, 0); WREG32(RADEON_I2C_CNTL_1, 0); WREG32(RADEON_DVI_I2C_CNTL_1, 0); WREG32(RADEON_CAP0_TRIG_CNTL, 0); WREG32(RADEON_CAP1_TRIG_CNTL, 0); /* always set up dac2 on rn50 and some rv100 as lots * of servers seem to wire it up to a VGA port but * don't report it in the bios connector * table. */ switch (dev->pdev->device) { /* RN50 */ case 0x515e: case 0x5969: force_dac2 = true; break; /* RV100*/ case 0x5159: case 0x515a: /* DELL triple head servers */ if ((dev->pdev->subsystem_vendor == 0x1028 /* DELL */) && ((dev->pdev->subsystem_device == 0x016c) || (dev->pdev->subsystem_device == 0x016d) || (dev->pdev->subsystem_device == 0x016e) || (dev->pdev->subsystem_device == 0x016f) || (dev->pdev->subsystem_device == 0x0170) || (dev->pdev->subsystem_device == 0x017d) || (dev->pdev->subsystem_device == 0x017e) || (dev->pdev->subsystem_device == 0x0183) || (dev->pdev->subsystem_device == 0x018a) || (dev->pdev->subsystem_device == 0x019a))) force_dac2 = true; break; } if (force_dac2) { u32 disp_hw_debug = RREG32(RADEON_DISP_HW_DEBUG); u32 tv_dac_cntl = RREG32(RADEON_TV_DAC_CNTL); u32 dac2_cntl = RREG32(RADEON_DAC_CNTL2); /* For CRT on DAC2, don't turn it on if BIOS didn't enable it, even it's detected. */ /* force it to crtc0 */ dac2_cntl &= ~RADEON_DAC2_DAC_CLK_SEL; dac2_cntl |= RADEON_DAC2_DAC2_CLK_SEL; disp_hw_debug |= RADEON_CRT2_DISP1_SEL; /* set up the TV DAC */ tv_dac_cntl &= ~(RADEON_TV_DAC_PEDESTAL | RADEON_TV_DAC_STD_MASK | RADEON_TV_DAC_RDACPD | RADEON_TV_DAC_GDACPD | RADEON_TV_DAC_BDACPD | RADEON_TV_DAC_BGADJ_MASK | RADEON_TV_DAC_DACADJ_MASK); tv_dac_cntl |= (RADEON_TV_DAC_NBLANK | RADEON_TV_DAC_NHOLD | RADEON_TV_DAC_STD_PS2 | (0x58 << 16)); WREG32(RADEON_TV_DAC_CNTL, tv_dac_cntl); WREG32(RADEON_DISP_HW_DEBUG, disp_hw_debug); WREG32(RADEON_DAC_CNTL2, dac2_cntl); } /* switch PM block to ACPI mode */ tmp = RREG32_PLL(RADEON_PLL_PWRMGT_CNTL); tmp &= ~RADEON_PM_MODE_SEL; WREG32_PLL(RADEON_PLL_PWRMGT_CNTL, tmp); } /* * VRAM info */ static void r100_vram_get_type(struct radeon_device *rdev) { uint32_t tmp; rdev->mc.vram_is_ddr = false; if (rdev->flags & RADEON_IS_IGP) rdev->mc.vram_is_ddr = true; else if (RREG32(RADEON_MEM_SDRAM_MODE_REG) & RADEON_MEM_CFG_TYPE_DDR) rdev->mc.vram_is_ddr = true; if ((rdev->family == CHIP_RV100) || (rdev->family == CHIP_RS100) || (rdev->family == CHIP_RS200)) { tmp = RREG32(RADEON_MEM_CNTL); if (tmp & RV100_HALF_MODE) { rdev->mc.vram_width = 32; } else { rdev->mc.vram_width = 64; } if (rdev->flags & RADEON_SINGLE_CRTC) { rdev->mc.vram_width /= 4; rdev->mc.vram_is_ddr = true; } } else if (rdev->family <= CHIP_RV280) { tmp = RREG32(RADEON_MEM_CNTL); if (tmp & RADEON_MEM_NUM_CHANNELS_MASK) { rdev->mc.vram_width = 128; } else { rdev->mc.vram_width = 64; } } else { /* newer IGPs */ rdev->mc.vram_width = 128; } } static u32 r100_get_accessible_vram(struct radeon_device *rdev) { u32 aper_size; u8 byte; aper_size = RREG32(RADEON_CONFIG_APER_SIZE); /* Set HDP_APER_CNTL only on cards that are known not to be broken, * that is has the 2nd generation multifunction PCI interface */ if (rdev->family == CHIP_RV280 || rdev->family >= CHIP_RV350) { WREG32_P(RADEON_HOST_PATH_CNTL, RADEON_HDP_APER_CNTL, ~RADEON_HDP_APER_CNTL); DRM_INFO("Generation 2 PCI interface, using max accessible memory\n"); return aper_size * 2; } /* Older cards have all sorts of funny issues to deal with. First * check if it's a multifunction card by reading the PCI config * header type... Limit those to one aperture size */ pci_read_config_byte(rdev->pdev, 0xe, &byte); if (byte & 0x80) { DRM_INFO("Generation 1 PCI interface in multifunction mode\n"); DRM_INFO("Limiting VRAM to one aperture\n"); return aper_size; } /* Single function older card. We read HDP_APER_CNTL to see how the BIOS * have set it up. We don't write this as it's broken on some ASICs but * we expect the BIOS to have done the right thing (might be too optimistic...) */ if (RREG32(RADEON_HOST_PATH_CNTL) & RADEON_HDP_APER_CNTL) return aper_size * 2; return aper_size; } void r100_vram_init_sizes(struct radeon_device *rdev) { u64 config_aper_size; /* work out accessible VRAM */ rdev->mc.aper_base = pci_resource_start(rdev->pdev, 0); rdev->mc.aper_size = pci_resource_len(rdev->pdev, 0); rdev->mc.visible_vram_size = r100_get_accessible_vram(rdev); /* FIXME we don't use the second aperture yet when we could use it */ if (rdev->mc.visible_vram_size > rdev->mc.aper_size) rdev->mc.visible_vram_size = rdev->mc.aper_size; config_aper_size = RREG32(RADEON_CONFIG_APER_SIZE); if (rdev->flags & RADEON_IS_IGP) { uint32_t tom; /* read NB_TOM to get the amount of ram stolen for the GPU */ tom = RREG32(RADEON_NB_TOM); rdev->mc.real_vram_size = (((tom >> 16) - (tom & 0xffff) + 1) << 16); WREG32(RADEON_CONFIG_MEMSIZE, rdev->mc.real_vram_size); rdev->mc.mc_vram_size = rdev->mc.real_vram_size; } else { rdev->mc.real_vram_size = RREG32(RADEON_CONFIG_MEMSIZE); /* Some production boards of m6 will report 0 * if it's 8 MB */ if (rdev->mc.real_vram_size == 0) { rdev->mc.real_vram_size = 8192 * 1024; WREG32(RADEON_CONFIG_MEMSIZE, rdev->mc.real_vram_size); } /* Fix for RN50, M6, M7 with 8/16/32(??) MBs of VRAM - * Novell bug 204882 + along with lots of ubuntu ones */ if (rdev->mc.aper_size > config_aper_size) config_aper_size = rdev->mc.aper_size; if (config_aper_size > rdev->mc.real_vram_size) rdev->mc.mc_vram_size = config_aper_size; else rdev->mc.mc_vram_size = rdev->mc.real_vram_size; } } void r100_vga_set_state(struct radeon_device *rdev, bool state) { uint32_t temp; temp = RREG32(RADEON_CONFIG_CNTL); if (state == false) { temp &= ~RADEON_CFG_VGA_RAM_EN; temp |= RADEON_CFG_VGA_IO_DIS; } else { temp &= ~RADEON_CFG_VGA_IO_DIS; } WREG32(RADEON_CONFIG_CNTL, temp); } static void r100_mc_init(struct radeon_device *rdev) { u64 base; r100_vram_get_type(rdev); r100_vram_init_sizes(rdev); base = rdev->mc.aper_base; if (rdev->flags & RADEON_IS_IGP) base = (RREG32(RADEON_NB_TOM) & 0xffff) << 16; radeon_vram_location(rdev, &rdev->mc, base); rdev->mc.gtt_base_align = 0; if (!(rdev->flags & RADEON_IS_AGP)) radeon_gtt_location(rdev, &rdev->mc); radeon_update_bandwidth_info(rdev); } /* * Indirect registers accessor */ void r100_pll_errata_after_index(struct radeon_device *rdev) { if (rdev->pll_errata & CHIP_ERRATA_PLL_DUMMYREADS) { (void)RREG32(RADEON_CLOCK_CNTL_DATA); (void)RREG32(RADEON_CRTC_GEN_CNTL); } } static void r100_pll_errata_after_data(struct radeon_device *rdev) { /* This workarounds is necessary on RV100, RS100 and RS200 chips * or the chip could hang on a subsequent access */ if (rdev->pll_errata & CHIP_ERRATA_PLL_DELAY) { mdelay(5); } /* This function is required to workaround a hardware bug in some (all?) * revisions of the R300. This workaround should be called after every * CLOCK_CNTL_INDEX register access. If not, register reads afterward * may not be correct. */ if (rdev->pll_errata & CHIP_ERRATA_R300_CG) { uint32_t save, tmp; save = RREG32(RADEON_CLOCK_CNTL_INDEX); tmp = save & ~(0x3f | RADEON_PLL_WR_EN); WREG32(RADEON_CLOCK_CNTL_INDEX, tmp); tmp = RREG32(RADEON_CLOCK_CNTL_DATA); WREG32(RADEON_CLOCK_CNTL_INDEX, save); } } uint32_t r100_pll_rreg(struct radeon_device *rdev, uint32_t reg) { unsigned long flags; uint32_t data; spin_lock_irqsave(&rdev->pll_idx_lock, flags); WREG8(RADEON_CLOCK_CNTL_INDEX, reg & 0x3f); r100_pll_errata_after_index(rdev); data = RREG32(RADEON_CLOCK_CNTL_DATA); r100_pll_errata_after_data(rdev); spin_unlock_irqrestore(&rdev->pll_idx_lock, flags); return data; } void r100_pll_wreg(struct radeon_device *rdev, uint32_t reg, uint32_t v) { unsigned long flags; spin_lock_irqsave(&rdev->pll_idx_lock, flags); WREG8(RADEON_CLOCK_CNTL_INDEX, ((reg & 0x3f) | RADEON_PLL_WR_EN)); r100_pll_errata_after_index(rdev); WREG32(RADEON_CLOCK_CNTL_DATA, v); r100_pll_errata_after_data(rdev); spin_unlock_irqrestore(&rdev->pll_idx_lock, flags); } static void r100_set_safe_registers(struct radeon_device *rdev) { if (ASIC_IS_RN50(rdev)) { rdev->config.r100.reg_safe_bm = rn50_reg_safe_bm; rdev->config.r100.reg_safe_bm_size = ARRAY_SIZE(rn50_reg_safe_bm); } else if (rdev->family < CHIP_R200) { rdev->config.r100.reg_safe_bm = r100_reg_safe_bm; rdev->config.r100.reg_safe_bm_size = ARRAY_SIZE(r100_reg_safe_bm); } else { r200_set_safe_registers(rdev); } } /* * Debugfs info */ #if defined(CONFIG_DEBUG_FS) static int r100_debugfs_rbbm_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct radeon_device *rdev = dev->dev_private; uint32_t reg, value; unsigned i; seq_printf(m, "RBBM_STATUS 0x%08x\n", RREG32(RADEON_RBBM_STATUS)); seq_printf(m, "RBBM_CMDFIFO_STAT 0x%08x\n", RREG32(0xE7C)); seq_printf(m, "CP_STAT 0x%08x\n", RREG32(RADEON_CP_STAT)); for (i = 0; i < 64; i++) { WREG32(RADEON_RBBM_CMDFIFO_ADDR, i | 0x100); reg = (RREG32(RADEON_RBBM_CMDFIFO_DATA) - 1) >> 2; WREG32(RADEON_RBBM_CMDFIFO_ADDR, i); value = RREG32(RADEON_RBBM_CMDFIFO_DATA); seq_printf(m, "[0x%03X] 0x%04X=0x%08X\n", i, reg, value); } return 0; } static int r100_debugfs_cp_ring_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct radeon_device *rdev = dev->dev_private; struct radeon_ring *ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]; uint32_t rdp, wdp; unsigned count, i, j; radeon_ring_free_size(rdev, ring); rdp = RREG32(RADEON_CP_RB_RPTR); wdp = RREG32(RADEON_CP_RB_WPTR); count = (rdp + ring->ring_size - wdp) & ring->ptr_mask; seq_printf(m, "CP_STAT 0x%08x\n", RREG32(RADEON_CP_STAT)); seq_printf(m, "CP_RB_WPTR 0x%08x\n", wdp); seq_printf(m, "CP_RB_RPTR 0x%08x\n", rdp); seq_printf(m, "%u free dwords in ring\n", ring->ring_free_dw); seq_printf(m, "%u dwords in ring\n", count); if (ring->ready) { for (j = 0; j <= count; j++) { i = (rdp + j) & ring->ptr_mask; seq_printf(m, "r[%04d]=0x%08x\n", i, ring->ring[i]); } } return 0; } static int r100_debugfs_cp_csq_fifo(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct radeon_device *rdev = dev->dev_private; uint32_t csq_stat, csq2_stat, tmp; unsigned r_rptr, r_wptr, ib1_rptr, ib1_wptr, ib2_rptr, ib2_wptr; unsigned i; seq_printf(m, "CP_STAT 0x%08x\n", RREG32(RADEON_CP_STAT)); seq_printf(m, "CP_CSQ_MODE 0x%08x\n", RREG32(RADEON_CP_CSQ_MODE)); csq_stat = RREG32(RADEON_CP_CSQ_STAT); csq2_stat = RREG32(RADEON_CP_CSQ2_STAT); r_rptr = (csq_stat >> 0) & 0x3ff; r_wptr = (csq_stat >> 10) & 0x3ff; ib1_rptr = (csq_stat >> 20) & 0x3ff; ib1_wptr = (csq2_stat >> 0) & 0x3ff; ib2_rptr = (csq2_stat >> 10) & 0x3ff; ib2_wptr = (csq2_stat >> 20) & 0x3ff; seq_printf(m, "CP_CSQ_STAT 0x%08x\n", csq_stat); seq_printf(m, "CP_CSQ2_STAT 0x%08x\n", csq2_stat); seq_printf(m, "Ring rptr %u\n", r_rptr); seq_printf(m, "Ring wptr %u\n", r_wptr); seq_printf(m, "Indirect1 rptr %u\n", ib1_rptr); seq_printf(m, "Indirect1 wptr %u\n", ib1_wptr); seq_printf(m, "Indirect2 rptr %u\n", ib2_rptr); seq_printf(m, "Indirect2 wptr %u\n", ib2_wptr); /* FIXME: 0, 128, 640 depends on fifo setup see cp_init_kms * 128 = indirect1_start * 8 & 640 = indirect2_start * 8 */ seq_printf(m, "Ring fifo:\n"); for (i = 0; i < 256; i++) { WREG32(RADEON_CP_CSQ_ADDR, i << 2); tmp = RREG32(RADEON_CP_CSQ_DATA); seq_printf(m, "rfifo[%04d]=0x%08X\n", i, tmp); } seq_printf(m, "Indirect1 fifo:\n"); for (i = 256; i <= 512; i++) { WREG32(RADEON_CP_CSQ_ADDR, i << 2); tmp = RREG32(RADEON_CP_CSQ_DATA); seq_printf(m, "ib1fifo[%04d]=0x%08X\n", i, tmp); } seq_printf(m, "Indirect2 fifo:\n"); for (i = 640; i < ib1_wptr; i++) { WREG32(RADEON_CP_CSQ_ADDR, i << 2); tmp = RREG32(RADEON_CP_CSQ_DATA); seq_printf(m, "ib2fifo[%04d]=0x%08X\n", i, tmp); } return 0; } static int r100_debugfs_mc_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct radeon_device *rdev = dev->dev_private; uint32_t tmp; tmp = RREG32(RADEON_CONFIG_MEMSIZE); seq_printf(m, "CONFIG_MEMSIZE 0x%08x\n", tmp); tmp = RREG32(RADEON_MC_FB_LOCATION); seq_printf(m, "MC_FB_LOCATION 0x%08x\n", tmp); tmp = RREG32(RADEON_BUS_CNTL); seq_printf(m, "BUS_CNTL 0x%08x\n", tmp); tmp = RREG32(RADEON_MC_AGP_LOCATION); seq_printf(m, "MC_AGP_LOCATION 0x%08x\n", tmp); tmp = RREG32(RADEON_AGP_BASE); seq_printf(m, "AGP_BASE 0x%08x\n", tmp); tmp = RREG32(RADEON_HOST_PATH_CNTL); seq_printf(m, "HOST_PATH_CNTL 0x%08x\n", tmp); tmp = RREG32(0x01D0); seq_printf(m, "AIC_CTRL 0x%08x\n", tmp); tmp = RREG32(RADEON_AIC_LO_ADDR); seq_printf(m, "AIC_LO_ADDR 0x%08x\n", tmp); tmp = RREG32(RADEON_AIC_HI_ADDR); seq_printf(m, "AIC_HI_ADDR 0x%08x\n", tmp); tmp = RREG32(0x01E4); seq_printf(m, "AIC_TLB_ADDR 0x%08x\n", tmp); return 0; } static struct drm_info_list r100_debugfs_rbbm_list[] = { {"r100_rbbm_info", r100_debugfs_rbbm_info, 0, NULL}, }; static struct drm_info_list r100_debugfs_cp_list[] = { {"r100_cp_ring_info", r100_debugfs_cp_ring_info, 0, NULL}, {"r100_cp_csq_fifo", r100_debugfs_cp_csq_fifo, 0, NULL}, }; static struct drm_info_list r100_debugfs_mc_info_list[] = { {"r100_mc_info", r100_debugfs_mc_info, 0, NULL}, }; #endif int r100_debugfs_rbbm_init(struct radeon_device *rdev) { #if defined(CONFIG_DEBUG_FS) return radeon_debugfs_add_files(rdev, r100_debugfs_rbbm_list, 1); #else return 0; #endif } int r100_debugfs_cp_init(struct radeon_device *rdev) { #if defined(CONFIG_DEBUG_FS) return radeon_debugfs_add_files(rdev, r100_debugfs_cp_list, 2); #else return 0; #endif } int r100_debugfs_mc_info_init(struct radeon_device *rdev) { #if defined(CONFIG_DEBUG_FS) return radeon_debugfs_add_files(rdev, r100_debugfs_mc_info_list, 1); #else return 0; #endif } int r100_set_surface_reg(struct radeon_device *rdev, int reg, uint32_t tiling_flags, uint32_t pitch, uint32_t offset, uint32_t obj_size) { int surf_index = reg * 16; int flags = 0; if (rdev->family <= CHIP_RS200) { if ((tiling_flags & (RADEON_TILING_MACRO|RADEON_TILING_MICRO)) == (RADEON_TILING_MACRO|RADEON_TILING_MICRO)) flags |= RADEON_SURF_TILE_COLOR_BOTH; if (tiling_flags & RADEON_TILING_MACRO) flags |= RADEON_SURF_TILE_COLOR_MACRO; /* setting pitch to 0 disables tiling */ if ((tiling_flags & (RADEON_TILING_MACRO|RADEON_TILING_MICRO)) == 0) pitch = 0; } else if (rdev->family <= CHIP_RV280) { if (tiling_flags & (RADEON_TILING_MACRO)) flags |= R200_SURF_TILE_COLOR_MACRO; if (tiling_flags & RADEON_TILING_MICRO) flags |= R200_SURF_TILE_COLOR_MICRO; } else { if (tiling_flags & RADEON_TILING_MACRO) flags |= R300_SURF_TILE_MACRO; if (tiling_flags & RADEON_TILING_MICRO) flags |= R300_SURF_TILE_MICRO; } if (tiling_flags & RADEON_TILING_SWAP_16BIT) flags |= RADEON_SURF_AP0_SWP_16BPP | RADEON_SURF_AP1_SWP_16BPP; if (tiling_flags & RADEON_TILING_SWAP_32BIT) flags |= RADEON_SURF_AP0_SWP_32BPP | RADEON_SURF_AP1_SWP_32BPP; /* r100/r200 divide by 16 */ if (rdev->family < CHIP_R300) flags |= pitch / 16; else flags |= pitch / 8; DRM_DEBUG_KMS("writing surface %d %d %x %x\n", reg, flags, offset, offset+obj_size-1); WREG32(RADEON_SURFACE0_INFO + surf_index, flags); WREG32(RADEON_SURFACE0_LOWER_BOUND + surf_index, offset); WREG32(RADEON_SURFACE0_UPPER_BOUND + surf_index, offset + obj_size - 1); return 0; } void r100_clear_surface_reg(struct radeon_device *rdev, int reg) { int surf_index = reg * 16; WREG32(RADEON_SURFACE0_INFO + surf_index, 0); } void r100_bandwidth_update(struct radeon_device *rdev) { fixed20_12 trcd_ff, trp_ff, tras_ff, trbs_ff, tcas_ff; fixed20_12 sclk_ff, mclk_ff, sclk_eff_ff, sclk_delay_ff; fixed20_12 peak_disp_bw, mem_bw, pix_clk, pix_clk2, temp_ff, crit_point_ff; uint32_t temp, data, mem_trcd, mem_trp, mem_tras; fixed20_12 memtcas_ff[8] = { dfixed_init(1), dfixed_init(2), dfixed_init(3), dfixed_init(0), dfixed_init_half(1), dfixed_init_half(2), dfixed_init(0), }; fixed20_12 memtcas_rs480_ff[8] = { dfixed_init(0), dfixed_init(1), dfixed_init(2), dfixed_init(3), dfixed_init(0), dfixed_init_half(1), dfixed_init_half(2), dfixed_init_half(3), }; fixed20_12 memtcas2_ff[8] = { dfixed_init(0), dfixed_init(1), dfixed_init(2), dfixed_init(3), dfixed_init(4), dfixed_init(5), dfixed_init(6), dfixed_init(7), }; fixed20_12 memtrbs[8] = { dfixed_init(1), dfixed_init_half(1), dfixed_init(2), dfixed_init_half(2), dfixed_init(3), dfixed_init_half(3), dfixed_init(4), dfixed_init_half(4) }; fixed20_12 memtrbs_r4xx[8] = { dfixed_init(4), dfixed_init(5), dfixed_init(6), dfixed_init(7), dfixed_init(8), dfixed_init(9), dfixed_init(10), dfixed_init(11) }; fixed20_12 min_mem_eff; fixed20_12 mc_latency_sclk, mc_latency_mclk, k1; fixed20_12 cur_latency_mclk, cur_latency_sclk; fixed20_12 disp_latency, disp_latency_overhead, disp_drain_rate, disp_drain_rate2, read_return_rate; fixed20_12 time_disp1_drop_priority; int c; int cur_size = 16; /* in octawords */ int critical_point = 0, critical_point2; /* uint32_t read_return_rate, time_disp1_drop_priority; */ int stop_req, max_stop_req; struct drm_display_mode *mode1 = NULL; struct drm_display_mode *mode2 = NULL; uint32_t pixel_bytes1 = 0; uint32_t pixel_bytes2 = 0; radeon_update_display_priority(rdev); if (rdev->mode_info.crtcs[0]->base.enabled) { mode1 = &rdev->mode_info.crtcs[0]->base.mode; pixel_bytes1 = rdev->mode_info.crtcs[0]->base.primary->fb->bits_per_pixel / 8; } if (!(rdev->flags & RADEON_SINGLE_CRTC)) { if (rdev->mode_info.crtcs[1]->base.enabled) { mode2 = &rdev->mode_info.crtcs[1]->base.mode; pixel_bytes2 = rdev->mode_info.crtcs[1]->base.primary->fb->bits_per_pixel / 8; } } min_mem_eff.full = dfixed_const_8(0); /* get modes */ if ((rdev->disp_priority == 2) && ASIC_IS_R300(rdev)) { uint32_t mc_init_misc_lat_timer = RREG32(R300_MC_INIT_MISC_LAT_TIMER); mc_init_misc_lat_timer &= ~(R300_MC_DISP1R_INIT_LAT_MASK << R300_MC_DISP1R_INIT_LAT_SHIFT); mc_init_misc_lat_timer &= ~(R300_MC_DISP0R_INIT_LAT_MASK << R300_MC_DISP0R_INIT_LAT_SHIFT); /* check crtc enables */ if (mode2) mc_init_misc_lat_timer |= (1 << R300_MC_DISP1R_INIT_LAT_SHIFT); if (mode1) mc_init_misc_lat_timer |= (1 << R300_MC_DISP0R_INIT_LAT_SHIFT); WREG32(R300_MC_INIT_MISC_LAT_TIMER, mc_init_misc_lat_timer); } /* * determine is there is enough bw for current mode */ sclk_ff = rdev->pm.sclk; mclk_ff = rdev->pm.mclk; temp = (rdev->mc.vram_width / 8) * (rdev->mc.vram_is_ddr ? 2 : 1); temp_ff.full = dfixed_const(temp); mem_bw.full = dfixed_mul(mclk_ff, temp_ff); pix_clk.full = 0; pix_clk2.full = 0; peak_disp_bw.full = 0; if (mode1) { temp_ff.full = dfixed_const(1000); pix_clk.full = dfixed_const(mode1->clock); /* convert to fixed point */ pix_clk.full = dfixed_div(pix_clk, temp_ff); temp_ff.full = dfixed_const(pixel_bytes1); peak_disp_bw.full += dfixed_mul(pix_clk, temp_ff); } if (mode2) { temp_ff.full = dfixed_const(1000); pix_clk2.full = dfixed_const(mode2->clock); /* convert to fixed point */ pix_clk2.full = dfixed_div(pix_clk2, temp_ff); temp_ff.full = dfixed_const(pixel_bytes2); peak_disp_bw.full += dfixed_mul(pix_clk2, temp_ff); } mem_bw.full = dfixed_mul(mem_bw, min_mem_eff); if (peak_disp_bw.full >= mem_bw.full) { DRM_ERROR("You may not have enough display bandwidth for current mode\n" "If you have flickering problem, try to lower resolution, refresh rate, or color depth\n"); } /* Get values from the EXT_MEM_CNTL register...converting its contents. */ temp = RREG32(RADEON_MEM_TIMING_CNTL); if ((rdev->family == CHIP_RV100) || (rdev->flags & RADEON_IS_IGP)) { /* RV100, M6, IGPs */ mem_trcd = ((temp >> 2) & 0x3) + 1; mem_trp = ((temp & 0x3)) + 1; mem_tras = ((temp & 0x70) >> 4) + 1; } else if (rdev->family == CHIP_R300 || rdev->family == CHIP_R350) { /* r300, r350 */ mem_trcd = (temp & 0x7) + 1; mem_trp = ((temp >> 8) & 0x7) + 1; mem_tras = ((temp >> 11) & 0xf) + 4; } else if (rdev->family == CHIP_RV350 || rdev->family <= CHIP_RV380) { /* rv3x0 */ mem_trcd = (temp & 0x7) + 3; mem_trp = ((temp >> 8) & 0x7) + 3; mem_tras = ((temp >> 11) & 0xf) + 6; } else if (rdev->family == CHIP_R420 || rdev->family == CHIP_R423 || rdev->family == CHIP_RV410) { /* r4xx */ mem_trcd = (temp & 0xf) + 3; if (mem_trcd > 15) mem_trcd = 15; mem_trp = ((temp >> 8) & 0xf) + 3; if (mem_trp > 15) mem_trp = 15; mem_tras = ((temp >> 12) & 0x1f) + 6; if (mem_tras > 31) mem_tras = 31; } else { /* RV200, R200 */ mem_trcd = (temp & 0x7) + 1; mem_trp = ((temp >> 8) & 0x7) + 1; mem_tras = ((temp >> 12) & 0xf) + 4; } /* convert to FF */ trcd_ff.full = dfixed_const(mem_trcd); trp_ff.full = dfixed_const(mem_trp); tras_ff.full = dfixed_const(mem_tras); /* Get values from the MEM_SDRAM_MODE_REG register...converting its */ temp = RREG32(RADEON_MEM_SDRAM_MODE_REG); data = (temp & (7 << 20)) >> 20; if ((rdev->family == CHIP_RV100) || rdev->flags & RADEON_IS_IGP) { if (rdev->family == CHIP_RS480) /* don't think rs400 */ tcas_ff = memtcas_rs480_ff[data]; else tcas_ff = memtcas_ff[data]; } else tcas_ff = memtcas2_ff[data]; if (rdev->family == CHIP_RS400 || rdev->family == CHIP_RS480) { /* extra cas latency stored in bits 23-25 0-4 clocks */ data = (temp >> 23) & 0x7; if (data < 5) tcas_ff.full += dfixed_const(data); } if (ASIC_IS_R300(rdev) && !(rdev->flags & RADEON_IS_IGP)) { /* on the R300, Tcas is included in Trbs. */ temp = RREG32(RADEON_MEM_CNTL); data = (R300_MEM_NUM_CHANNELS_MASK & temp); if (data == 1) { if (R300_MEM_USE_CD_CH_ONLY & temp) { temp = RREG32(R300_MC_IND_INDEX); temp &= ~R300_MC_IND_ADDR_MASK; temp |= R300_MC_READ_CNTL_CD_mcind; WREG32(R300_MC_IND_INDEX, temp); temp = RREG32(R300_MC_IND_DATA); data = (R300_MEM_RBS_POSITION_C_MASK & temp); } else { temp = RREG32(R300_MC_READ_CNTL_AB); data = (R300_MEM_RBS_POSITION_A_MASK & temp); } } else { temp = RREG32(R300_MC_READ_CNTL_AB); data = (R300_MEM_RBS_POSITION_A_MASK & temp); } if (rdev->family == CHIP_RV410 || rdev->family == CHIP_R420 || rdev->family == CHIP_R423) trbs_ff = memtrbs_r4xx[data]; else trbs_ff = memtrbs[data]; tcas_ff.full += trbs_ff.full; } sclk_eff_ff.full = sclk_ff.full; if (rdev->flags & RADEON_IS_AGP) { fixed20_12 agpmode_ff; agpmode_ff.full = dfixed_const(radeon_agpmode); temp_ff.full = dfixed_const_666(16); sclk_eff_ff.full -= dfixed_mul(agpmode_ff, temp_ff); } /* TODO PCIE lanes may affect this - agpmode == 16?? */ if (ASIC_IS_R300(rdev)) { sclk_delay_ff.full = dfixed_const(250); } else { if ((rdev->family == CHIP_RV100) || rdev->flags & RADEON_IS_IGP) { if (rdev->mc.vram_is_ddr) sclk_delay_ff.full = dfixed_const(41); else sclk_delay_ff.full = dfixed_const(33); } else { if (rdev->mc.vram_width == 128) sclk_delay_ff.full = dfixed_const(57); else sclk_delay_ff.full = dfixed_const(41); } } mc_latency_sclk.full = dfixed_div(sclk_delay_ff, sclk_eff_ff); if (rdev->mc.vram_is_ddr) { if (rdev->mc.vram_width == 32) { k1.full = dfixed_const(40); c = 3; } else { k1.full = dfixed_const(20); c = 1; } } else { k1.full = dfixed_const(40); c = 3; } temp_ff.full = dfixed_const(2); mc_latency_mclk.full = dfixed_mul(trcd_ff, temp_ff); temp_ff.full = dfixed_const(c); mc_latency_mclk.full += dfixed_mul(tcas_ff, temp_ff); temp_ff.full = dfixed_const(4); mc_latency_mclk.full += dfixed_mul(tras_ff, temp_ff); mc_latency_mclk.full += dfixed_mul(trp_ff, temp_ff); mc_latency_mclk.full += k1.full; mc_latency_mclk.full = dfixed_div(mc_latency_mclk, mclk_ff); mc_latency_mclk.full += dfixed_div(temp_ff, sclk_eff_ff); /* HW cursor time assuming worst case of full size colour cursor. */ temp_ff.full = dfixed_const((2 * (cur_size - (rdev->mc.vram_is_ddr + 1)))); temp_ff.full += trcd_ff.full; if (temp_ff.full < tras_ff.full) temp_ff.full = tras_ff.full; cur_latency_mclk.full = dfixed_div(temp_ff, mclk_ff); temp_ff.full = dfixed_const(cur_size); cur_latency_sclk.full = dfixed_div(temp_ff, sclk_eff_ff); /* Find the total latency for the display data. */ disp_latency_overhead.full = dfixed_const(8); disp_latency_overhead.full = dfixed_div(disp_latency_overhead, sclk_ff); mc_latency_mclk.full += disp_latency_overhead.full + cur_latency_mclk.full; mc_latency_sclk.full += disp_latency_overhead.full + cur_latency_sclk.full; if (mc_latency_mclk.full > mc_latency_sclk.full) disp_latency.full = mc_latency_mclk.full; else disp_latency.full = mc_latency_sclk.full; /* setup Max GRPH_STOP_REQ default value */ if (ASIC_IS_RV100(rdev)) max_stop_req = 0x5c; else max_stop_req = 0x7c; if (mode1) { /* CRTC1 Set GRPH_BUFFER_CNTL register using h/w defined optimal values. GRPH_STOP_REQ <= MIN[ 0x7C, (CRTC_H_DISP + 1) * (bit depth) / 0x10 ] */ stop_req = mode1->hdisplay * pixel_bytes1 / 16; if (stop_req > max_stop_req) stop_req = max_stop_req; /* Find the drain rate of the display buffer. */ temp_ff.full = dfixed_const((16/pixel_bytes1)); disp_drain_rate.full = dfixed_div(pix_clk, temp_ff); /* Find the critical point of the display buffer. */ crit_point_ff.full = dfixed_mul(disp_drain_rate, disp_latency); crit_point_ff.full += dfixed_const_half(0); critical_point = dfixed_trunc(crit_point_ff); if (rdev->disp_priority == 2) { critical_point = 0; } /* The critical point should never be above max_stop_req-4. Setting GRPH_CRITICAL_CNTL = 0 will thus force high priority all the time. */ if (max_stop_req - critical_point < 4) critical_point = 0; if (critical_point == 0 && mode2 && rdev->family == CHIP_R300) { /* some R300 cards have problem with this set to 0, when CRTC2 is enabled.*/ critical_point = 0x10; } temp = RREG32(RADEON_GRPH_BUFFER_CNTL); temp &= ~(RADEON_GRPH_STOP_REQ_MASK); temp |= (stop_req << RADEON_GRPH_STOP_REQ_SHIFT); temp &= ~(RADEON_GRPH_START_REQ_MASK); if ((rdev->family == CHIP_R350) && (stop_req > 0x15)) { stop_req -= 0x10; } temp |= (stop_req << RADEON_GRPH_START_REQ_SHIFT); temp |= RADEON_GRPH_BUFFER_SIZE; temp &= ~(RADEON_GRPH_CRITICAL_CNTL | RADEON_GRPH_CRITICAL_AT_SOF | RADEON_GRPH_STOP_CNTL); /* Write the result into the register. */ WREG32(RADEON_GRPH_BUFFER_CNTL, ((temp & ~RADEON_GRPH_CRITICAL_POINT_MASK) | (critical_point << RADEON_GRPH_CRITICAL_POINT_SHIFT))); #if 0 if ((rdev->family == CHIP_RS400) || (rdev->family == CHIP_RS480)) { /* attempt to program RS400 disp regs correctly ??? */ temp = RREG32(RS400_DISP1_REG_CNTL); temp &= ~(RS400_DISP1_START_REQ_LEVEL_MASK | RS400_DISP1_STOP_REQ_LEVEL_MASK); WREG32(RS400_DISP1_REQ_CNTL1, (temp | (critical_point << RS400_DISP1_START_REQ_LEVEL_SHIFT) | (critical_point << RS400_DISP1_STOP_REQ_LEVEL_SHIFT))); temp = RREG32(RS400_DMIF_MEM_CNTL1); temp &= ~(RS400_DISP1_CRITICAL_POINT_START_MASK | RS400_DISP1_CRITICAL_POINT_STOP_MASK); WREG32(RS400_DMIF_MEM_CNTL1, (temp | (critical_point << RS400_DISP1_CRITICAL_POINT_START_SHIFT) | (critical_point << RS400_DISP1_CRITICAL_POINT_STOP_SHIFT))); } #endif DRM_DEBUG_KMS("GRPH_BUFFER_CNTL from to %x\n", /* (unsigned int)info->SavedReg->grph_buffer_cntl, */ (unsigned int)RREG32(RADEON_GRPH_BUFFER_CNTL)); } if (mode2) { u32 grph2_cntl; stop_req = mode2->hdisplay * pixel_bytes2 / 16; if (stop_req > max_stop_req) stop_req = max_stop_req; /* Find the drain rate of the display buffer. */ temp_ff.full = dfixed_const((16/pixel_bytes2)); disp_drain_rate2.full = dfixed_div(pix_clk2, temp_ff); grph2_cntl = RREG32(RADEON_GRPH2_BUFFER_CNTL); grph2_cntl &= ~(RADEON_GRPH_STOP_REQ_MASK); grph2_cntl |= (stop_req << RADEON_GRPH_STOP_REQ_SHIFT); grph2_cntl &= ~(RADEON_GRPH_START_REQ_MASK); if ((rdev->family == CHIP_R350) && (stop_req > 0x15)) { stop_req -= 0x10; } grph2_cntl |= (stop_req << RADEON_GRPH_START_REQ_SHIFT); grph2_cntl |= RADEON_GRPH_BUFFER_SIZE; grph2_cntl &= ~(RADEON_GRPH_CRITICAL_CNTL | RADEON_GRPH_CRITICAL_AT_SOF | RADEON_GRPH_STOP_CNTL); if ((rdev->family == CHIP_RS100) || (rdev->family == CHIP_RS200)) critical_point2 = 0; else { temp = (rdev->mc.vram_width * rdev->mc.vram_is_ddr + 1)/128; temp_ff.full = dfixed_const(temp); temp_ff.full = dfixed_mul(mclk_ff, temp_ff); if (sclk_ff.full < temp_ff.full) temp_ff.full = sclk_ff.full; read_return_rate.full = temp_ff.full; if (mode1) { temp_ff.full = read_return_rate.full - disp_drain_rate.full; time_disp1_drop_priority.full = dfixed_div(crit_point_ff, temp_ff); } else { time_disp1_drop_priority.full = 0; } crit_point_ff.full = disp_latency.full + time_disp1_drop_priority.full + disp_latency.full; crit_point_ff.full = dfixed_mul(crit_point_ff, disp_drain_rate2); crit_point_ff.full += dfixed_const_half(0); critical_point2 = dfixed_trunc(crit_point_ff); if (rdev->disp_priority == 2) { critical_point2 = 0; } if (max_stop_req - critical_point2 < 4) critical_point2 = 0; } if (critical_point2 == 0 && rdev->family == CHIP_R300) { /* some R300 cards have problem with this set to 0 */ critical_point2 = 0x10; } WREG32(RADEON_GRPH2_BUFFER_CNTL, ((grph2_cntl & ~RADEON_GRPH_CRITICAL_POINT_MASK) | (critical_point2 << RADEON_GRPH_CRITICAL_POINT_SHIFT))); if ((rdev->family == CHIP_RS400) || (rdev->family == CHIP_RS480)) { #if 0 /* attempt to program RS400 disp2 regs correctly ??? */ temp = RREG32(RS400_DISP2_REQ_CNTL1); temp &= ~(RS400_DISP2_START_REQ_LEVEL_MASK | RS400_DISP2_STOP_REQ_LEVEL_MASK); WREG32(RS400_DISP2_REQ_CNTL1, (temp | (critical_point2 << RS400_DISP1_START_REQ_LEVEL_SHIFT) | (critical_point2 << RS400_DISP1_STOP_REQ_LEVEL_SHIFT))); temp = RREG32(RS400_DISP2_REQ_CNTL2); temp &= ~(RS400_DISP2_CRITICAL_POINT_START_MASK | RS400_DISP2_CRITICAL_POINT_STOP_MASK); WREG32(RS400_DISP2_REQ_CNTL2, (temp | (critical_point2 << RS400_DISP2_CRITICAL_POINT_START_SHIFT) | (critical_point2 << RS400_DISP2_CRITICAL_POINT_STOP_SHIFT))); #endif WREG32(RS400_DISP2_REQ_CNTL1, 0x105DC1CC); WREG32(RS400_DISP2_REQ_CNTL2, 0x2749D000); WREG32(RS400_DMIF_MEM_CNTL1, 0x29CA71DC); WREG32(RS400_DISP1_REQ_CNTL1, 0x28FBC3AC); } DRM_DEBUG_KMS("GRPH2_BUFFER_CNTL from to %x\n", (unsigned int)RREG32(RADEON_GRPH2_BUFFER_CNTL)); } } int r100_ring_test(struct radeon_device *rdev, struct radeon_ring *ring) { uint32_t scratch; uint32_t tmp = 0; unsigned i; int r; r = radeon_scratch_get(rdev, &scratch); if (r) { DRM_ERROR("radeon: cp failed to get scratch reg (%d).\n", r); return r; } WREG32(scratch, 0xCAFEDEAD); r = radeon_ring_lock(rdev, ring, 2); if (r) { DRM_ERROR("radeon: cp failed to lock ring (%d).\n", r); radeon_scratch_free(rdev, scratch); return r; } radeon_ring_write(ring, PACKET0(scratch, 0)); radeon_ring_write(ring, 0xDEADBEEF); radeon_ring_unlock_commit(rdev, ring); for (i = 0; i < rdev->usec_timeout; i++) { tmp = RREG32(scratch); if (tmp == 0xDEADBEEF) { break; } DRM_UDELAY(1); } if (i < rdev->usec_timeout) { DRM_INFO("ring test succeeded in %d usecs\n", i); } else { DRM_ERROR("radeon: ring test failed (scratch(0x%04X)=0x%08X)\n", scratch, tmp); r = -EINVAL; } radeon_scratch_free(rdev, scratch); return r; } void r100_ring_ib_execute(struct radeon_device *rdev, struct radeon_ib *ib) { struct radeon_ring *ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]; if (ring->rptr_save_reg) { u32 next_rptr = ring->wptr + 2 + 3; radeon_ring_write(ring, PACKET0(ring->rptr_save_reg, 0)); radeon_ring_write(ring, next_rptr); } radeon_ring_write(ring, PACKET0(RADEON_CP_IB_BASE, 1)); radeon_ring_write(ring, ib->gpu_addr); radeon_ring_write(ring, ib->length_dw); } int r100_ib_test(struct radeon_device *rdev, struct radeon_ring *ring) { struct radeon_ib ib; uint32_t scratch; uint32_t tmp = 0; unsigned i; int r; r = radeon_scratch_get(rdev, &scratch); if (r) { DRM_ERROR("radeon: failed to get scratch reg (%d).\n", r); return r; } WREG32(scratch, 0xCAFEDEAD); r = radeon_ib_get(rdev, RADEON_RING_TYPE_GFX_INDEX, &ib, NULL, 256); if (r) { DRM_ERROR("radeon: failed to get ib (%d).\n", r); goto free_scratch; } ib.ptr[0] = PACKET0(scratch, 0); ib.ptr[1] = 0xDEADBEEF; ib.ptr[2] = PACKET2(0); ib.ptr[3] = PACKET2(0); ib.ptr[4] = PACKET2(0); ib.ptr[5] = PACKET2(0); ib.ptr[6] = PACKET2(0); ib.ptr[7] = PACKET2(0); ib.length_dw = 8; r = radeon_ib_schedule(rdev, &ib, NULL); if (r) { DRM_ERROR("radeon: failed to schedule ib (%d).\n", r); goto free_ib; } r = radeon_fence_wait(ib.fence, false); if (r) { DRM_ERROR("radeon: fence wait failed (%d).\n", r); goto free_ib; } for (i = 0; i < rdev->usec_timeout; i++) { tmp = RREG32(scratch); if (tmp == 0xDEADBEEF) { break; } DRM_UDELAY(1); } if (i < rdev->usec_timeout) { DRM_INFO("ib test succeeded in %u usecs\n", i); } else { DRM_ERROR("radeon: ib test failed (scratch(0x%04X)=0x%08X)\n", scratch, tmp); r = -EINVAL; } free_ib: radeon_ib_free(rdev, &ib); free_scratch: radeon_scratch_free(rdev, scratch); return r; } void r100_mc_stop(struct radeon_device *rdev, struct r100_mc_save *save) { /* Shutdown CP we shouldn't need to do that but better be safe than * sorry */ rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ready = false; WREG32(R_000740_CP_CSQ_CNTL, 0); /* Save few CRTC registers */ save->GENMO_WT = RREG8(R_0003C2_GENMO_WT); save->CRTC_EXT_CNTL = RREG32(R_000054_CRTC_EXT_CNTL); save->CRTC_GEN_CNTL = RREG32(R_000050_CRTC_GEN_CNTL); save->CUR_OFFSET = RREG32(R_000260_CUR_OFFSET); if (!(rdev->flags & RADEON_SINGLE_CRTC)) { save->CRTC2_GEN_CNTL = RREG32(R_0003F8_CRTC2_GEN_CNTL); save->CUR2_OFFSET = RREG32(R_000360_CUR2_OFFSET); } /* Disable VGA aperture access */ WREG8(R_0003C2_GENMO_WT, C_0003C2_VGA_RAM_EN & save->GENMO_WT); /* Disable cursor, overlay, crtc */ WREG32(R_000260_CUR_OFFSET, save->CUR_OFFSET | S_000260_CUR_LOCK(1)); WREG32(R_000054_CRTC_EXT_CNTL, save->CRTC_EXT_CNTL | S_000054_CRTC_DISPLAY_DIS(1)); WREG32(R_000050_CRTC_GEN_CNTL, (C_000050_CRTC_CUR_EN & save->CRTC_GEN_CNTL) | S_000050_CRTC_DISP_REQ_EN_B(1)); WREG32(R_000420_OV0_SCALE_CNTL, C_000420_OV0_OVERLAY_EN & RREG32(R_000420_OV0_SCALE_CNTL)); WREG32(R_000260_CUR_OFFSET, C_000260_CUR_LOCK & save->CUR_OFFSET); if (!(rdev->flags & RADEON_SINGLE_CRTC)) { WREG32(R_000360_CUR2_OFFSET, save->CUR2_OFFSET | S_000360_CUR2_LOCK(1)); WREG32(R_0003F8_CRTC2_GEN_CNTL, (C_0003F8_CRTC2_CUR_EN & save->CRTC2_GEN_CNTL) | S_0003F8_CRTC2_DISPLAY_DIS(1) | S_0003F8_CRTC2_DISP_REQ_EN_B(1)); WREG32(R_000360_CUR2_OFFSET, C_000360_CUR2_LOCK & save->CUR2_OFFSET); } } void r100_mc_resume(struct radeon_device *rdev, struct r100_mc_save *save) { /* Update base address for crtc */ WREG32(R_00023C_DISPLAY_BASE_ADDR, rdev->mc.vram_start); if (!(rdev->flags & RADEON_SINGLE_CRTC)) { WREG32(R_00033C_CRTC2_DISPLAY_BASE_ADDR, rdev->mc.vram_start); } /* Restore CRTC registers */ WREG8(R_0003C2_GENMO_WT, save->GENMO_WT); WREG32(R_000054_CRTC_EXT_CNTL, save->CRTC_EXT_CNTL); WREG32(R_000050_CRTC_GEN_CNTL, save->CRTC_GEN_CNTL); if (!(rdev->flags & RADEON_SINGLE_CRTC)) { WREG32(R_0003F8_CRTC2_GEN_CNTL, save->CRTC2_GEN_CNTL); } } void r100_vga_render_disable(struct radeon_device *rdev) { u32 tmp; tmp = RREG8(R_0003C2_GENMO_WT); WREG8(R_0003C2_GENMO_WT, C_0003C2_VGA_RAM_EN & tmp); } static void r100_debugfs(struct radeon_device *rdev) { int r; r = r100_debugfs_mc_info_init(rdev); if (r) dev_warn(rdev->dev, "Failed to create r100_mc debugfs file.\n"); } static void r100_mc_program(struct radeon_device *rdev) { struct r100_mc_save save; /* Stops all mc clients */ r100_mc_stop(rdev, &save); if (rdev->flags & RADEON_IS_AGP) { WREG32(R_00014C_MC_AGP_LOCATION, S_00014C_MC_AGP_START(rdev->mc.gtt_start >> 16) | S_00014C_MC_AGP_TOP(rdev->mc.gtt_end >> 16)); WREG32(R_000170_AGP_BASE, lower_32_bits(rdev->mc.agp_base)); if (rdev->family > CHIP_RV200) WREG32(R_00015C_AGP_BASE_2, upper_32_bits(rdev->mc.agp_base) & 0xff); } else { WREG32(R_00014C_MC_AGP_LOCATION, 0x0FFFFFFF); WREG32(R_000170_AGP_BASE, 0); if (rdev->family > CHIP_RV200) WREG32(R_00015C_AGP_BASE_2, 0); } /* Wait for mc idle */ if (r100_mc_wait_for_idle(rdev)) dev_warn(rdev->dev, "Wait for MC idle timeout.\n"); /* Program MC, should be a 32bits limited address space */ WREG32(R_000148_MC_FB_LOCATION, S_000148_MC_FB_START(rdev->mc.vram_start >> 16) | S_000148_MC_FB_TOP(rdev->mc.vram_end >> 16)); r100_mc_resume(rdev, &save); } static void r100_clock_startup(struct radeon_device *rdev) { u32 tmp; if (radeon_dynclks != -1 && radeon_dynclks) radeon_legacy_set_clock_gating(rdev, 1); /* We need to force on some of the block */ tmp = RREG32_PLL(R_00000D_SCLK_CNTL); tmp |= S_00000D_FORCE_CP(1) | S_00000D_FORCE_VIP(1); if ((rdev->family == CHIP_RV250) || (rdev->family == CHIP_RV280)) tmp |= S_00000D_FORCE_DISP1(1) | S_00000D_FORCE_DISP2(1); WREG32_PLL(R_00000D_SCLK_CNTL, tmp); } static int r100_startup(struct radeon_device *rdev) { int r; /* set common regs */ r100_set_common_regs(rdev); /* program mc */ r100_mc_program(rdev); /* Resume clock */ r100_clock_startup(rdev); /* Initialize GART (initialize after TTM so we can allocate * memory through TTM but finalize after TTM) */ r100_enable_bm(rdev); if (rdev->flags & RADEON_IS_PCI) { r = r100_pci_gart_enable(rdev); if (r) return r; } /* allocate wb buffer */ r = radeon_wb_init(rdev); if (r) return r; r = radeon_fence_driver_start_ring(rdev, RADEON_RING_TYPE_GFX_INDEX); if (r) { dev_err(rdev->dev, "failed initializing CP fences (%d).\n", r); return r; } /* Enable IRQ */ if (!rdev->irq.installed) { r = radeon_irq_kms_init(rdev); if (r) return r; } r100_irq_set(rdev); rdev->config.r100.hdp_cntl = RREG32(RADEON_HOST_PATH_CNTL); /* 1M ring buffer */ r = r100_cp_init(rdev, 1024 * 1024); if (r) { dev_err(rdev->dev, "failed initializing CP (%d).\n", r); return r; } r = radeon_ib_pool_init(rdev); if (r) { dev_err(rdev->dev, "IB initialization failed (%d).\n", r); return r; } return 0; } int r100_resume(struct radeon_device *rdev) { int r; /* Make sur GART are not working */ if (rdev->flags & RADEON_IS_PCI) r100_pci_gart_disable(rdev); /* Resume clock before doing reset */ r100_clock_startup(rdev); /* Reset gpu before posting otherwise ATOM will enter infinite loop */ if (radeon_asic_reset(rdev)) { dev_warn(rdev->dev, "GPU reset failed ! (0xE40=0x%08X, 0x7C0=0x%08X)\n", RREG32(R_000E40_RBBM_STATUS), RREG32(R_0007C0_CP_STAT)); } /* post */ radeon_combios_asic_init(rdev->ddev); /* Resume clock after posting */ r100_clock_startup(rdev); /* Initialize surface registers */ radeon_surface_init(rdev); rdev->accel_working = true; r = r100_startup(rdev); if (r) { rdev->accel_working = false; } return r; } int r100_suspend(struct radeon_device *rdev) { radeon_pm_suspend(rdev); r100_cp_disable(rdev); radeon_wb_disable(rdev); r100_irq_disable(rdev); if (rdev->flags & RADEON_IS_PCI) r100_pci_gart_disable(rdev); return 0; } void r100_fini(struct radeon_device *rdev) { radeon_pm_fini(rdev); r100_cp_fini(rdev); radeon_wb_fini(rdev); radeon_ib_pool_fini(rdev); radeon_gem_fini(rdev); if (rdev->flags & RADEON_IS_PCI) r100_pci_gart_fini(rdev); radeon_agp_fini(rdev); radeon_irq_kms_fini(rdev); radeon_fence_driver_fini(rdev); radeon_bo_fini(rdev); radeon_atombios_fini(rdev); kfree(rdev->bios); rdev->bios = NULL; } /* * Due to how kexec works, it can leave the hw fully initialised when it * boots the new kernel. However doing our init sequence with the CP and * WB stuff setup causes GPU hangs on the RN50 at least. So at startup * do some quick sanity checks and restore sane values to avoid this * problem. */ void r100_restore_sanity(struct radeon_device *rdev) { u32 tmp; tmp = RREG32(RADEON_CP_CSQ_CNTL); if (tmp) { WREG32(RADEON_CP_CSQ_CNTL, 0); } tmp = RREG32(RADEON_CP_RB_CNTL); if (tmp) { WREG32(RADEON_CP_RB_CNTL, 0); } tmp = RREG32(RADEON_SCRATCH_UMSK); if (tmp) { WREG32(RADEON_SCRATCH_UMSK, 0); } } int r100_init(struct radeon_device *rdev) { int r; /* Register debugfs file specific to this group of asics */ r100_debugfs(rdev); /* Disable VGA */ r100_vga_render_disable(rdev); /* Initialize scratch registers */ radeon_scratch_init(rdev); /* Initialize surface registers */ radeon_surface_init(rdev); /* sanity check some register to avoid hangs like after kexec */ r100_restore_sanity(rdev); /* TODO: disable VGA need to use VGA request */ /* BIOS*/ if (!radeon_get_bios(rdev)) { if (ASIC_IS_AVIVO(rdev)) return -EINVAL; } if (rdev->is_atom_bios) { dev_err(rdev->dev, "Expecting combios for RS400/RS480 GPU\n"); return -EINVAL; } else { r = radeon_combios_init(rdev); if (r) return r; } /* Reset gpu before posting otherwise ATOM will enter infinite loop */ if (radeon_asic_reset(rdev)) { dev_warn(rdev->dev, "GPU reset failed ! (0xE40=0x%08X, 0x7C0=0x%08X)\n", RREG32(R_000E40_RBBM_STATUS), RREG32(R_0007C0_CP_STAT)); } /* check if cards are posted or not */ if (radeon_boot_test_post_card(rdev) == false) return -EINVAL; /* Set asic errata */ r100_errata(rdev); /* Initialize clocks */ radeon_get_clock_info(rdev->ddev); /* initialize AGP */ if (rdev->flags & RADEON_IS_AGP) { r = radeon_agp_init(rdev); if (r) { radeon_agp_disable(rdev); } } /* initialize VRAM */ r100_mc_init(rdev); /* Fence driver */ r = radeon_fence_driver_init(rdev); if (r) return r; /* Memory manager */ r = radeon_bo_init(rdev); if (r) return r; if (rdev->flags & RADEON_IS_PCI) { r = r100_pci_gart_init(rdev); if (r) return r; } r100_set_safe_registers(rdev); /* Initialize power management */ radeon_pm_init(rdev); rdev->accel_working = true; r = r100_startup(rdev); if (r) { /* Somethings want wront with the accel init stop accel */ dev_err(rdev->dev, "Disabling GPU acceleration\n"); r100_cp_fini(rdev); radeon_wb_fini(rdev); radeon_ib_pool_fini(rdev); radeon_irq_kms_fini(rdev); if (rdev->flags & RADEON_IS_PCI) r100_pci_gart_fini(rdev); rdev->accel_working = false; } return 0; } uint32_t r100_mm_rreg(struct radeon_device *rdev, uint32_t reg, bool always_indirect) { if (reg < rdev->rmmio_size && !always_indirect) return readl(((void __iomem *)rdev->rmmio) + reg); else { unsigned long flags; uint32_t ret; spin_lock_irqsave(&rdev->mmio_idx_lock, flags); writel(reg, ((void __iomem *)rdev->rmmio) + RADEON_MM_INDEX); ret = readl(((void __iomem *)rdev->rmmio) + RADEON_MM_DATA); spin_unlock_irqrestore(&rdev->mmio_idx_lock, flags); return ret; } } void r100_mm_wreg(struct radeon_device *rdev, uint32_t reg, uint32_t v, bool always_indirect) { if (reg < rdev->rmmio_size && !always_indirect) writel(v, ((void __iomem *)rdev->rmmio) + reg); else { unsigned long flags; spin_lock_irqsave(&rdev->mmio_idx_lock, flags); writel(reg, ((void __iomem *)rdev->rmmio) + RADEON_MM_INDEX); writel(v, ((void __iomem *)rdev->rmmio) + RADEON_MM_DATA); spin_unlock_irqrestore(&rdev->mmio_idx_lock, flags); } } u32 r100_io_rreg(struct radeon_device *rdev, u32 reg) { if (reg < rdev->rio_mem_size) return ioread32(rdev->rio_mem + reg); else { iowrite32(reg, rdev->rio_mem + RADEON_MM_INDEX); return ioread32(rdev->rio_mem + RADEON_MM_DATA); } } void r100_io_wreg(struct radeon_device *rdev, u32 reg, u32 v) { if (reg < rdev->rio_mem_size) iowrite32(v, rdev->rio_mem + reg); else { iowrite32(reg, rdev->rio_mem + RADEON_MM_INDEX); iowrite32(v, rdev->rio_mem + RADEON_MM_DATA); } }