1. 22 6月, 2014 1 次提交
  2. 13 1月, 2014 2 次提交
    • D
      sched/deadline: Add SCHED_DEADLINE inheritance logic · 2d3d891d
      Dario Faggioli 提交于
      Some method to deal with rt-mutexes and make sched_dl interact with
      the current PI-coded is needed, raising all but trivial issues, that
      needs (according to us) to be solved with some restructuring of
      the pi-code (i.e., going toward a proxy execution-ish implementation).
      
      This is under development, in the meanwhile, as a temporary solution,
      what this commits does is:
      
       - ensure a pi-lock owner with waiters is never throttled down. Instead,
         when it runs out of runtime, it immediately gets replenished and it's
         deadline is postponed;
      
       - the scheduling parameters (relative deadline and default runtime)
         used for that replenishments --during the whole period it holds the
         pi-lock-- are the ones of the waiting task with earliest deadline.
      
      Acting this way, we provide some kind of boosting to the lock-owner,
      still by using the existing (actually, slightly modified by the previous
      commit) pi-architecture.
      
      We would stress the fact that this is only a surely needed, all but
      clean solution to the problem. In the end it's only a way to re-start
      discussion within the community. So, as always, comments, ideas, rants,
      etc.. are welcome! :-)
      Signed-off-by: NDario Faggioli <raistlin@linux.it>
      Signed-off-by: NJuri Lelli <juri.lelli@gmail.com>
      [ Added !RT_MUTEXES build fix. ]
      Signed-off-by: NPeter Zijlstra <peterz@infradead.org>
      Link: http://lkml.kernel.org/r/1383831828-15501-11-git-send-email-juri.lelli@gmail.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      2d3d891d
    • P
      rtmutex: Turn the plist into an rb-tree · fb00aca4
      Peter Zijlstra 提交于
      Turn the pi-chains from plist to rb-tree, in the rt_mutex code,
      and provide a proper comparison function for -deadline and
      -priority tasks.
      
      This is done mainly because:
       - classical prio field of the plist is just an int, which might
         not be enough for representing a deadline;
       - manipulating such a list would become O(nr_deadline_tasks),
         which might be to much, as the number of -deadline task increases.
      
      Therefore, an rb-tree is used, and tasks are queued in it according
      to the following logic:
       - among two -priority (i.e., SCHED_BATCH/OTHER/RR/FIFO) tasks, the
         one with the higher (lower, actually!) prio wins;
       - among a -priority and a -deadline task, the latter always wins;
       - among two -deadline tasks, the one with the earliest deadline
         wins.
      
      Queueing and dequeueing functions are changed accordingly, for both
      the list of a task's pi-waiters and the list of tasks blocked on
      a pi-lock.
      Signed-off-by: NPeter Zijlstra <peterz@infradead.org>
      Signed-off-by: NDario Faggioli <raistlin@linux.it>
      Signed-off-by: NJuri Lelli <juri.lelli@gmail.com>
      Signed-off-again-by: NPeter Zijlstra <peterz@infradead.org>
      Link: http://lkml.kernel.org/r/1383831828-15501-10-git-send-email-juri.lelli@gmail.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
      fb00aca4
  3. 06 11月, 2013 1 次提交
  4. 28 1月, 2011 1 次提交
    • L
      rtmutex: Simplify PI algorithm and make highest prio task get lock · 8161239a
      Lai Jiangshan 提交于
      In current rtmutex, the pending owner may be boosted by the tasks
      in the rtmutex's waitlist when the pending owner is deboosted
      or a task in the waitlist is boosted. This boosting is unrelated,
      because the pending owner does not really take the rtmutex.
      It is not reasonable.
      
      Example.
      
      time1:
      A(high prio) onwers the rtmutex.
      B(mid prio) and C (low prio) in the waitlist.
      
      time2
      A release the lock, B becomes the pending owner
      A(or other high prio task) continues to run. B's prio is lower
      than A, so B is just queued at the runqueue.
      
      time3
      A or other high prio task sleeps, but we have passed some time
      The B and C's prio are changed in the period (time2 ~ time3)
      due to boosting or deboosting. Now C has the priority higher
      than B. ***Is it reasonable that C has to boost B and help B to
      get the rtmutex?
      
      NO!! I think, it is unrelated/unneed boosting before B really
      owns the rtmutex. We should give C a chance to beat B and
      win the rtmutex.
      
      This is the motivation of this patch. This patch *ensures*
      only the top waiter or higher priority task can take the lock.
      
      How?
      1) we don't dequeue the top waiter when unlock, if the top waiter
         is changed, the old top waiter will fail and go to sleep again.
      2) when requiring lock, it will get the lock when the lock is not taken and:
         there is no waiter OR higher priority than waiters OR it is top waiter.
      3) In any time, the top waiter is changed, the top waiter will be woken up.
      
      The algorithm is much simpler than before, no pending owner, no
      boosting for pending owner.
      
      Other advantage of this patch:
      1) The states of a rtmutex are reduced a half, easier to read the code.
      2) the codes become shorter.
      3) top waiter is not dequeued until it really take the lock:
         they will retain FIFO when it is stolen.
      
      Not advantage nor disadvantage
      1) Even we may wakeup multiple waiters(any time when top waiter changed),
         we hardly cause "thundering herd",
         the number of wokenup task is likely 1 or very little.
      2) two APIs are changed.
         rt_mutex_owner() will not return pending owner, it will return NULL when
                          the top waiter is going to take the lock.
         rt_mutex_next_owner() always return the top waiter.
      	                 will not return NULL if we have waiters
                               because the top waiter is not dequeued.
      
         I have fixed the code that use these APIs.
      
      need updated after this patch is accepted
      1) Document/*
      2) the testcase scripts/rt-tester/t4-l2-pi-deboost.tst
      Signed-off-by: NLai Jiangshan <laijs@cn.fujitsu.com>
      LKML-Reference: <4D3012D5.4060709@cn.fujitsu.com>
      Reviewed-by: NSteven Rostedt <rostedt@goodmis.org>
      Signed-off-by: NSteven Rostedt <rostedt@goodmis.org>
      8161239a
  5. 06 4月, 2009 1 次提交
  6. 09 2月, 2008 1 次提交
  7. 17 7月, 2007 1 次提交
  8. 19 6月, 2007 1 次提交
    • T
      Revert "futex_requeue_pi optimization" · bd197234
      Thomas Gleixner 提交于
      This reverts commit d0aa7a70.
      
      It not only introduced user space visible changes to the futex syscall,
      it is also non-functional and there is no way to fix it proper before
      the 2.6.22 release.
      
      The breakage report ( http://lkml.org/lkml/2007/5/12/17 ) went
      unanswered, and unfortunately it turned out that the concept is not
      feasible at all.  It violates the rtmutex semantics badly by introducing
      a virtual owner, which hacks around the coupling of the user-space
      pi_futex and the kernel internal rt_mutex representation.
      
      At the moment the only safe option is to remove it fully as it contains
      user-space visible changes to broken kernel code, which we do not want
      to expose in the 2.6.22 release.
      
      The patch reverts the original patch mostly 1:1, but contains a couple
      of trivial manual cleanups which were necessary due to patches, which
      touched the same area of code later.
      
      Verified against the glibc tests and my own PI futex tests.
      Signed-off-by: NThomas Gleixner <tglx@linutronix.de>
      Acked-by: NIngo Molnar <mingo@elte.hu>
      Acked-by: NUlrich Drepper <drepper@redhat.com>
      Cc: Pierre Peiffer <pierre.peiffer@bull.net>
      Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
      bd197234
  9. 10 5月, 2007 1 次提交
  10. 28 6月, 2006 3 次提交