- 15 9月, 2017 2 次提交
-
-
由 Tim Chen 提交于
Now that we have added breaks in the wait queue scan and allow bookmark on scan position, we put this logic in the wake_up_page_bit function. We can have very long page wait list in large system where multiple pages share the same wait list. We break the wake up walk here to allow other cpus a chance to access the list, and not to disable the interrupts when traversing the list for too long. This reduces the interrupt and rescheduling latency, and excessive page wait queue lock hold time. [ v2: Remove bookmark_wake_function ] Signed-off-by: NTim Chen <tim.c.chen@linux.intel.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Tim Chen 提交于
We encountered workloads that have very long wake up list on large systems. A waker takes a long time to traverse the entire wake list and execute all the wake functions. We saw page wait list that are up to 3700+ entries long in tests of large 4 and 8 socket systems. It took 0.8 sec to traverse such list during wake up. Any other CPU that contends for the list spin lock will spin for a long time. It is a result of the numa balancing migration of hot pages that are shared by many threads. Multiple CPUs waking are queued up behind the lock, and the last one queued has to wait until all CPUs did all the wakeups. The page wait list is traversed with interrupt disabled, which caused various problems. This was the original cause that triggered the NMI watch dog timer in: https://patchwork.kernel.org/patch/9800303/ . Only extending the NMI watch dog timer there helped. This patch bookmarks the waker's scan position in wake list and break the wake up walk, to allow access to the list before the waker resume its walk down the rest of the wait list. It lowers the interrupt and rescheduling latency. This patch also provides a performance boost when combined with the next patch to break up page wakeup list walk. We saw 22% improvement in the will-it-scale file pread2 test on a Xeon Phi system running 256 threads. [ v2: Merged in Linus' changes to remove the bookmark_wake_function, and simply access to flags. ] Reported-by: NKan Liang <kan.liang@intel.com> Tested-by: NKan Liang <kan.liang@intel.com> Signed-off-by: NTim Chen <tim.c.chen@linux.intel.com> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 12 9月, 2017 4 次提交
-
-
由 Peter Zijlstra 提交于
I'm forever late for editing my kernel cmdline, add a runtime knob to disable the "sched_debug" thing. Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20170907150614.142924283@infradead.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
Migrating tasks to offline CPUs is a pretty big fail, warn about it. Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20170907150614.094206976@infradead.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Peter Zijlstra 提交于
The load balancer applies cpu_active_mask to whatever sched_domains it finds, however in the case of active_balance there is a hole between setting rq->{active_balance,push_cpu} and running the stop_machine work doing the actual migration. The @push_cpu can go offline in this window, which would result in us moving a task onto a dead cpu, which is a fairly bad thing. Double check the active mask before the stop work does the migration. CPU0 CPU1 <SoftIRQ> stop_machine(takedown_cpu) load_balance() cpu_stopper_thread() ... work = multi_cpu_stop stop_one_cpu_nowait( /* wait for CPU0 */ .func = active_load_balance_cpu_stop ); </SoftIRQ> cpu_stopper_thread() work = multi_cpu_stop /* sync with CPU1 */ take_cpu_down() <idle> play_dead(); work = active_load_balance_cpu_stop set_task_cpu(p, CPU1); /* oops!! */ Reported-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20170907150614.044460912@infradead.orgSigned-off-by: NIngo Molnar <mingo@kernel.org> -
由 Peter Zijlstra 提交于
On CPU hot unplug, when parking the last kthread we'll try and schedule into idle to kill the CPU. This last schedule can (and does) trigger newidle balance because at this point the sched domains are still up because of commit: 77d1dfda ("sched/topology, cpuset: Avoid spurious/wrong domain rebuilds") Obviously pulling tasks to an already offline CPU is a bad idea, and all balancing operations _should_ be subject to cpu_active_mask, make it so. Reported-by: NThomas Gleixner <tglx@linutronix.de> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Fixes: 77d1dfda ("sched/topology, cpuset: Avoid spurious/wrong domain rebuilds") Link: http://lkml.kernel.org/r/20170907150613.994135806@infradead.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 11 9月, 2017 1 次提交
-
-
由 Randy Dunlap 提交于
Work around kernel-doc warning ('*' in Sphinx doc means "emphasis"): ../kernel/sched/fair.c:7584: WARNING: Inline emphasis start-string without end-string. Signed-off-by: NRandy Dunlap <rdunlap@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/f18b30f9-6251-6d86-9d44-16501e386891@infradead.orgSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
- 09 9月, 2017 16 次提交
-
-
由 John Fastabend 提交于
Be a bit more friendly about waiting for flush bits to complete. Replace the cpu_relax() with a cond_resched(). Suggested-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NJohn Fastabend <john.fastabend@gmail.com> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 John Fastabend 提交于
The bpf map sockmap supports adding programs via attach commands. This patch adds the detach command to keep the API symmetric and allow users to remove previously added programs. Otherwise the user would have to delete the map and re-add it to get in this state. This also adds a series of additional tests to capture detach operation and also attaching/detaching invalid prog types. API note: socks will run (or not run) programs depending on the state of the map at the time the sock is added. We do not for example walk the map and remove programs from previously attached socks. Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NJohn Fastabend <john.fastabend@gmail.com> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Daniel Borkmann 提交于
We can potentially run into a couple of issues with the XDP bpf_redirect_map() helper. The ri->map in the per CPU storage can become stale in several ways, mostly due to misuse, where we can then trigger a use after free on the map: i) prog A is calling bpf_redirect_map(), returning XDP_REDIRECT and running on a driver not supporting XDP_REDIRECT yet. The ri->map on that CPU becomes stale when the XDP program is unloaded on the driver, and a prog B loaded on a different driver which supports XDP_REDIRECT return code. prog B would have to omit calling to bpf_redirect_map() and just return XDP_REDIRECT, which would then access the freed map in xdp_do_redirect() since not cleared for that CPU. ii) prog A is calling bpf_redirect_map(), returning a code other than XDP_REDIRECT. prog A is then detached, which triggers release of the map. prog B is attached which, similarly as in i), would just return XDP_REDIRECT without having called bpf_redirect_map() and thus be accessing the freed map in xdp_do_redirect() since not cleared for that CPU. iii) prog A is attached to generic XDP, calling the bpf_redirect_map() helper and returning XDP_REDIRECT. xdp_do_generic_redirect() is currently not handling ri->map (will be fixed by Jesper), so it's not being reset. Later loading a e.g. native prog B which would, say, call bpf_xdp_redirect() and then returns XDP_REDIRECT would find in xdp_do_redirect() that a map was set and uses that causing use after free on map access. Fix thus needs to avoid accessing stale ri->map pointers, naive way would be to call a BPF function from drivers that just resets it to NULL for all XDP return codes but XDP_REDIRECT and including XDP_REDIRECT for drivers not supporting it yet (and let ri->map being handled in xdp_do_generic_redirect()). There is a less intrusive way w/o letting drivers call a reset for each BPF run. The verifier knows we're calling into bpf_xdp_redirect_map() helper, so it can do a small insn rewrite transparent to the prog itself in the sense that it fills R4 with a pointer to the own bpf_prog. We have that pointer at verification time anyway and R4 is allowed to be used as per calling convention we scratch R0 to R5 anyway, so they become inaccessible and program cannot read them prior to a write. Then, the helper would store the prog pointer in the current CPUs struct redirect_info. Later in xdp_do_*_redirect() we check whether the redirect_info's prog pointer is the same as passed xdp_prog pointer, and if that's the case then all good, since the prog holds a ref on the map anyway, so it is always valid at that point in time and must have a reference count of at least 1. If in the unlikely case they are not equal, it means we got a stale pointer, so we clear and bail out right there. Also do reset map and the owning prog in bpf_xdp_redirect(), so that bpf_xdp_redirect_map() and bpf_xdp_redirect() won't get mixed up, only the last call should take precedence. A tc bpf_redirect() doesn't use map anywhere yet, so no need to clear it there since never accessed in that layer. Note that in case the prog is released, and thus the map as well we're still under RCU read critical section at that time and have preemption disabled as well. Once we commit with the __dev_map_insert_ctx() from xdp_do_redirect_map() and set the map to ri->map_to_flush, we still wait for a xdp_do_flush_map() to finish in devmap dismantle time once flush_needed bit is set, so that is fine. Fixes: 97f91a7c ("bpf: add bpf_redirect_map helper routine") Reported-by: NJesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: NDaniel Borkmann <daniel@iogearbox.net> Signed-off-by: NJohn Fastabend <john.fastabend@gmail.com> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Dmitry Vyukov 提交于
Support compat processes in KCOV by providing compat_ioctl callback. Compat mode uses the same ioctl callback: we have 2 commands that do not use the argument and 1 that already checks that the arg does not overflow INT_MAX. This allows to use KCOV-guided fuzzing in compat processes. Link: http://lkml.kernel.org/r/20170823100553.55812-1-dvyukov@google.comSigned-off-by: NDmitry Vyukov <dvyukov@google.com> Cc: <syzkaller@googlegroups.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Robert P. J. Day 提交于
Collection of aesthetic adjustments to various PPS-related files, directories and Documentation, some quite minor just for the sake of consistency, including: * Updated example of pps device tree node (courtesy Rodolfo G.) * "PPS-API" -> "PPS API" * "pps_source_info_s" -> "pps_source_info" * "ktimer driver" -> "pps-ktimer driver" * "ppstest /dev/pps0" -> "ppstest /dev/pps1" to match example * Add missing PPS-related entries to MAINTAINERS file * Other trivialities Link: http://lkml.kernel.org/r/alpine.LFD.2.20.1708261048220.8106@localhost.localdomainSigned-off-by: NRobert P. J. Day <rpjday@crashcourse.ca> Acked-by: NRodolfo Giometti <giometti@enneenne.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Luis R. Rodriguez 提交于
The entire file is now conditionally compiled only when CONFIG_MODULES is enabled, and this this is a bool. Just move this conditional to the Makefile as its easier to read this way. Link: http://lkml.kernel.org/r/20170810180618.22457-5-mcgrof@kernel.orgSigned-off-by: NLuis R. Rodriguez <mcgrof@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com> Cc: Jessica Yu <jeyu@redhat.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Michal Marek <mmarek@suse.com> Cc: Petr Mladek <pmladek@suse.com> Cc: Miroslav Benes <mbenes@suse.cz> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Matt Redfearn <matt.redfearn@imgtec.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Colin Ian King <colin.king@canonical.com> Cc: Daniel Mentz <danielmentz@google.com> Cc: David Binderman <dcb314@hotmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Luis R. Rodriguez 提交于
Patch series "kmod: few code cleanups to split out umh code" The usermode helper has a provenance from the old usb code which first required a usermode helper. Eventually this was shoved into kmod.c and the kernel's modprobe calls was converted over eventually to share the same code. Over time the list of usermode helpers in the kernel has grown -- so kmod is just but one user of the API. This series is a simple logical cleanup which acknowledges the code evolution of the usermode helper and shoves the UMH API into its own dedicated file. This way users of the API can later just include umh.h instead of kmod.h. Note despite the diff state the first patch really is just a code shove, no functional changes are done there. I did use git format-patch -M to generate the patch, but in the end the split was not enough for git to consider it a rename hence the large diffstat. I've put this through 0-day and it gives me their machine compilation blessings with all tests as OK. This patch (of 4): There's a slew of usermode helper users and kmod is just one of them. Split out the usermode helper code into its own file to keep the logic and focus split up. This change provides no functional changes. Link: http://lkml.kernel.org/r/20170810180618.22457-2-mcgrof@kernel.orgSigned-off-by: NLuis R. Rodriguez <mcgrof@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com> Cc: Jessica Yu <jeyu@redhat.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Michal Marek <mmarek@suse.com> Cc: Petr Mladek <pmladek@suse.com> Cc: Miroslav Benes <mbenes@suse.cz> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Guenter Roeck <linux@roeck-us.net> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Matt Redfearn <matt.redfearn@imgtec.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: Colin Ian King <colin.king@canonical.com> Cc: Daniel Mentz <danielmentz@google.com> Cc: David Binderman <dcb314@hotmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Davidlohr Bueso 提交于
... with the generic rbtree flavor instead. No changes in semantics whatsoever. Link: http://lkml.kernel.org/r/20170719014603.19029-10-dave@stgolabs.netSigned-off-by: NDavidlohr Bueso <dbueso@suse.de> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Davidlohr Bueso 提交于
... with the generic rbtree flavor instead. No changes in semantics whatsoever. Link: http://lkml.kernel.org/r/20170719014603.19029-9-dave@stgolabs.netSigned-off-by: NDavidlohr Bueso <dbueso@suse.de> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Davidlohr Bueso 提交于
... with the generic rbtree flavor instead. No changes in semantics whatsoever. Link: http://lkml.kernel.org/r/20170719014603.19029-8-dave@stgolabs.netSigned-off-by: NDavidlohr Bueso <dbueso@suse.de> Acked-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Alexey Dobriyan 提交于
First, number of CPUs can't be negative number. Second, different signnnedness leads to suboptimal code in the following cases: 1) kmalloc(nr_cpu_ids * sizeof(X)); "int" has to be sign extended to size_t. 2) while (loff_t *pos < nr_cpu_ids) MOVSXD is 1 byte longed than the same MOV. Other cases exist as well. Basically compiler is told that nr_cpu_ids can't be negative which can't be deduced if it is "int". Code savings on allyesconfig kernel: -3KB add/remove: 0/0 grow/shrink: 25/264 up/down: 261/-3631 (-3370) function old new delta coretemp_cpu_online 450 512 +62 rcu_init_one 1234 1272 +38 pci_device_probe 374 399 +25 ... pgdat_reclaimable_pages 628 556 -72 select_fallback_rq 446 369 -77 task_numa_find_cpu 1923 1807 -116 Link: http://lkml.kernel.org/r/20170819114959.GA30580@avx2Signed-off-by: NAlexey Dobriyan <adobriyan@gmail.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jérôme Glisse 提交于
Platform with advance system bus (like CAPI or CCIX) allow device memory to be accessible from CPU in a cache coherent fashion. Add a new type of ZONE_DEVICE to represent such memory. The use case are the same as for the un-addressable device memory but without all the corners cases. Link: http://lkml.kernel.org/r/20170817000548.32038-19-jglisse@redhat.comSigned-off-by: NJérôme Glisse <jglisse@redhat.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Sherry Cheung <SCheung@nvidia.com> Cc: Subhash Gutti <sgutti@nvidia.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jérôme Glisse 提交于
HMM pages (private or public device pages) are ZONE_DEVICE page and thus need special handling when it comes to lru or refcount. This patch make sure that memcontrol properly handle those when it face them. Those pages are use like regular pages in a process address space either as anonymous page or as file back page. So from memcg point of view we want to handle them like regular page for now at least. Link: http://lkml.kernel.org/r/20170817000548.32038-11-jglisse@redhat.comSigned-off-by: NJérôme Glisse <jglisse@redhat.com> Acked-by: NBalbir Singh <bsingharora@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Sherry Cheung <SCheung@nvidia.com> Cc: Subhash Gutti <sgutti@nvidia.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jérôme Glisse 提交于
A ZONE_DEVICE page that reach a refcount of 1 is free ie no longer have any user. For device private pages this is important to catch and thus we need to special case put_page() for this. Link: http://lkml.kernel.org/r/20170817000548.32038-9-jglisse@redhat.comSigned-off-by: NJérôme Glisse <jglisse@redhat.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Nellans <dnellans@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Sherry Cheung <SCheung@nvidia.com> Cc: Subhash Gutti <sgutti@nvidia.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jérôme Glisse 提交于
HMM (heterogeneous memory management) need struct page to support migration from system main memory to device memory. Reasons for HMM and migration to device memory is explained with HMM core patch. This patch deals with device memory that is un-addressable memory (ie CPU can not access it). Hence we do not want those struct page to be manage like regular memory. That is why we extend ZONE_DEVICE to support different types of memory. A persistent memory type is define for existing user of ZONE_DEVICE and a new device un-addressable type is added for the un-addressable memory type. There is a clear separation between what is expected from each memory type and existing user of ZONE_DEVICE are un-affected by new requirement and new use of the un-addressable type. All specific code path are protect with test against the memory type. Because memory is un-addressable we use a new special swap type for when a page is migrated to device memory (this reduces the number of maximum swap file). The main two additions beside memory type to ZONE_DEVICE is two callbacks. First one, page_free() is call whenever page refcount reach 1 (which means the page is free as ZONE_DEVICE page never reach a refcount of 0). This allow device driver to manage its memory and associated struct page. The second callback page_fault() happens when there is a CPU access to an address that is back by a device page (which are un-addressable by the CPU). This callback is responsible to migrate the page back to system main memory. Device driver can not block migration back to system memory, HMM make sure that such page can not be pin into device memory. If device is in some error condition and can not migrate memory back then a CPU page fault to device memory should end with SIGBUS. [arnd@arndb.de: fix warning] Link: http://lkml.kernel.org/r/20170823133213.712917-1-arnd@arndb.de Link: http://lkml.kernel.org/r/20170817000548.32038-8-jglisse@redhat.comSigned-off-by: NJérôme Glisse <jglisse@redhat.com> Signed-off-by: NArnd Bergmann <arnd@arndb.de> Acked-by: NDan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Nellans <dnellans@nvidia.com> Cc: Evgeny Baskakov <ebaskakov@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mark Hairgrove <mhairgrove@nvidia.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Sherry Cheung <SCheung@nvidia.com> Cc: Subhash Gutti <sgutti@nvidia.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Jérôme Glisse 提交于
HMM provides 3 separate types of functionality: - Mirroring: synchronize CPU page table and device page table - Device memory: allocating struct page for device memory - Migration: migrating regular memory to device memory This patch introduces some common helpers and definitions to all of those 3 functionality. Link: http://lkml.kernel.org/r/20170817000548.32038-3-jglisse@redhat.comSigned-off-by: NJérôme Glisse <jglisse@redhat.com> Signed-off-by: NEvgeny Baskakov <ebaskakov@nvidia.com> Signed-off-by: NJohn Hubbard <jhubbard@nvidia.com> Signed-off-by: NMark Hairgrove <mhairgrove@nvidia.com> Signed-off-by: NSherry Cheung <SCheung@nvidia.com> Signed-off-by: NSubhash Gutti <sgutti@nvidia.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Nellans <dnellans@nvidia.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Bob Liu <liubo95@huawei.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 07 9月, 2017 9 次提交
-
-
由 Peter Zijlstra 提交于
Cpusets vs. suspend-resume is _completely_ broken. And it got noticed because it now resulted in non-cpuset usage breaking too. On suspend cpuset_cpu_inactive() doesn't call into cpuset_update_active_cpus() because it doesn't want to move tasks about, there is no need, all tasks are frozen and won't run again until after we've resumed everything. But this means that when we finally do call into cpuset_update_active_cpus() after resuming the last frozen cpu in cpuset_cpu_active(), the top_cpuset will not have any difference with the cpu_active_mask and this it will not in fact do _anything_. So the cpuset configuration will not be restored. This was largely hidden because we would unconditionally create identity domains and mobile users would not in fact use cpusets much. And servers what do use cpusets tend to not suspend-resume much. An addition problem is that we'd not in fact wait for the cpuset work to finish before resuming the tasks, allowing spurious migrations outside of the specified domains. Fix the rebuild by introducing cpuset_force_rebuild() and fix the ordering with cpuset_wait_for_hotplug(). Reported-by: NAndy Lutomirski <luto@kernel.org> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: <stable@vger.kernel.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rafael J. Wysocki <rjw@rjwysocki.net> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: deb7aa30 ("cpuset: reorganize CPU / memory hotplug handling") Link: http://lkml.kernel.org/r/20170907091338.orwxrqkbfkki3c24@hirez.programming.kicks-ass.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Thomas Gleixner 提交于
for_each_active_irq() iterates the sparse irq allocation bitmap. The caller must hold sparse_irq_lock. Several code pathes expect that an active bit in the sparse bitmap also has a valid interrupt descriptor. Unfortunately that's not true. The (de)allocation is a two step process, which holds the sparse_irq_lock only across the queue/remove from the radix tree and the set/clear in the allocation bitmap. If a iteration locks sparse_irq_lock between the two steps, then it might see an active bit but the corresponding irq descriptor is NULL. If that is dereferenced unconditionally, then the kernel oopses. Of course, all iterator sites could be audited and fixed, but.... There is no reason why the sparse_irq_lock needs to be dropped between the two steps, in fact the code becomes simpler when the mutex is held across both and the semantics become more straight forward, so future problems of missing NULL pointer checks in the iteration are avoided and all existing sites are fixed in one go. Expand the lock held sections so both operations are covered and the bitmap and the radixtree are in sync. Fixes: a05a900a ("genirq: Make sparse_lock a mutex") Reported-and-tested-by: NHuang Ying <ying.huang@intel.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org
-
由 Peter Zijlstra 提交于
Chris Wilson reported that the SMT balance rules got the +1 on the wrong side, resulting in a bias towards the current LLC; which the load-balancer would then try and undo. Reported-by: NChris Wilson <chris@chris-wilson.co.uk> Tested-by: NChris Wilson <chris@chris-wilson.co.uk> Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Fixes: 90001d67 ("sched/fair: Fix wake_affine() for !NUMA_BALANCING") Link: http://lkml.kernel.org/r/20170906105131.gqjmaextmn3u6tj2@hirez.programming.kicks-ass.netSigned-off-by: NIngo Molnar <mingo@kernel.org>
-
由 Baohong Liu 提交于
Currently trace_clock timestamps are applied to both regular and max buffers only for global trace. For instance trace, trace_clock timestamps are applied only to regular buffer. But, regular and max buffers can be swapped, for example, following a snapshot. So, for instance trace, bad timestamps can be seen following a snapshot. Let's apply trace_clock timestamps to instance max buffer as well. Link: http://lkml.kernel.org/r/ebdb168d0be042dcdf51f81e696b17fabe3609c1.1504642143.git.tom.zanussi@linux.intel.com Cc: stable@vger.kernel.org Fixes: 277ba044 ("tracing: Add interface to allow multiple trace buffers") Signed-off-by: NBaohong Liu <baohong.liu@intel.com> Signed-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org>
-
由 Rik van Riel 提交于
Introduce MADV_WIPEONFORK semantics, which result in a VMA being empty in the child process after fork. This differs from MADV_DONTFORK in one important way. If a child process accesses memory that was MADV_WIPEONFORK, it will get zeroes. The address ranges are still valid, they are just empty. If a child process accesses memory that was MADV_DONTFORK, it will get a segmentation fault, since those address ranges are no longer valid in the child after fork. Since MADV_DONTFORK also seems to be used to allow very large programs to fork in systems with strict memory overcommit restrictions, changing the semantics of MADV_DONTFORK might break existing programs. MADV_WIPEONFORK only works on private, anonymous VMAs. The use case is libraries that store or cache information, and want to know that they need to regenerate it in the child process after fork. Examples of this would be: - systemd/pulseaudio API checks (fail after fork) (replacing a getpid check, which is too slow without a PID cache) - PKCS#11 API reinitialization check (mandated by specification) - glibc's upcoming PRNG (reseed after fork) - OpenSSL PRNG (reseed after fork) The security benefits of a forking server having a re-inialized PRNG in every child process are pretty obvious. However, due to libraries having all kinds of internal state, and programs getting compiled with many different versions of each library, it is unreasonable to expect calling programs to re-initialize everything manually after fork. A further complication is the proliferation of clone flags, programs bypassing glibc's functions to call clone directly, and programs calling unshare, causing the glibc pthread_atfork hook to not get called. It would be better to have the kernel take care of this automatically. The patch also adds MADV_KEEPONFORK, to undo the effects of a prior MADV_WIPEONFORK. This is similar to the OpenBSD minherit syscall with MAP_INHERIT_ZERO: https://man.openbsd.org/minherit.2 [akpm@linux-foundation.org: numerically order arch/parisc/include/uapi/asm/mman.h #defines] Link: http://lkml.kernel.org/r/20170811212829.29186-3-riel@redhat.comSigned-off-by: NRik van Riel <riel@redhat.com> Reported-by: NFlorian Weimer <fweimer@redhat.com> Reported-by: NColm MacCártaigh <colm@allcosts.net> Reviewed-by: NMike Kravetz <mike.kravetz@oracle.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Helge Deller <deller@gmx.de> Cc: Kees Cook <keescook@chromium.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Drewry <wad@chromium.org> Cc: <linux-api@vger.kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org> -
由 Andrea Arcangeli 提交于
This is purely required because exit_aio() may block and exit_mmap() may never start, if the oom_reap_task cannot start running on a mm with mm_users == 0. At the same time if the OOM reaper doesn't wait at all for the memory of the current OOM candidate to be freed by exit_mmap->unmap_vmas, it would generate a spurious OOM kill. If it wasn't because of the exit_aio or similar blocking functions in the last mmput, it would be enough to change the oom_reap_task() in the case it finds mm_users == 0, to wait for a timeout or to wait for __mmput to set MMF_OOM_SKIP itself, but it's not just exit_mmap the problem here so the concurrency of exit_mmap and oom_reap_task is apparently warranted. It's a non standard runtime, exit_mmap() runs without mmap_sem, and oom_reap_task runs with the mmap_sem for reading as usual (kind of MADV_DONTNEED). The race between the two is solved with a combination of tsk_is_oom_victim() (serialized by task_lock) and MMF_OOM_SKIP (serialized by a dummy down_write/up_write cycle on the same lines of the ksm_exit method). If the oom_reap_task() may be running concurrently during exit_mmap, exit_mmap will wait it to finish in down_write (before taking down mm structures that would make the oom_reap_task fail with use after free). If exit_mmap comes first, oom_reap_task() will skip the mm if MMF_OOM_SKIP is already set and in turn all memory is already freed and furthermore the mm data structures may already have been taken down by free_pgtables. [aarcange@redhat.com: incremental one liner] Link: http://lkml.kernel.org/r/20170726164319.GC29716@redhat.com [rientjes@google.com: remove unused mmput_async] Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1708141733130.50317@chino.kir.corp.google.com [aarcange@redhat.com: microoptimization] Link: http://lkml.kernel.org/r/20170817171240.GB5066@redhat.com Link: http://lkml.kernel.org/r/20170726162912.GA29716@redhat.com Fixes: 26db62f1 ("oom: keep mm of the killed task available") Signed-off-by: NAndrea Arcangeli <aarcange@redhat.com> Signed-off-by: NDavid Rientjes <rientjes@google.com> Reported-by: NDavid Rientjes <rientjes@google.com> Tested-by: NDavid Rientjes <rientjes@google.com> Reviewed-by: NMichal Hocko <mhocko@suse.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Michal Hocko 提交于
TIF_MEMDIE is set only to the tasks whick were either directly selected by the OOM killer or passed through mark_oom_victim from the allocator path. tsk_is_oom_victim is more generic and allows to identify all tasks (threads) which share the mm with the oom victim. Please note that the freezer still needs to check TIF_MEMDIE because we cannot thaw tasks which do not participage in oom_victims counting otherwise a !TIF_MEMDIE task could interfere after oom_disbale returns. Link: http://lkml.kernel.org/r/20170810075019.28998-3-mhocko@kernel.orgSigned-off-by: NMichal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Roman Gushchin <guro@fb.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Dan Williams 提交于
devm_memremap_pages() records mapped ranges in pgmap_radix with an entry per section's worth of memory (128MB). The key for each of those entries is a section number. This leads to false positives when devm_memremap_pages() is passed a section-unaligned range as lookups in the misalignment fail to return NULL. We can close this hole by using the pfn as the key for entries in the tree. The number of entries required to describe a remapped range is reduced by leveraging multi-order entries. In practice this approach usually yields just one entry in the tree if the size and starting address are of the same power-of-2 alignment. Previously we always needed nr_entries = mapping_size / 128MB. Link: https://lists.01.org/pipermail/linux-nvdimm/2016-August/006666.html Link: http://lkml.kernel.org/r/150215410565.39310.13767886055248249438.stgit@dwillia2-desk3.amr.corp.intel.comSigned-off-by: NDan Williams <dan.j.williams@intel.com> Reported-by: NToshi Kani <toshi.kani@hpe.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
由 Roman Gushchin 提交于
Commit fa06235b ("cgroup: reset css on destruction") caused css_reset callback to be called from the offlining path. Although it solves the problem mentioned in the commit description ("For instance, memory cgroup needs to reset memory.low, otherwise pages charged to a dead cgroup might never get reclaimed."), generally speaking, it's not correct. An offline cgroup can still be a resource domain, and we shouldn't grant it more resources than it had before deletion. For instance, if an offline memory cgroup has dirty pages, we should still imply i/o limits during writeback. The css_reset callback is designed to return the cgroup state into the original state, that means reset all limits and counters. It's spomething different from the offlining, and we shouldn't use it from the offlining path. Instead, we should adjust necessary settings from the per-controller css_offline callbacks (e.g. reset memory.low). Link: http://lkml.kernel.org/r/20170727130428.28856-2-guro@fb.comSigned-off-by: NRoman Gushchin <guro@fb.com> Acked-by: NTejun Heo <tj@kernel.org> Acked-by: NJohannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: NAndrew Morton <akpm@linux-foundation.org> Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
-
- 06 9月, 2017 3 次提交
-
-
由 John Keeping 提交于
On allocating the interrupts routed via a wire-to-MSI bridge, the allocator iterates over the MSI descriptors to build the hierarchy, but fails to use the descriptor interrupt number, and instead uses the base number, generating the wrong IRQ domain mappings. The fix is to use the MSI descriptor interrupt number when setting up the interrupt instead of the base interrupt for the allocation range. The only saving grace is that although the MSI descriptors are allocated in bulk, the wired interrupts are only allocated one by one (so desc->irq == virq) and the bug went unnoticed so far. Fixes: 2145ac93 ("genirq/msi: Add msi_domain_populate_irqs") Signed-off-by: NJohn Keeping <john@metanate.com> Signed-off-by: NThomas Gleixner <tglx@linutronix.de> Reviewed-by: NMarc Zyngier <marc.zyngier@arm.com> Cc: stable@vger.kernel.org Link: http://lkml.kernel.org/r/20170906103540.373864a2.john@metanate.com
-
由 Eric Dumazet 提交于
syzkaller reported crashes in bpf map creation or map update [1] Problem is that nr_node_ids is a signed integer, NUMA_NO_NODE is also an integer, so it is very tempting to declare numa_node as a signed integer. This means the typical test to validate a user provided value : if (numa_node != NUMA_NO_NODE && (numa_node >= nr_node_ids || !node_online(numa_node))) must be written : if (numa_node != NUMA_NO_NODE && ((unsigned int)numa_node >= nr_node_ids || !node_online(numa_node))) [1] kernel BUG at mm/slab.c:3256! invalid opcode: 0000 [#1] SMP KASAN Dumping ftrace buffer: (ftrace buffer empty) Modules linked in: CPU: 0 PID: 2946 Comm: syzkaller916108 Not tainted 4.13.0-rc7+ #35 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 task: ffff8801d2bc60c0 task.stack: ffff8801c0c90000 RIP: 0010:____cache_alloc_node+0x1d4/0x1e0 mm/slab.c:3292 RSP: 0018:ffff8801c0c97638 EFLAGS: 00010096 RAX: ffffffffffff8b7b RBX: 0000000001080220 RCX: 0000000000000000 RDX: 00000000ffff8b7b RSI: 0000000001080220 RDI: ffff8801dac00040 RBP: ffff8801c0c976c0 R08: 0000000000000000 R09: 0000000000000000 R10: ffff8801c0c97620 R11: 0000000000000001 R12: ffff8801dac00040 R13: ffff8801dac00040 R14: 0000000000000000 R15: 00000000ffff8b7b FS: 0000000002119940(0000) GS:ffff8801db200000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000020001fec CR3: 00000001d2980000 CR4: 00000000001406f0 Call Trace: __do_kmalloc_node mm/slab.c:3688 [inline] __kmalloc_node+0x33/0x70 mm/slab.c:3696 kmalloc_node include/linux/slab.h:535 [inline] alloc_htab_elem+0x2a8/0x480 kernel/bpf/hashtab.c:740 htab_map_update_elem+0x740/0xb80 kernel/bpf/hashtab.c:820 map_update_elem kernel/bpf/syscall.c:587 [inline] SYSC_bpf kernel/bpf/syscall.c:1468 [inline] SyS_bpf+0x20c5/0x4c40 kernel/bpf/syscall.c:1443 entry_SYSCALL_64_fastpath+0x1f/0xbe RIP: 0033:0x440409 RSP: 002b:00007ffd1f1792b8 EFLAGS: 00000246 ORIG_RAX: 0000000000000141 RAX: ffffffffffffffda RBX: 00000000004002c8 RCX: 0000000000440409 RDX: 0000000000000020 RSI: 0000000020006000 RDI: 0000000000000002 RBP: 0000000000000086 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000401d70 R13: 0000000000401e00 R14: 0000000000000000 R15: 0000000000000000 Code: 83 c2 01 89 50 18 4c 03 70 08 e8 38 f4 ff ff 4d 85 f6 0f 85 3e ff ff ff 44 89 fe 4c 89 ef e8 94 fb ff ff 49 89 c6 e9 2b ff ff ff <0f> 0b 0f 0b 0f 0b 66 0f 1f 44 00 00 55 48 89 e5 41 57 41 56 41 RIP: ____cache_alloc_node+0x1d4/0x1e0 mm/slab.c:3292 RSP: ffff8801c0c97638 ---[ end trace d745f355da2e33ce ]--- Kernel panic - not syncing: Fatal exception Fixes: 96eabe7a ("bpf: Allow selecting numa node during map creation") Signed-off-by: NEric Dumazet <edumazet@google.com> Cc: Martin KaFai Lau <kafai@fb.com> Cc: Alexei Starovoitov <ast@fb.com> Cc: Daniel Borkmann <daniel@iogearbox.net> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net> -
由 Chunyu Hu 提交于
When disabling one trace event, the RECORDED_TGID flag in the event file is not correctly cleared. It's clearing RECORDED_CMD flag when it should clear RECORDED_TGID flag. Link: http://lkml.kernel.org/r/1504589806-8425-1-git-send-email-chuhu@redhat.com Cc: Joel Fernandes <joelaf@google.com> Cc: stable@vger.kernel.org Fixes: d914ba37 ("tracing: Add support for recording tgid of tasks") Signed-off-by: NChunyu Hu <chuhu@redhat.com> Signed-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org>
-
- 05 9月, 2017 3 次提交
-
-
由 Steven Rostedt (VMware) 提交于
trace_printk() uses 4 buffers, one for each context (normal, softirq, irq and NMI), such that it does not need to worry about one context preempting the other. There's a nesting counter that gets incremented to figure out which buffer to use. If the context gets preempted by another context which calls trace_printk() it will increment the counter and use the next buffer, and restore the counter when it is finished. The problem is that gcc may optimize the modification of the buffer nesting counter and it may not be incremented in memory before the buffer is used. If this happens, and the context gets interrupted by another context, it could pick the same buffer and corrupt the one that is being used. Compiler barriers need to be added after the nesting variable is incremented and before it is decremented to prevent usage of the context buffers by more than one context at the same time. Cc: Andy Lutomirski <luto@kernel.org> Cc: stable@vger.kernel.org Fixes: e2ace001 ("tracing: Choose static tp_printk buffer by explicit nesting count") Hat-tip-to: Peter Zijlstra <peterz@infradead.org> Signed-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org>
-
由 Geliang Tang 提交于
Update the function comments to match the code. Signed-off-by: NGeliang Tang <geliangtang@gmail.com> Signed-off-by: NPaul Moore <paul@paul-moore.com>
-
由 Mel Gorman 提交于
Commit 2115bb25 ("audit: Use timespec64 to represent audit timestamps") noted that audit timestamps were not y2038 safe and used a 64-bit timestamp. In itself, this makes sense but the conversion was from CURRENT_TIME to ktime_get_real_ts64() which is a heavier call to record an accurate timestamp which is required in some, but not all, cases. The impact is that when auditd is running without any rules that all syscalls have higher overhead. This is visible in the sysbench-thread benchmark as a 11.5% performance hit. That benchmark is dumb as rocks but it's also visible in redis as an 8-10% hit on all operations which is of greater concern. It is somewhat stupid of audit to track syscalls without any rules related to syscalls but that is how it behaves. The overhead can be directly measured with perf comparing 4.9 with 4.12 4.9 7.76% sysbench [kernel.vmlinux] [k] __schedule 7.62% sysbench [kernel.vmlinux] [k] _raw_spin_lock 7.37% sysbench libpthread-2.22.so [.] __lll_lock_elision 7.29% sysbench [kernel.vmlinux] [.] syscall_return_via_sysret 6.59% sysbench [kernel.vmlinux] [k] native_sched_clock 5.21% sysbench libc-2.22.so [.] __sched_yield 4.38% sysbench [kernel.vmlinux] [k] entry_SYSCALL_64 4.28% sysbench [kernel.vmlinux] [k] do_syscall_64 3.49% sysbench libpthread-2.22.so [.] __lll_unlock_elision 3.13% sysbench [kernel.vmlinux] [k] __audit_syscall_exit 2.87% sysbench [kernel.vmlinux] [k] update_curr 2.73% sysbench [kernel.vmlinux] [k] pick_next_task_fair 2.31% sysbench [kernel.vmlinux] [k] syscall_trace_enter 2.20% sysbench [kernel.vmlinux] [k] __audit_syscall_entry ..... 0.00% swapper [kernel.vmlinux] [k] read_tsc 4.12 7.84% sysbench [kernel.vmlinux] [k] __schedule 7.05% sysbench [kernel.vmlinux] [k] _raw_spin_lock 6.57% sysbench libpthread-2.22.so [.] __lll_lock_elision 6.50% sysbench [kernel.vmlinux] [.] syscall_return_via_sysret 5.95% sysbench [kernel.vmlinux] [k] read_tsc 5.71% sysbench [kernel.vmlinux] [k] native_sched_clock 4.78% sysbench libc-2.22.so [.] __sched_yield 4.30% sysbench [kernel.vmlinux] [k] entry_SYSCALL_64 3.94% sysbench [kernel.vmlinux] [k] do_syscall_64 3.37% sysbench libpthread-2.22.so [.] __lll_unlock_elision 3.32% sysbench [kernel.vmlinux] [k] __audit_syscall_exit 2.91% sysbench [kernel.vmlinux] [k] __getnstimeofday64 Note the additional overhead from read_tsc which goes from 0% to 5.95%. This is on a single-socket E3-1230 but similar overheads have been measured on an older machine which the patch also eliminates. The patch in question has no explanation as to why a fully-accurate timestamp is required and is likely an oversight. Using a coarser, but monotically increasing, timestamp the overhead can be eliminated. While it can be worked around by configuring or disabling audit, it's tricky enough to detect that a kernel fix is justified. With this patch, we see the following; sysbenchthread 4.9.0 4.12.0 4.12.0 vanilla vanilla coarse-v1r1 Amean 1 1.49 ( 0.00%) 1.66 ( -11.42%) 1.51 ( -1.34%) Amean 3 1.48 ( 0.00%) 1.65 ( -11.45%) 1.50 ( -0.96%) Amean 5 1.49 ( 0.00%) 1.67 ( -12.31%) 1.51 ( -1.83%) Amean 7 1.49 ( 0.00%) 1.66 ( -11.72%) 1.50 ( -0.67%) Amean 12 1.48 ( 0.00%) 1.65 ( -11.57%) 1.52 ( -2.89%) Amean 16 1.49 ( 0.00%) 1.65 ( -11.13%) 1.51 ( -1.73%) The benchmark is reporting the time required for different thread counts to lock/unlock a private mutex which, while dense, demonstrates the syscall overhead. This is showing that 4.12 took a 11-12% hit but the overhead is almost eliminated by the patch. While the variance is not reported here, it's well within the noise with the patch applied. Signed-off-by: NMel Gorman <mgorman@techsingularity.net> Acked-by: NArnd Bergmann <arnd@arndb.de> Acked-by: NDeepa Dinamani <deepa.kernel@gmail.com> Signed-off-by: NPaul Moore <paul@paul-moore.com>
-
- 02 9月, 2017 2 次提交
-
-
由 John Fastabend 提交于
Instead of tracking wmem_queued and sk_mem_charge by incrementing in the verdict SK_REDIRECT paths and decrementing in the tx work path use skb_set_owner_w and sock_writeable helpers. This solves a few issues with the current code. First, in SK_REDIRECT inc on sk_wmem_queued and sk_mem_charge were being done without the peers sock lock being held. Under stress this can result in accounting errors when tx work and/or multiple verdict decisions are working on the peer psock. Additionally, this cleans up the code because we can rely on the default destructor to decrement memory accounting on kfree_skb. Also this will trigger sk_write_space when space becomes available on kfree_skb() which wasn't happening before and prevent __sk_free from being called until all in-flight packets are completed. Fixes: 174a79ff ("bpf: sockmap with sk redirect support") Signed-off-by: NJohn Fastabend <john.fastabend@gmail.com> Acked-by: NDaniel Borkmann <daniel@iogearbox.net> Acked-by: NAlexei Starovoitov <ast@kernel.org> Signed-off-by: NDavid S. Miller <davem@davemloft.net>
-
由 Steven Rostedt (VMware) 提交于
If function tracing is disabled by the user via the function-trace option or the proc sysctl file, and a ftrace_ops that was allocated on the heap is unregistered, then the shutdown code exits out without doing the proper clean up. This was found via kmemleak and running the ftrace selftests, as one of the tests unregisters with function tracing disabled. # cat kmemleak unreferenced object 0xffffffffa0020000 (size 4096): comm "swapper/0", pid 1, jiffies 4294668889 (age 569.209s) hex dump (first 32 bytes): 55 ff 74 24 10 55 48 89 e5 ff 74 24 18 55 48 89 U.t$.UH...t$.UH. e5 48 81 ec a8 00 00 00 48 89 44 24 50 48 89 4c .H......H.D$PH.L backtrace: [<ffffffff81d64665>] kmemleak_vmalloc+0x85/0xf0 [<ffffffff81355631>] __vmalloc_node_range+0x281/0x3e0 [<ffffffff8109697f>] module_alloc+0x4f/0x90 [<ffffffff81091170>] arch_ftrace_update_trampoline+0x160/0x420 [<ffffffff81249947>] ftrace_startup+0xe7/0x300 [<ffffffff81249bd2>] register_ftrace_function+0x72/0x90 [<ffffffff81263786>] trace_selftest_ops+0x204/0x397 [<ffffffff82bb8971>] trace_selftest_startup_function+0x394/0x624 [<ffffffff81263a75>] run_tracer_selftest+0x15c/0x1d7 [<ffffffff82bb83f1>] init_trace_selftests+0x75/0x192 [<ffffffff81002230>] do_one_initcall+0x90/0x1e2 [<ffffffff82b7d620>] kernel_init_freeable+0x350/0x3fe [<ffffffff81d61ec3>] kernel_init+0x13/0x122 [<ffffffff81d72c6a>] ret_from_fork+0x2a/0x40 [<ffffffffffffffff>] 0xffffffffffffffff Cc: stable@vger.kernel.org Fixes: 12cce594 ("ftrace/x86: Allow !CONFIG_PREEMPT dynamic ops to use allocated trampolines") Signed-off-by: NSteven Rostedt (VMware) <rostedt@goodmis.org>
-