提交 bf603625 编写于 作者: L Linus Torvalds

Merge master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6

* master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6:
  [ATM]: [lec] use refcnt to protect lec_arp_entries outside lock
  [ATM]: [lec] add reference counting to lec_arp entries
  [ATM]: [lec] use work queue instead of timer for lec arp expiry
  [ATM]: [lec] old_close is no longer used
  [ATM]: [lec] convert lec_arp_table to hlist
  [ATM]: [lec] header indent, comment and whitespace cleanup
  [ATM]: [lec] indent, comment and whitespace cleanup [continued]
  [ATM]: [lec] indent, comment and whitespace cleanup
  [SCTP]: Do not timestamp every SCTP packet.
  [SCTP]: Use correct mask when disabling PMTUD.
  [SCTP]: Include sk_buff overhead while updating the peer's receive window.
  [SCTP]: Enable Nagle algorithm by default.
  [BNX2]: Disable MSI on 5706 if AMD 8132 bridge is present.
  [NetLabel]: audit fixups due to delayed feedback
...@@ -56,8 +56,8 @@ ...@@ -56,8 +56,8 @@
#define DRV_MODULE_NAME "bnx2" #define DRV_MODULE_NAME "bnx2"
#define PFX DRV_MODULE_NAME ": " #define PFX DRV_MODULE_NAME ": "
#define DRV_MODULE_VERSION "1.4.44" #define DRV_MODULE_VERSION "1.4.45"
#define DRV_MODULE_RELDATE "August 10, 2006" #define DRV_MODULE_RELDATE "September 29, 2006"
#define RUN_AT(x) (jiffies + (x)) #define RUN_AT(x) (jiffies + (x))
...@@ -5805,6 +5805,34 @@ bnx2_init_board(struct pci_dev *pdev, struct net_device *dev) ...@@ -5805,6 +5805,34 @@ bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
bp->cmd_ticks_int = bp->cmd_ticks; bp->cmd_ticks_int = bp->cmd_ticks;
} }
/* Disable MSI on 5706 if AMD 8132 bridge is found.
*
* MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
* with byte enables disabled on the unused 32-bit word. This is legal
* but causes problems on the AMD 8132 which will eventually stop
* responding after a while.
*
* AMD believes this incompatibility is unique to the 5706, and
* prefers to locally disable MSI rather than globally disabling it
* using pci_msi_quirk.
*/
if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
struct pci_dev *amd_8132 = NULL;
while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
PCI_DEVICE_ID_AMD_8132_BRIDGE,
amd_8132))) {
u8 rev;
pci_read_config_byte(amd_8132, PCI_REVISION_ID, &rev);
if (rev >= 0x10 && rev <= 0x13) {
disable_msi = 1;
pci_dev_put(amd_8132);
break;
}
}
}
bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL; bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
bp->req_line_speed = 0; bp->req_line_speed = 0;
if (bp->phy_flags & PHY_SERDES_FLAG) { if (bp->phy_flags & PHY_SERDES_FLAG) {
......
/* /*
* * ATM Lan Emulation Daemon driver interface
* ATM Lan Emulation Daemon vs. driver interface
*
* mkiiskila@yahoo.com
* *
* Marko Kiiskila <mkiiskila@yahoo.com>
*/ */
#ifndef _ATMLEC_H_ #ifndef _ATMLEC_H_
...@@ -13,76 +11,87 @@ ...@@ -13,76 +11,87 @@
#include <linux/atmioc.h> #include <linux/atmioc.h>
#include <linux/atm.h> #include <linux/atm.h>
#include <linux/if_ether.h> #include <linux/if_ether.h>
/* ATM lec daemon control socket */ /* ATM lec daemon control socket */
#define ATMLEC_CTRL _IO('a',ATMIOC_LANE) #define ATMLEC_CTRL _IO('a', ATMIOC_LANE)
#define ATMLEC_DATA _IO('a',ATMIOC_LANE+1) #define ATMLEC_DATA _IO('a', ATMIOC_LANE+1)
#define ATMLEC_MCAST _IO('a',ATMIOC_LANE+2) #define ATMLEC_MCAST _IO('a', ATMIOC_LANE+2)
/* Maximum number of LEC interfaces (tweakable) */ /* Maximum number of LEC interfaces (tweakable) */
#define MAX_LEC_ITF 48 #define MAX_LEC_ITF 48
/* From the total of MAX_LEC_ITF, last NUM_TR_DEVS are reserved for Token Ring. /*
* From the total of MAX_LEC_ITF, last NUM_TR_DEVS are reserved for Token Ring.
* E.g. if MAX_LEC_ITF = 48 and NUM_TR_DEVS = 8, then lec0-lec39 are for * E.g. if MAX_LEC_ITF = 48 and NUM_TR_DEVS = 8, then lec0-lec39 are for
* Ethernet ELANs and lec40-lec47 are for Token Ring ELANS. * Ethernet ELANs and lec40-lec47 are for Token Ring ELANS.
*/ */
#define NUM_TR_DEVS 8 #define NUM_TR_DEVS 8
typedef enum { typedef enum {
l_set_mac_addr, l_del_mac_addr, l_set_mac_addr,
l_svc_setup, l_del_mac_addr,
l_addr_delete, l_topology_change, l_svc_setup,
l_flush_complete, l_arp_update, l_addr_delete,
l_narp_req, /* LANE2 mandates the use of this */ l_topology_change,
l_config, l_flush_tran_id, l_flush_complete,
l_set_lecid, l_arp_xmt, l_arp_update,
l_rdesc_arp_xmt, l_narp_req, /* LANE2 mandates the use of this */
l_associate_req, l_config,
l_should_bridge /* should we bridge this MAC? */ l_flush_tran_id,
l_set_lecid,
l_arp_xmt,
l_rdesc_arp_xmt,
l_associate_req,
l_should_bridge /* should we bridge this MAC? */
} atmlec_msg_type; } atmlec_msg_type;
#define ATMLEC_MSG_TYPE_MAX l_should_bridge #define ATMLEC_MSG_TYPE_MAX l_should_bridge
struct atmlec_config_msg { struct atmlec_config_msg {
unsigned int maximum_unknown_frame_count; unsigned int maximum_unknown_frame_count;
unsigned int max_unknown_frame_time; unsigned int max_unknown_frame_time;
unsigned short max_retry_count; unsigned short max_retry_count;
unsigned int aging_time; unsigned int aging_time;
unsigned int forward_delay_time; unsigned int forward_delay_time;
unsigned int arp_response_time; unsigned int arp_response_time;
unsigned int flush_timeout; unsigned int flush_timeout;
unsigned int path_switching_delay; unsigned int path_switching_delay;
unsigned int lane_version; /* LANE2: 1 for LANEv1, 2 for LANEv2 */ unsigned int lane_version; /* LANE2: 1 for LANEv1, 2 for LANEv2 */
int mtu; int mtu;
int is_proxy; int is_proxy;
}; };
struct atmlec_msg { struct atmlec_msg {
atmlec_msg_type type; atmlec_msg_type type;
int sizeoftlvs; /* LANE2: if != 0, tlvs follow */ int sizeoftlvs; /* LANE2: if != 0, tlvs follow */
union { union {
struct { struct {
unsigned char mac_addr[ETH_ALEN]; unsigned char mac_addr[ETH_ALEN];
unsigned char atm_addr[ATM_ESA_LEN]; unsigned char atm_addr[ATM_ESA_LEN];
unsigned int flag;/* Topology_change flag, unsigned int flag; /*
remoteflag, permanent flag, * Topology_change flag,
lecid, transaction id */ * remoteflag, permanent flag,
unsigned int targetless_le_arp; /* LANE2 */ * lecid, transaction id
unsigned int no_source_le_narp; /* LANE2 */ */
} normal; unsigned int targetless_le_arp; /* LANE2 */
struct atmlec_config_msg config; unsigned int no_source_le_narp; /* LANE2 */
struct { } normal;
uint16_t lec_id; /* requestor lec_id */ struct atmlec_config_msg config;
uint32_t tran_id; /* transaction id */ struct {
unsigned char mac_addr[ETH_ALEN]; /* dst mac addr */ uint16_t lec_id; /* requestor lec_id */
unsigned char atm_addr[ATM_ESA_LEN]; /* reqestor ATM addr */ uint32_t tran_id; /* transaction id */
} proxy; unsigned char mac_addr[ETH_ALEN]; /* dst mac addr */
/* For mapping LE_ARP requests to responses. Filled by */ unsigned char atm_addr[ATM_ESA_LEN]; /* reqestor ATM addr */
} content; /* zeppelin, returned by kernel. Used only when proxying */ } proxy; /*
* For mapping LE_ARP requests to responses. Filled by
* zeppelin, returned by kernel. Used only when proxying
*/
} content;
} __ATM_API_ALIGN; } __ATM_API_ALIGN;
struct atmlec_ioc { struct atmlec_ioc {
int dev_num; int dev_num;
unsigned char atm_addr[ATM_ESA_LEN]; unsigned char atm_addr[ATM_ESA_LEN];
unsigned char receive; /* 1= receive vcc, 0 = send vcc */ unsigned char receive; /* 1= receive vcc, 0 = send vcc */
}; };
#endif /* _ATMLEC_H_ */ #endif /* _ATMLEC_H_ */
...@@ -95,12 +95,11 @@ ...@@ -95,12 +95,11 @@
#define AUDIT_MAC_POLICY_LOAD 1403 /* Policy file load */ #define AUDIT_MAC_POLICY_LOAD 1403 /* Policy file load */
#define AUDIT_MAC_STATUS 1404 /* Changed enforcing,permissive,off */ #define AUDIT_MAC_STATUS 1404 /* Changed enforcing,permissive,off */
#define AUDIT_MAC_CONFIG_CHANGE 1405 /* Changes to booleans */ #define AUDIT_MAC_CONFIG_CHANGE 1405 /* Changes to booleans */
#define AUDIT_MAC_UNLBL_ACCEPT 1406 /* NetLabel: allow unlabeled traffic */ #define AUDIT_MAC_UNLBL_ALLOW 1406 /* NetLabel: allow unlabeled traffic */
#define AUDIT_MAC_UNLBL_DENY 1407 /* NetLabel: deny unlabeled traffic */ #define AUDIT_MAC_CIPSOV4_ADD 1407 /* NetLabel: add CIPSOv4 DOI entry */
#define AUDIT_MAC_CIPSOV4_ADD 1408 /* NetLabel: add CIPSOv4 DOI entry */ #define AUDIT_MAC_CIPSOV4_DEL 1408 /* NetLabel: del CIPSOv4 DOI entry */
#define AUDIT_MAC_CIPSOV4_DEL 1409 /* NetLabel: del CIPSOv4 DOI entry */ #define AUDIT_MAC_MAP_ADD 1409 /* NetLabel: add LSM domain mapping */
#define AUDIT_MAC_MAP_ADD 1410 /* NetLabel: add LSM domain mapping */ #define AUDIT_MAC_MAP_DEL 1410 /* NetLabel: del LSM domain mapping */
#define AUDIT_MAC_MAP_DEL 1411 /* NetLabel: del LSM domain mapping */
#define AUDIT_FIRST_KERN_ANOM_MSG 1700 #define AUDIT_FIRST_KERN_ANOM_MSG 1700
#define AUDIT_LAST_KERN_ANOM_MSG 1799 #define AUDIT_LAST_KERN_ANOM_MSG 1799
......
...@@ -507,6 +507,7 @@ ...@@ -507,6 +507,7 @@
#define PCI_DEVICE_ID_AMD_8151_0 0x7454 #define PCI_DEVICE_ID_AMD_8151_0 0x7454
#define PCI_DEVICE_ID_AMD_8131_BRIDGE 0x7450 #define PCI_DEVICE_ID_AMD_8131_BRIDGE 0x7450
#define PCI_DEVICE_ID_AMD_8131_APIC 0x7451 #define PCI_DEVICE_ID_AMD_8131_APIC 0x7451
#define PCI_DEVICE_ID_AMD_8132_BRIDGE 0x7458
#define PCI_DEVICE_ID_AMD_CS5536_ISA 0x2090 #define PCI_DEVICE_ID_AMD_CS5536_ISA 0x2090
#define PCI_DEVICE_ID_AMD_CS5536_FLASH 0x2091 #define PCI_DEVICE_ID_AMD_CS5536_FLASH 0x2091
#define PCI_DEVICE_ID_AMD_CS5536_AUDIO 0x2093 #define PCI_DEVICE_ID_AMD_CS5536_AUDIO 0x2093
......
...@@ -129,7 +129,7 @@ extern int cipso_v4_rbm_strictvalid; ...@@ -129,7 +129,7 @@ extern int cipso_v4_rbm_strictvalid;
#ifdef CONFIG_NETLABEL #ifdef CONFIG_NETLABEL
int cipso_v4_doi_add(struct cipso_v4_doi *doi_def); int cipso_v4_doi_add(struct cipso_v4_doi *doi_def);
int cipso_v4_doi_remove(u32 doi, int cipso_v4_doi_remove(u32 doi,
u32 audit_secid, struct netlbl_audit *audit_info,
void (*callback) (struct rcu_head * head)); void (*callback) (struct rcu_head * head));
struct cipso_v4_doi *cipso_v4_doi_getdef(u32 doi); struct cipso_v4_doi *cipso_v4_doi_getdef(u32 doi);
int cipso_v4_doi_walk(u32 *skip_cnt, int cipso_v4_doi_walk(u32 *skip_cnt,
...@@ -145,7 +145,7 @@ static inline int cipso_v4_doi_add(struct cipso_v4_doi *doi_def) ...@@ -145,7 +145,7 @@ static inline int cipso_v4_doi_add(struct cipso_v4_doi *doi_def)
} }
static inline int cipso_v4_doi_remove(u32 doi, static inline int cipso_v4_doi_remove(u32 doi,
u32 audit_secid, struct netlbl_audit *audit_info,
void (*callback) (struct rcu_head * head)) void (*callback) (struct rcu_head * head))
{ {
return 0; return 0;
......
...@@ -92,11 +92,17 @@ ...@@ -92,11 +92,17 @@
* *
*/ */
/* NetLabel audit information */
struct netlbl_audit {
u32 secid;
uid_t loginuid;
};
/* Domain mapping definition struct */ /* Domain mapping definition struct */
struct netlbl_dom_map; struct netlbl_dom_map;
/* Domain mapping operations */ /* Domain mapping operations */
int netlbl_domhsh_remove(const char *domain, u32 audit_secid); int netlbl_domhsh_remove(const char *domain, struct netlbl_audit *audit_info);
/* LSM security attributes */ /* LSM security attributes */
struct netlbl_lsm_cache { struct netlbl_lsm_cache {
......
/* /*
* lec.c: Lan Emulation driver * lec.c: Lan Emulation driver
* Marko Kiiskila mkiiskila@yahoo.com
* *
* Marko Kiiskila <mkiiskila@yahoo.com>
*/ */
#include <linux/kernel.h> #include <linux/kernel.h>
...@@ -38,7 +38,7 @@ ...@@ -38,7 +38,7 @@
#include <linux/if_bridge.h> #include <linux/if_bridge.h>
#include "../bridge/br_private.h" #include "../bridge/br_private.h"
static unsigned char bridge_ula_lec[] = {0x01, 0x80, 0xc2, 0x00, 0x00}; static unsigned char bridge_ula_lec[] = { 0x01, 0x80, 0xc2, 0x00, 0x00 };
#endif #endif
/* Modular too */ /* Modular too */
...@@ -55,38 +55,41 @@ static unsigned char bridge_ula_lec[] = {0x01, 0x80, 0xc2, 0x00, 0x00}; ...@@ -55,38 +55,41 @@ static unsigned char bridge_ula_lec[] = {0x01, 0x80, 0xc2, 0x00, 0x00};
#define DPRINTK(format,args...) #define DPRINTK(format,args...)
#endif #endif
#define DUMP_PACKETS 0 /* 0 = None, #define DUMP_PACKETS 0 /*
* 1 = 30 first bytes * 0 = None,
* 2 = Whole packet * 1 = 30 first bytes
*/ * 2 = Whole packet
*/
#define LEC_UNRES_QUE_LEN 8 /* number of tx packets to queue for a #define LEC_UNRES_QUE_LEN 8 /*
single destination while waiting for SVC */ * number of tx packets to queue for a
* single destination while waiting for SVC
*/
static int lec_open(struct net_device *dev); static int lec_open(struct net_device *dev);
static int lec_start_xmit(struct sk_buff *skb, struct net_device *dev); static int lec_start_xmit(struct sk_buff *skb, struct net_device *dev);
static int lec_close(struct net_device *dev); static int lec_close(struct net_device *dev);
static struct net_device_stats *lec_get_stats(struct net_device *dev); static struct net_device_stats *lec_get_stats(struct net_device *dev);
static void lec_init(struct net_device *dev); static void lec_init(struct net_device *dev);
static struct lec_arp_table* lec_arp_find(struct lec_priv *priv, static struct lec_arp_table *lec_arp_find(struct lec_priv *priv,
unsigned char *mac_addr); unsigned char *mac_addr);
static int lec_arp_remove(struct lec_priv *priv, static int lec_arp_remove(struct lec_priv *priv,
struct lec_arp_table *to_remove); struct lec_arp_table *to_remove);
/* LANE2 functions */ /* LANE2 functions */
static void lane2_associate_ind (struct net_device *dev, u8 *mac_address, static void lane2_associate_ind(struct net_device *dev, u8 *mac_address,
u8 *tlvs, u32 sizeoftlvs); u8 *tlvs, u32 sizeoftlvs);
static int lane2_resolve(struct net_device *dev, u8 *dst_mac, int force, static int lane2_resolve(struct net_device *dev, u8 *dst_mac, int force,
u8 **tlvs, u32 *sizeoftlvs); u8 **tlvs, u32 *sizeoftlvs);
static int lane2_associate_req (struct net_device *dev, u8 *lan_dst, static int lane2_associate_req(struct net_device *dev, u8 *lan_dst,
u8 *tlvs, u32 sizeoftlvs); u8 *tlvs, u32 sizeoftlvs);
static int lec_addr_delete(struct lec_priv *priv, unsigned char *atm_addr, static int lec_addr_delete(struct lec_priv *priv, unsigned char *atm_addr,
unsigned long permanent); unsigned long permanent);
static void lec_arp_check_empties(struct lec_priv *priv, static void lec_arp_check_empties(struct lec_priv *priv,
struct atm_vcc *vcc, struct sk_buff *skb); struct atm_vcc *vcc, struct sk_buff *skb);
static void lec_arp_destroy(struct lec_priv *priv); static void lec_arp_destroy(struct lec_priv *priv);
static void lec_arp_init(struct lec_priv *priv); static void lec_arp_init(struct lec_priv *priv);
static struct atm_vcc* lec_arp_resolve(struct lec_priv *priv, static struct atm_vcc *lec_arp_resolve(struct lec_priv *priv,
unsigned char *mac_to_find, unsigned char *mac_to_find,
int is_rdesc, int is_rdesc,
struct lec_arp_table **ret_entry); struct lec_arp_table **ret_entry);
...@@ -100,16 +103,30 @@ static void lec_set_flush_tran_id(struct lec_priv *priv, ...@@ -100,16 +103,30 @@ static void lec_set_flush_tran_id(struct lec_priv *priv,
unsigned long tran_id); unsigned long tran_id);
static void lec_vcc_added(struct lec_priv *priv, struct atmlec_ioc *ioc_data, static void lec_vcc_added(struct lec_priv *priv, struct atmlec_ioc *ioc_data,
struct atm_vcc *vcc, struct atm_vcc *vcc,
void (*old_push)(struct atm_vcc *vcc, struct sk_buff *skb)); void (*old_push) (struct atm_vcc *vcc,
struct sk_buff *skb));
static void lec_vcc_close(struct lec_priv *priv, struct atm_vcc *vcc); static void lec_vcc_close(struct lec_priv *priv, struct atm_vcc *vcc);
/* must be done under lec_arp_lock */
static inline void lec_arp_hold(struct lec_arp_table *entry)
{
atomic_inc(&entry->usage);
}
static inline void lec_arp_put(struct lec_arp_table *entry)
{
if (atomic_dec_and_test(&entry->usage))
kfree(entry);
}
static struct lane2_ops lane2_ops = { static struct lane2_ops lane2_ops = {
lane2_resolve, /* resolve, spec 3.1.3 */ lane2_resolve, /* resolve, spec 3.1.3 */
lane2_associate_req, /* associate_req, spec 3.1.4 */ lane2_associate_req, /* associate_req, spec 3.1.4 */
NULL /* associate indicator, spec 3.1.5 */ NULL /* associate indicator, spec 3.1.5 */
}; };
static unsigned char bus_mac[ETH_ALEN] = {0xff,0xff,0xff,0xff,0xff,0xff}; static unsigned char bus_mac[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
/* Device structures */ /* Device structures */
static struct net_device *dev_lec[MAX_LEC_ITF]; static struct net_device *dev_lec[MAX_LEC_ITF];
...@@ -117,36 +134,39 @@ static struct net_device *dev_lec[MAX_LEC_ITF]; ...@@ -117,36 +134,39 @@ static struct net_device *dev_lec[MAX_LEC_ITF];
#if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
static void lec_handle_bridge(struct sk_buff *skb, struct net_device *dev) static void lec_handle_bridge(struct sk_buff *skb, struct net_device *dev)
{ {
struct ethhdr *eth; struct ethhdr *eth;
char *buff; char *buff;
struct lec_priv *priv; struct lec_priv *priv;
/* Check if this is a BPDU. If so, ask zeppelin to send /*
* LE_TOPOLOGY_REQUEST with the same value of Topology Change bit * Check if this is a BPDU. If so, ask zeppelin to send
* as the Config BPDU has */ * LE_TOPOLOGY_REQUEST with the same value of Topology Change bit
eth = (struct ethhdr *)skb->data; * as the Config BPDU has
buff = skb->data + skb->dev->hard_header_len; */
if (*buff++ == 0x42 && *buff++ == 0x42 && *buff++ == 0x03) { eth = (struct ethhdr *)skb->data;
buff = skb->data + skb->dev->hard_header_len;
if (*buff++ == 0x42 && *buff++ == 0x42 && *buff++ == 0x03) {
struct sock *sk; struct sock *sk;
struct sk_buff *skb2; struct sk_buff *skb2;
struct atmlec_msg *mesg; struct atmlec_msg *mesg;
skb2 = alloc_skb(sizeof(struct atmlec_msg), GFP_ATOMIC); skb2 = alloc_skb(sizeof(struct atmlec_msg), GFP_ATOMIC);
if (skb2 == NULL) return; if (skb2 == NULL)
skb2->len = sizeof(struct atmlec_msg); return;
mesg = (struct atmlec_msg *)skb2->data; skb2->len = sizeof(struct atmlec_msg);
mesg->type = l_topology_change; mesg = (struct atmlec_msg *)skb2->data;
buff += 4; mesg->type = l_topology_change;
mesg->content.normal.flag = *buff & 0x01; /* 0x01 is topology change */ buff += 4;
mesg->content.normal.flag = *buff & 0x01; /* 0x01 is topology change */
priv = (struct lec_priv *)dev->priv;
atm_force_charge(priv->lecd, skb2->truesize); priv = (struct lec_priv *)dev->priv;
atm_force_charge(priv->lecd, skb2->truesize);
sk = sk_atm(priv->lecd); sk = sk_atm(priv->lecd);
skb_queue_tail(&sk->sk_receive_queue, skb2); skb_queue_tail(&sk->sk_receive_queue, skb2);
sk->sk_data_ready(sk, skb2->len); sk->sk_data_ready(sk, skb2->len);
} }
return; return;
} }
#endif /* defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) */ #endif /* defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) */
...@@ -162,36 +182,35 @@ static void lec_handle_bridge(struct sk_buff *skb, struct net_device *dev) ...@@ -162,36 +182,35 @@ static void lec_handle_bridge(struct sk_buff *skb, struct net_device *dev)
#ifdef CONFIG_TR #ifdef CONFIG_TR
static unsigned char *get_tr_dst(unsigned char *packet, unsigned char *rdesc) static unsigned char *get_tr_dst(unsigned char *packet, unsigned char *rdesc)
{ {
struct trh_hdr *trh; struct trh_hdr *trh;
int riflen, num_rdsc; int riflen, num_rdsc;
trh = (struct trh_hdr *)packet; trh = (struct trh_hdr *)packet;
if (trh->daddr[0] & (uint8_t)0x80) if (trh->daddr[0] & (uint8_t) 0x80)
return bus_mac; /* multicast */ return bus_mac; /* multicast */
if (trh->saddr[0] & TR_RII) { if (trh->saddr[0] & TR_RII) {
riflen = (ntohs(trh->rcf) & TR_RCF_LEN_MASK) >> 8; riflen = (ntohs(trh->rcf) & TR_RCF_LEN_MASK) >> 8;
if ((ntohs(trh->rcf) >> 13) != 0) if ((ntohs(trh->rcf) >> 13) != 0)
return bus_mac; /* ARE or STE */ return bus_mac; /* ARE or STE */
} } else
else return trh->daddr; /* not source routed */
return trh->daddr; /* not source routed */
if (riflen < 6)
if (riflen < 6) return trh->daddr; /* last hop, source routed */
return trh->daddr; /* last hop, source routed */
/* riflen is 6 or more, packet has more than one route descriptor */
/* riflen is 6 or more, packet has more than one route descriptor */ num_rdsc = (riflen / 2) - 1;
num_rdsc = (riflen/2) - 1; memset(rdesc, 0, ETH_ALEN);
memset(rdesc, 0, ETH_ALEN); /* offset 4 comes from LAN destination field in LE control frames */
/* offset 4 comes from LAN destination field in LE control frames */ if (trh->rcf & htons((uint16_t) TR_RCF_DIR_BIT))
if (trh->rcf & htons((uint16_t)TR_RCF_DIR_BIT)) memcpy(&rdesc[4], &trh->rseg[num_rdsc - 2], sizeof(uint16_t));
memcpy(&rdesc[4], &trh->rseg[num_rdsc-2], sizeof(uint16_t)); else {
else { memcpy(&rdesc[4], &trh->rseg[1], sizeof(uint16_t));
memcpy(&rdesc[4], &trh->rseg[1], sizeof(uint16_t)); rdesc[5] = ((ntohs(trh->rseg[0]) & 0x000f) | (rdesc[5] & 0xf0));
rdesc[5] = ((ntohs(trh->rseg[0]) & 0x000f) | (rdesc[5] & 0xf0)); }
}
return NULL;
return NULL;
} }
#endif /* CONFIG_TR */ #endif /* CONFIG_TR */
...@@ -204,15 +223,14 @@ static unsigned char *get_tr_dst(unsigned char *packet, unsigned char *rdesc) ...@@ -204,15 +223,14 @@ static unsigned char *get_tr_dst(unsigned char *packet, unsigned char *rdesc)
* there is non-reboot way to recover if something goes wrong. * there is non-reboot way to recover if something goes wrong.
*/ */
static int static int lec_open(struct net_device *dev)
lec_open(struct net_device *dev)
{ {
struct lec_priv *priv = (struct lec_priv *)dev->priv; struct lec_priv *priv = (struct lec_priv *)dev->priv;
netif_start_queue(dev); netif_start_queue(dev);
memset(&priv->stats,0,sizeof(struct net_device_stats)); memset(&priv->stats, 0, sizeof(struct net_device_stats));
return 0; return 0;
} }
static __inline__ void static __inline__ void
...@@ -231,160 +249,166 @@ lec_send(struct atm_vcc *vcc, struct sk_buff *skb, struct lec_priv *priv) ...@@ -231,160 +249,166 @@ lec_send(struct atm_vcc *vcc, struct sk_buff *skb, struct lec_priv *priv)
priv->stats.tx_bytes += skb->len; priv->stats.tx_bytes += skb->len;
} }
static void static void lec_tx_timeout(struct net_device *dev)
lec_tx_timeout(struct net_device *dev)
{ {
printk(KERN_INFO "%s: tx timeout\n", dev->name); printk(KERN_INFO "%s: tx timeout\n", dev->name);
dev->trans_start = jiffies; dev->trans_start = jiffies;
netif_wake_queue(dev); netif_wake_queue(dev);
} }
static int static int lec_start_xmit(struct sk_buff *skb, struct net_device *dev)
lec_start_xmit(struct sk_buff *skb, struct net_device *dev)
{ {
struct sk_buff *skb2; struct sk_buff *skb2;
struct lec_priv *priv = (struct lec_priv *)dev->priv; struct lec_priv *priv = (struct lec_priv *)dev->priv;
struct lecdatahdr_8023 *lec_h; struct lecdatahdr_8023 *lec_h;
struct atm_vcc *vcc; struct atm_vcc *vcc;
struct lec_arp_table *entry; struct lec_arp_table *entry;
unsigned char *dst; unsigned char *dst;
int min_frame_size; int min_frame_size;
#ifdef CONFIG_TR #ifdef CONFIG_TR
unsigned char rdesc[ETH_ALEN]; /* Token Ring route descriptor */ unsigned char rdesc[ETH_ALEN]; /* Token Ring route descriptor */
#endif #endif
int is_rdesc; int is_rdesc;
#if DUMP_PACKETS > 0 #if DUMP_PACKETS > 0
char buf[300]; char buf[300];
int i=0; int i = 0;
#endif /* DUMP_PACKETS >0 */ #endif /* DUMP_PACKETS >0 */
DPRINTK("lec_start_xmit called\n"); DPRINTK("lec_start_xmit called\n");
if (!priv->lecd) { if (!priv->lecd) {
printk("%s:No lecd attached\n",dev->name); printk("%s:No lecd attached\n", dev->name);
priv->stats.tx_errors++; priv->stats.tx_errors++;
netif_stop_queue(dev); netif_stop_queue(dev);
return -EUNATCH; return -EUNATCH;
} }
DPRINTK("skbuff head:%lx data:%lx tail:%lx end:%lx\n", DPRINTK("skbuff head:%lx data:%lx tail:%lx end:%lx\n",
(long)skb->head, (long)skb->data, (long)skb->tail, (long)skb->head, (long)skb->data, (long)skb->tail,
(long)skb->end); (long)skb->end);
#if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
if (memcmp(skb->data, bridge_ula_lec, sizeof(bridge_ula_lec)) == 0) if (memcmp(skb->data, bridge_ula_lec, sizeof(bridge_ula_lec)) == 0)
lec_handle_bridge(skb, dev); lec_handle_bridge(skb, dev);
#endif #endif
/* Make sure we have room for lec_id */ /* Make sure we have room for lec_id */
if (skb_headroom(skb) < 2) { if (skb_headroom(skb) < 2) {
DPRINTK("lec_start_xmit: reallocating skb\n"); DPRINTK("lec_start_xmit: reallocating skb\n");
skb2 = skb_realloc_headroom(skb, LEC_HEADER_LEN); skb2 = skb_realloc_headroom(skb, LEC_HEADER_LEN);
kfree_skb(skb); kfree_skb(skb);
if (skb2 == NULL) return 0; if (skb2 == NULL)
skb = skb2; return 0;
} skb = skb2;
skb_push(skb, 2); }
skb_push(skb, 2);
/* Put le header to place, works for TokenRing too */ /* Put le header to place, works for TokenRing too */
lec_h = (struct lecdatahdr_8023*)skb->data; lec_h = (struct lecdatahdr_8023 *)skb->data;
lec_h->le_header = htons(priv->lecid); lec_h->le_header = htons(priv->lecid);
#ifdef CONFIG_TR #ifdef CONFIG_TR
/* Ugly. Use this to realign Token Ring packets for /*
* e.g. PCA-200E driver. */ * Ugly. Use this to realign Token Ring packets for
if (priv->is_trdev) { * e.g. PCA-200E driver.
skb2 = skb_realloc_headroom(skb, LEC_HEADER_LEN); */
kfree_skb(skb); if (priv->is_trdev) {
if (skb2 == NULL) return 0; skb2 = skb_realloc_headroom(skb, LEC_HEADER_LEN);
skb = skb2; kfree_skb(skb);
} if (skb2 == NULL)
return 0;
skb = skb2;
}
#endif #endif
#if DUMP_PACKETS > 0 #if DUMP_PACKETS > 0
printk("%s: send datalen:%ld lecid:%4.4x\n", dev->name, printk("%s: send datalen:%ld lecid:%4.4x\n", dev->name,
skb->len, priv->lecid); skb->len, priv->lecid);
#if DUMP_PACKETS >= 2 #if DUMP_PACKETS >= 2
for(i=0;i<skb->len && i <99;i++) { for (i = 0; i < skb->len && i < 99; i++) {
sprintf(buf+i*3,"%2.2x ",0xff&skb->data[i]); sprintf(buf + i * 3, "%2.2x ", 0xff & skb->data[i]);
} }
#elif DUMP_PACKETS >= 1 #elif DUMP_PACKETS >= 1
for(i=0;i<skb->len && i < 30;i++) { for (i = 0; i < skb->len && i < 30; i++) {
sprintf(buf+i*3,"%2.2x ", 0xff&skb->data[i]); sprintf(buf + i * 3, "%2.2x ", 0xff & skb->data[i]);
} }
#endif /* DUMP_PACKETS >= 1 */ #endif /* DUMP_PACKETS >= 1 */
if (i==skb->len) if (i == skb->len)
printk("%s\n",buf); printk("%s\n", buf);
else else
printk("%s...\n",buf); printk("%s...\n", buf);
#endif /* DUMP_PACKETS > 0 */ #endif /* DUMP_PACKETS > 0 */
/* Minimum ethernet-frame size */ /* Minimum ethernet-frame size */
#ifdef CONFIG_TR #ifdef CONFIG_TR
if (priv->is_trdev) if (priv->is_trdev)
min_frame_size = LEC_MINIMUM_8025_SIZE; min_frame_size = LEC_MINIMUM_8025_SIZE;
else else
#endif #endif
min_frame_size = LEC_MINIMUM_8023_SIZE; min_frame_size = LEC_MINIMUM_8023_SIZE;
if (skb->len < min_frame_size) { if (skb->len < min_frame_size) {
if ((skb->len + skb_tailroom(skb)) < min_frame_size) { if ((skb->len + skb_tailroom(skb)) < min_frame_size) {
skb2 = skb_copy_expand(skb, 0, skb2 = skb_copy_expand(skb, 0,
min_frame_size - skb->truesize, GFP_ATOMIC); min_frame_size - skb->truesize,
dev_kfree_skb(skb); GFP_ATOMIC);
if (skb2 == NULL) { dev_kfree_skb(skb);
priv->stats.tx_dropped++; if (skb2 == NULL) {
return 0; priv->stats.tx_dropped++;
} return 0;
skb = skb2; }
} skb = skb2;
}
skb_put(skb, min_frame_size - skb->len); skb_put(skb, min_frame_size - skb->len);
} }
/* Send to right vcc */ /* Send to right vcc */
is_rdesc = 0; is_rdesc = 0;
dst = lec_h->h_dest; dst = lec_h->h_dest;
#ifdef CONFIG_TR #ifdef CONFIG_TR
if (priv->is_trdev) { if (priv->is_trdev) {
dst = get_tr_dst(skb->data+2, rdesc); dst = get_tr_dst(skb->data + 2, rdesc);
if (dst == NULL) { if (dst == NULL) {
dst = rdesc; dst = rdesc;
is_rdesc = 1; is_rdesc = 1;
} }
} }
#endif #endif
entry = NULL; entry = NULL;
vcc = lec_arp_resolve(priv, dst, is_rdesc, &entry); vcc = lec_arp_resolve(priv, dst, is_rdesc, &entry);
DPRINTK("%s:vcc:%p vcc_flags:%x, entry:%p\n", dev->name, DPRINTK("%s:vcc:%p vcc_flags:%x, entry:%p\n", dev->name,
vcc, vcc?vcc->flags:0, entry); vcc, vcc ? vcc->flags : 0, entry);
if (!vcc || !test_bit(ATM_VF_READY,&vcc->flags)) { if (!vcc || !test_bit(ATM_VF_READY, &vcc->flags)) {
if (entry && (entry->tx_wait.qlen < LEC_UNRES_QUE_LEN)) { if (entry && (entry->tx_wait.qlen < LEC_UNRES_QUE_LEN)) {
DPRINTK("%s:lec_start_xmit: queuing packet, ", dev->name); DPRINTK("%s:lec_start_xmit: queuing packet, ",
DPRINTK("MAC address 0x%02x:%02x:%02x:%02x:%02x:%02x\n", dev->name);
lec_h->h_dest[0], lec_h->h_dest[1], lec_h->h_dest[2], DPRINTK("MAC address 0x%02x:%02x:%02x:%02x:%02x:%02x\n",
lec_h->h_dest[3], lec_h->h_dest[4], lec_h->h_dest[5]); lec_h->h_dest[0], lec_h->h_dest[1],
skb_queue_tail(&entry->tx_wait, skb); lec_h->h_dest[2], lec_h->h_dest[3],
} else { lec_h->h_dest[4], lec_h->h_dest[5]);
DPRINTK("%s:lec_start_xmit: tx queue full or no arp entry, dropping, ", dev->name); skb_queue_tail(&entry->tx_wait, skb);
DPRINTK("MAC address 0x%02x:%02x:%02x:%02x:%02x:%02x\n", } else {
lec_h->h_dest[0], lec_h->h_dest[1], lec_h->h_dest[2], DPRINTK
lec_h->h_dest[3], lec_h->h_dest[4], lec_h->h_dest[5]); ("%s:lec_start_xmit: tx queue full or no arp entry, dropping, ",
priv->stats.tx_dropped++; dev->name);
dev_kfree_skb(skb); DPRINTK("MAC address 0x%02x:%02x:%02x:%02x:%02x:%02x\n",
} lec_h->h_dest[0], lec_h->h_dest[1],
return 0; lec_h->h_dest[2], lec_h->h_dest[3],
} lec_h->h_dest[4], lec_h->h_dest[5]);
priv->stats.tx_dropped++;
#if DUMP_PACKETS > 0 dev_kfree_skb(skb);
printk("%s:sending to vpi:%d vci:%d\n", dev->name, }
vcc->vpi, vcc->vci); goto out;
}
#if DUMP_PACKETS > 0
printk("%s:sending to vpi:%d vci:%d\n", dev->name, vcc->vpi, vcc->vci);
#endif /* DUMP_PACKETS > 0 */ #endif /* DUMP_PACKETS > 0 */
while (entry && (skb2 = skb_dequeue(&entry->tx_wait))) { while (entry && (skb2 = skb_dequeue(&entry->tx_wait))) {
DPRINTK("lec.c: emptying tx queue, "); DPRINTK("lec.c: emptying tx queue, ");
DPRINTK("MAC address 0x%02x:%02x:%02x:%02x:%02x:%02x\n", DPRINTK("MAC address 0x%02x:%02x:%02x:%02x:%02x:%02x\n",
lec_h->h_dest[0], lec_h->h_dest[1], lec_h->h_dest[2], lec_h->h_dest[0], lec_h->h_dest[1], lec_h->h_dest[2],
lec_h->h_dest[3], lec_h->h_dest[4], lec_h->h_dest[5]); lec_h->h_dest[3], lec_h->h_dest[4], lec_h->h_dest[5]);
lec_send(vcc, skb2, priv); lec_send(vcc, skb2, priv);
} }
lec_send(vcc, skb, priv); lec_send(vcc, skb, priv);
...@@ -404,210 +428,219 @@ lec_start_xmit(struct sk_buff *skb, struct net_device *dev) ...@@ -404,210 +428,219 @@ lec_start_xmit(struct sk_buff *skb, struct net_device *dev)
netif_wake_queue(dev); netif_wake_queue(dev);
} }
out:
if (entry)
lec_arp_put(entry);
dev->trans_start = jiffies; dev->trans_start = jiffies;
return 0; return 0;
} }
/* The inverse routine to net_open(). */ /* The inverse routine to net_open(). */
static int static int lec_close(struct net_device *dev)
lec_close(struct net_device *dev)
{ {
netif_stop_queue(dev); netif_stop_queue(dev);
return 0; return 0;
} }
/* /*
* Get the current statistics. * Get the current statistics.
* This may be called with the card open or closed. * This may be called with the card open or closed.
*/ */
static struct net_device_stats * static struct net_device_stats *lec_get_stats(struct net_device *dev)
lec_get_stats(struct net_device *dev)
{ {
return &((struct lec_priv *)dev->priv)->stats; return &((struct lec_priv *)dev->priv)->stats;
} }
static int static int lec_atm_send(struct atm_vcc *vcc, struct sk_buff *skb)
lec_atm_send(struct atm_vcc *vcc, struct sk_buff *skb)
{ {
unsigned long flags; unsigned long flags;
struct net_device *dev = (struct net_device*)vcc->proto_data; struct net_device *dev = (struct net_device *)vcc->proto_data;
struct lec_priv *priv = (struct lec_priv*)dev->priv; struct lec_priv *priv = (struct lec_priv *)dev->priv;
struct atmlec_msg *mesg; struct atmlec_msg *mesg;
struct lec_arp_table *entry; struct lec_arp_table *entry;
int i; int i;
char *tmp; /* FIXME */ char *tmp; /* FIXME */
atomic_sub(skb->truesize, &sk_atm(vcc)->sk_wmem_alloc); atomic_sub(skb->truesize, &sk_atm(vcc)->sk_wmem_alloc);
mesg = (struct atmlec_msg *)skb->data; mesg = (struct atmlec_msg *)skb->data;
tmp = skb->data; tmp = skb->data;
tmp += sizeof(struct atmlec_msg); tmp += sizeof(struct atmlec_msg);
DPRINTK("%s: msg from zeppelin:%d\n", dev->name, mesg->type); DPRINTK("%s: msg from zeppelin:%d\n", dev->name, mesg->type);
switch(mesg->type) { switch (mesg->type) {
case l_set_mac_addr: case l_set_mac_addr:
for (i=0;i<6;i++) { for (i = 0; i < 6; i++) {
dev->dev_addr[i] = mesg->content.normal.mac_addr[i]; dev->dev_addr[i] = mesg->content.normal.mac_addr[i];
} }
break; break;
case l_del_mac_addr: case l_del_mac_addr:
for(i=0;i<6;i++) { for (i = 0; i < 6; i++) {
dev->dev_addr[i] = 0; dev->dev_addr[i] = 0;
} }
break; break;
case l_addr_delete: case l_addr_delete:
lec_addr_delete(priv, mesg->content.normal.atm_addr, lec_addr_delete(priv, mesg->content.normal.atm_addr,
mesg->content.normal.flag); mesg->content.normal.flag);
break; break;
case l_topology_change: case l_topology_change:
priv->topology_change = mesg->content.normal.flag; priv->topology_change = mesg->content.normal.flag;
break; break;
case l_flush_complete: case l_flush_complete:
lec_flush_complete(priv, mesg->content.normal.flag); lec_flush_complete(priv, mesg->content.normal.flag);
break; break;
case l_narp_req: /* LANE2: see 7.1.35 in the lane2 spec */ case l_narp_req: /* LANE2: see 7.1.35 in the lane2 spec */
spin_lock_irqsave(&priv->lec_arp_lock, flags); spin_lock_irqsave(&priv->lec_arp_lock, flags);
entry = lec_arp_find(priv, mesg->content.normal.mac_addr); entry = lec_arp_find(priv, mesg->content.normal.mac_addr);
lec_arp_remove(priv, entry); lec_arp_remove(priv, entry);
spin_unlock_irqrestore(&priv->lec_arp_lock, flags); spin_unlock_irqrestore(&priv->lec_arp_lock, flags);
if (mesg->content.normal.no_source_le_narp) if (mesg->content.normal.no_source_le_narp)
break; break;
/* FALL THROUGH */ /* FALL THROUGH */
case l_arp_update: case l_arp_update:
lec_arp_update(priv, mesg->content.normal.mac_addr, lec_arp_update(priv, mesg->content.normal.mac_addr,
mesg->content.normal.atm_addr, mesg->content.normal.atm_addr,
mesg->content.normal.flag, mesg->content.normal.flag,
mesg->content.normal.targetless_le_arp); mesg->content.normal.targetless_le_arp);
DPRINTK("lec: in l_arp_update\n"); DPRINTK("lec: in l_arp_update\n");
if (mesg->sizeoftlvs != 0) { /* LANE2 3.1.5 */ if (mesg->sizeoftlvs != 0) { /* LANE2 3.1.5 */
DPRINTK("lec: LANE2 3.1.5, got tlvs, size %d\n", mesg->sizeoftlvs); DPRINTK("lec: LANE2 3.1.5, got tlvs, size %d\n",
lane2_associate_ind(dev, mesg->sizeoftlvs);
mesg->content.normal.mac_addr, lane2_associate_ind(dev, mesg->content.normal.mac_addr,
tmp, mesg->sizeoftlvs); tmp, mesg->sizeoftlvs);
} }
break; break;
case l_config: case l_config:
priv->maximum_unknown_frame_count = priv->maximum_unknown_frame_count =
mesg->content.config.maximum_unknown_frame_count; mesg->content.config.maximum_unknown_frame_count;
priv->max_unknown_frame_time = priv->max_unknown_frame_time =
(mesg->content.config.max_unknown_frame_time*HZ); (mesg->content.config.max_unknown_frame_time * HZ);
priv->max_retry_count = priv->max_retry_count = mesg->content.config.max_retry_count;
mesg->content.config.max_retry_count; priv->aging_time = (mesg->content.config.aging_time * HZ);
priv->aging_time = (mesg->content.config.aging_time*HZ); priv->forward_delay_time =
priv->forward_delay_time = (mesg->content.config.forward_delay_time * HZ);
(mesg->content.config.forward_delay_time*HZ); priv->arp_response_time =
priv->arp_response_time = (mesg->content.config.arp_response_time * HZ);
(mesg->content.config.arp_response_time*HZ); priv->flush_timeout = (mesg->content.config.flush_timeout * HZ);
priv->flush_timeout = (mesg->content.config.flush_timeout*HZ); priv->path_switching_delay =
priv->path_switching_delay = (mesg->content.config.path_switching_delay * HZ);
(mesg->content.config.path_switching_delay*HZ); priv->lane_version = mesg->content.config.lane_version; /* LANE2 */
priv->lane_version = mesg->content.config.lane_version; /* LANE2 */
priv->lane2_ops = NULL; priv->lane2_ops = NULL;
if (priv->lane_version > 1) if (priv->lane_version > 1)
priv->lane2_ops = &lane2_ops; priv->lane2_ops = &lane2_ops;
if (dev->change_mtu(dev, mesg->content.config.mtu)) if (dev->change_mtu(dev, mesg->content.config.mtu))
printk("%s: change_mtu to %d failed\n", dev->name, printk("%s: change_mtu to %d failed\n", dev->name,
mesg->content.config.mtu); mesg->content.config.mtu);
priv->is_proxy = mesg->content.config.is_proxy; priv->is_proxy = mesg->content.config.is_proxy;
break; break;
case l_flush_tran_id: case l_flush_tran_id:
lec_set_flush_tran_id(priv, mesg->content.normal.atm_addr, lec_set_flush_tran_id(priv, mesg->content.normal.atm_addr,
mesg->content.normal.flag); mesg->content.normal.flag);
break; break;
case l_set_lecid: case l_set_lecid:
priv->lecid=(unsigned short)(0xffff&mesg->content.normal.flag); priv->lecid =
break; (unsigned short)(0xffff & mesg->content.normal.flag);
case l_should_bridge: { break;
case l_should_bridge:
#if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
struct net_bridge_fdb_entry *f; {
struct net_bridge_fdb_entry *f;
DPRINTK("%s: bridge zeppelin asks about 0x%02x:%02x:%02x:%02x:%02x:%02x\n",
dev->name, DPRINTK
mesg->content.proxy.mac_addr[0], mesg->content.proxy.mac_addr[1], ("%s: bridge zeppelin asks about 0x%02x:%02x:%02x:%02x:%02x:%02x\n",
mesg->content.proxy.mac_addr[2], mesg->content.proxy.mac_addr[3], dev->name, mesg->content.proxy.mac_addr[0],
mesg->content.proxy.mac_addr[4], mesg->content.proxy.mac_addr[5]); mesg->content.proxy.mac_addr[1],
mesg->content.proxy.mac_addr[2],
if (br_fdb_get_hook == NULL || dev->br_port == NULL) mesg->content.proxy.mac_addr[3],
break; mesg->content.proxy.mac_addr[4],
mesg->content.proxy.mac_addr[5]);
f = br_fdb_get_hook(dev->br_port->br, mesg->content.proxy.mac_addr);
if (f != NULL && if (br_fdb_get_hook == NULL || dev->br_port == NULL)
f->dst->dev != dev && break;
f->dst->state == BR_STATE_FORWARDING) {
/* hit from bridge table, send LE_ARP_RESPONSE */ f = br_fdb_get_hook(dev->br_port->br,
struct sk_buff *skb2; mesg->content.proxy.mac_addr);
struct sock *sk; if (f != NULL && f->dst->dev != dev
&& f->dst->state == BR_STATE_FORWARDING) {
DPRINTK("%s: entry found, responding to zeppelin\n", dev->name); /* hit from bridge table, send LE_ARP_RESPONSE */
skb2 = alloc_skb(sizeof(struct atmlec_msg), GFP_ATOMIC); struct sk_buff *skb2;
if (skb2 == NULL) { struct sock *sk;
br_fdb_put_hook(f);
break; DPRINTK
} ("%s: entry found, responding to zeppelin\n",
skb2->len = sizeof(struct atmlec_msg); dev->name);
memcpy(skb2->data, mesg, sizeof(struct atmlec_msg)); skb2 =
atm_force_charge(priv->lecd, skb2->truesize); alloc_skb(sizeof(struct atmlec_msg),
sk = sk_atm(priv->lecd); GFP_ATOMIC);
skb_queue_tail(&sk->sk_receive_queue, skb2); if (skb2 == NULL) {
sk->sk_data_ready(sk, skb2->len); br_fdb_put_hook(f);
} break;
if (f != NULL) br_fdb_put_hook(f); }
skb2->len = sizeof(struct atmlec_msg);
memcpy(skb2->data, mesg,
sizeof(struct atmlec_msg));
atm_force_charge(priv->lecd, skb2->truesize);
sk = sk_atm(priv->lecd);
skb_queue_tail(&sk->sk_receive_queue, skb2);
sk->sk_data_ready(sk, skb2->len);
}
if (f != NULL)
br_fdb_put_hook(f);
}
#endif /* defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) */ #endif /* defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) */
} break;
break; default:
default: printk("%s: Unknown message type %d\n", dev->name, mesg->type);
printk("%s: Unknown message type %d\n", dev->name, mesg->type); dev_kfree_skb(skb);
dev_kfree_skb(skb); return -EINVAL;
return -EINVAL; }
} dev_kfree_skb(skb);
dev_kfree_skb(skb); return 0;
return 0;
} }
static void static void lec_atm_close(struct atm_vcc *vcc)
lec_atm_close(struct atm_vcc *vcc)
{ {
struct sk_buff *skb; struct sk_buff *skb;
struct net_device *dev = (struct net_device *)vcc->proto_data; struct net_device *dev = (struct net_device *)vcc->proto_data;
struct lec_priv *priv = (struct lec_priv *)dev->priv; struct lec_priv *priv = (struct lec_priv *)dev->priv;
priv->lecd = NULL; priv->lecd = NULL;
/* Do something needful? */ /* Do something needful? */
netif_stop_queue(dev); netif_stop_queue(dev);
lec_arp_destroy(priv); lec_arp_destroy(priv);
if (skb_peek(&sk_atm(vcc)->sk_receive_queue)) if (skb_peek(&sk_atm(vcc)->sk_receive_queue))
printk("%s lec_atm_close: closing with messages pending\n", printk("%s lec_atm_close: closing with messages pending\n",
dev->name); dev->name);
while ((skb = skb_dequeue(&sk_atm(vcc)->sk_receive_queue)) != NULL) { while ((skb = skb_dequeue(&sk_atm(vcc)->sk_receive_queue)) != NULL) {
atm_return(vcc, skb->truesize); atm_return(vcc, skb->truesize);
dev_kfree_skb(skb); dev_kfree_skb(skb);
} }
printk("%s: Shut down!\n", dev->name); printk("%s: Shut down!\n", dev->name);
module_put(THIS_MODULE); module_put(THIS_MODULE);
} }
static struct atmdev_ops lecdev_ops = { static struct atmdev_ops lecdev_ops = {
.close = lec_atm_close, .close = lec_atm_close,
.send = lec_atm_send .send = lec_atm_send
}; };
static struct atm_dev lecatm_dev = { static struct atm_dev lecatm_dev = {
.ops = &lecdev_ops, .ops = &lecdev_ops,
.type = "lec", .type = "lec",
.number = 999, /* dummy device number */ .number = 999, /* dummy device number */
.lock = SPIN_LOCK_UNLOCKED .lock = SPIN_LOCK_UNLOCKED
}; };
/* /*
* LANE2: new argument struct sk_buff *data contains * LANE2: new argument struct sk_buff *data contains
* the LE_ARP based TLVs introduced in the LANE2 spec * the LE_ARP based TLVs introduced in the LANE2 spec
*/ */
static int static int
send_to_lecd(struct lec_priv *priv, atmlec_msg_type type, send_to_lecd(struct lec_priv *priv, atmlec_msg_type type,
unsigned char *mac_addr, unsigned char *atm_addr, unsigned char *mac_addr, unsigned char *atm_addr,
struct sk_buff *data) struct sk_buff *data)
{ {
struct sock *sk; struct sock *sk;
struct sk_buff *skb; struct sk_buff *skb;
...@@ -621,187 +654,193 @@ send_to_lecd(struct lec_priv *priv, atmlec_msg_type type, ...@@ -621,187 +654,193 @@ send_to_lecd(struct lec_priv *priv, atmlec_msg_type type,
return -1; return -1;
skb->len = sizeof(struct atmlec_msg); skb->len = sizeof(struct atmlec_msg);
mesg = (struct atmlec_msg *)skb->data; mesg = (struct atmlec_msg *)skb->data;
memset(mesg, 0, sizeof(struct atmlec_msg)); memset(mesg, 0, sizeof(struct atmlec_msg));
mesg->type = type; mesg->type = type;
if (data != NULL) if (data != NULL)
mesg->sizeoftlvs = data->len; mesg->sizeoftlvs = data->len;
if (mac_addr) if (mac_addr)
memcpy(&mesg->content.normal.mac_addr, mac_addr, ETH_ALEN); memcpy(&mesg->content.normal.mac_addr, mac_addr, ETH_ALEN);
else else
mesg->content.normal.targetless_le_arp = 1; mesg->content.normal.targetless_le_arp = 1;
if (atm_addr) if (atm_addr)
memcpy(&mesg->content.normal.atm_addr, atm_addr, ATM_ESA_LEN); memcpy(&mesg->content.normal.atm_addr, atm_addr, ATM_ESA_LEN);
atm_force_charge(priv->lecd, skb->truesize); atm_force_charge(priv->lecd, skb->truesize);
sk = sk_atm(priv->lecd); sk = sk_atm(priv->lecd);
skb_queue_tail(&sk->sk_receive_queue, skb); skb_queue_tail(&sk->sk_receive_queue, skb);
sk->sk_data_ready(sk, skb->len); sk->sk_data_ready(sk, skb->len);
if (data != NULL) { if (data != NULL) {
DPRINTK("lec: about to send %d bytes of data\n", data->len); DPRINTK("lec: about to send %d bytes of data\n", data->len);
atm_force_charge(priv->lecd, data->truesize); atm_force_charge(priv->lecd, data->truesize);
skb_queue_tail(&sk->sk_receive_queue, data); skb_queue_tail(&sk->sk_receive_queue, data);
sk->sk_data_ready(sk, skb->len); sk->sk_data_ready(sk, skb->len);
} }
return 0; return 0;
} }
/* shamelessly stolen from drivers/net/net_init.c */ /* shamelessly stolen from drivers/net/net_init.c */
static int lec_change_mtu(struct net_device *dev, int new_mtu) static int lec_change_mtu(struct net_device *dev, int new_mtu)
{ {
if ((new_mtu < 68) || (new_mtu > 18190)) if ((new_mtu < 68) || (new_mtu > 18190))
return -EINVAL; return -EINVAL;
dev->mtu = new_mtu; dev->mtu = new_mtu;
return 0; return 0;
} }
static void lec_set_multicast_list(struct net_device *dev) static void lec_set_multicast_list(struct net_device *dev)
{ {
/* by default, all multicast frames arrive over the bus. /*
* eventually support selective multicast service * by default, all multicast frames arrive over the bus.
*/ * eventually support selective multicast service
return; */
return;
} }
static void static void lec_init(struct net_device *dev)
lec_init(struct net_device *dev)
{ {
dev->change_mtu = lec_change_mtu; dev->change_mtu = lec_change_mtu;
dev->open = lec_open; dev->open = lec_open;
dev->stop = lec_close; dev->stop = lec_close;
dev->hard_start_xmit = lec_start_xmit; dev->hard_start_xmit = lec_start_xmit;
dev->tx_timeout = lec_tx_timeout; dev->tx_timeout = lec_tx_timeout;
dev->get_stats = lec_get_stats; dev->get_stats = lec_get_stats;
dev->set_multicast_list = lec_set_multicast_list; dev->set_multicast_list = lec_set_multicast_list;
dev->do_ioctl = NULL; dev->do_ioctl = NULL;
printk("%s: Initialized!\n",dev->name); printk("%s: Initialized!\n", dev->name);
return; return;
} }
static unsigned char lec_ctrl_magic[] = { static unsigned char lec_ctrl_magic[] = {
0xff, 0xff,
0x00, 0x00,
0x01, 0x01,
0x01 }; 0x01
};
#define LEC_DATA_DIRECT_8023 2 #define LEC_DATA_DIRECT_8023 2
#define LEC_DATA_DIRECT_8025 3 #define LEC_DATA_DIRECT_8025 3
static int lec_is_data_direct(struct atm_vcc *vcc) static int lec_is_data_direct(struct atm_vcc *vcc)
{ {
return ((vcc->sap.blli[0].l3.tr9577.snap[4] == LEC_DATA_DIRECT_8023) || return ((vcc->sap.blli[0].l3.tr9577.snap[4] == LEC_DATA_DIRECT_8023) ||
(vcc->sap.blli[0].l3.tr9577.snap[4] == LEC_DATA_DIRECT_8025)); (vcc->sap.blli[0].l3.tr9577.snap[4] == LEC_DATA_DIRECT_8025));
} }
static void static void lec_push(struct atm_vcc *vcc, struct sk_buff *skb)
lec_push(struct atm_vcc *vcc, struct sk_buff *skb)
{ {
unsigned long flags; unsigned long flags;
struct net_device *dev = (struct net_device *)vcc->proto_data; struct net_device *dev = (struct net_device *)vcc->proto_data;
struct lec_priv *priv = (struct lec_priv *)dev->priv; struct lec_priv *priv = (struct lec_priv *)dev->priv;
#if DUMP_PACKETS >0 #if DUMP_PACKETS >0
int i=0; int i = 0;
char buf[300]; char buf[300];
printk("%s: lec_push vcc vpi:%d vci:%d\n", dev->name, printk("%s: lec_push vcc vpi:%d vci:%d\n", dev->name,
vcc->vpi, vcc->vci); vcc->vpi, vcc->vci);
#endif #endif
if (!skb) { if (!skb) {
DPRINTK("%s: null skb\n",dev->name); DPRINTK("%s: null skb\n", dev->name);
lec_vcc_close(priv, vcc); lec_vcc_close(priv, vcc);
return; return;
} }
#if DUMP_PACKETS > 0 #if DUMP_PACKETS > 0
printk("%s: rcv datalen:%ld lecid:%4.4x\n", dev->name, printk("%s: rcv datalen:%ld lecid:%4.4x\n", dev->name,
skb->len, priv->lecid); skb->len, priv->lecid);
#if DUMP_PACKETS >= 2 #if DUMP_PACKETS >= 2
for(i=0;i<skb->len && i <99;i++) { for (i = 0; i < skb->len && i < 99; i++) {
sprintf(buf+i*3,"%2.2x ",0xff&skb->data[i]); sprintf(buf + i * 3, "%2.2x ", 0xff & skb->data[i]);
} }
#elif DUMP_PACKETS >= 1 #elif DUMP_PACKETS >= 1
for(i=0;i<skb->len && i < 30;i++) { for (i = 0; i < skb->len && i < 30; i++) {
sprintf(buf+i*3,"%2.2x ", 0xff&skb->data[i]); sprintf(buf + i * 3, "%2.2x ", 0xff & skb->data[i]);
} }
#endif /* DUMP_PACKETS >= 1 */ #endif /* DUMP_PACKETS >= 1 */
if (i==skb->len) if (i == skb->len)
printk("%s\n",buf); printk("%s\n", buf);
else else
printk("%s...\n",buf); printk("%s...\n", buf);
#endif /* DUMP_PACKETS > 0 */ #endif /* DUMP_PACKETS > 0 */
if (memcmp(skb->data, lec_ctrl_magic, 4) ==0) { /* Control frame, to daemon*/ if (memcmp(skb->data, lec_ctrl_magic, 4) == 0) { /* Control frame, to daemon */
struct sock *sk = sk_atm(vcc); struct sock *sk = sk_atm(vcc);
DPRINTK("%s: To daemon\n",dev->name); DPRINTK("%s: To daemon\n", dev->name);
skb_queue_tail(&sk->sk_receive_queue, skb); skb_queue_tail(&sk->sk_receive_queue, skb);
sk->sk_data_ready(sk, skb->len); sk->sk_data_ready(sk, skb->len);
} else { /* Data frame, queue to protocol handlers */ } else { /* Data frame, queue to protocol handlers */
struct lec_arp_table *entry; struct lec_arp_table *entry;
unsigned char *src, *dst; unsigned char *src, *dst;
atm_return(vcc,skb->truesize); atm_return(vcc, skb->truesize);
if (*(uint16_t *)skb->data == htons(priv->lecid) || if (*(uint16_t *) skb->data == htons(priv->lecid) ||
!priv->lecd || !priv->lecd || !(dev->flags & IFF_UP)) {
!(dev->flags & IFF_UP)) { /*
/* Probably looping back, or if lecd is missing, * Probably looping back, or if lecd is missing,
lecd has gone down */ * lecd has gone down
DPRINTK("Ignoring frame...\n"); */
dev_kfree_skb(skb); DPRINTK("Ignoring frame...\n");
return; dev_kfree_skb(skb);
} return;
}
#ifdef CONFIG_TR #ifdef CONFIG_TR
if (priv->is_trdev) if (priv->is_trdev)
dst = ((struct lecdatahdr_8025 *) skb->data)->h_dest; dst = ((struct lecdatahdr_8025 *)skb->data)->h_dest;
else else
#endif #endif
dst = ((struct lecdatahdr_8023 *) skb->data)->h_dest; dst = ((struct lecdatahdr_8023 *)skb->data)->h_dest;
/* If this is a Data Direct VCC, and the VCC does not match /*
* If this is a Data Direct VCC, and the VCC does not match
* the LE_ARP cache entry, delete the LE_ARP cache entry. * the LE_ARP cache entry, delete the LE_ARP cache entry.
*/ */
spin_lock_irqsave(&priv->lec_arp_lock, flags); spin_lock_irqsave(&priv->lec_arp_lock, flags);
if (lec_is_data_direct(vcc)) { if (lec_is_data_direct(vcc)) {
#ifdef CONFIG_TR #ifdef CONFIG_TR
if (priv->is_trdev) if (priv->is_trdev)
src = ((struct lecdatahdr_8025 *) skb->data)->h_source; src =
((struct lecdatahdr_8025 *)skb->data)->
h_source;
else else
#endif #endif
src = ((struct lecdatahdr_8023 *) skb->data)->h_source; src =
((struct lecdatahdr_8023 *)skb->data)->
h_source;
entry = lec_arp_find(priv, src); entry = lec_arp_find(priv, src);
if (entry && entry->vcc != vcc) { if (entry && entry->vcc != vcc) {
lec_arp_remove(priv, entry); lec_arp_remove(priv, entry);
kfree(entry); lec_arp_put(entry);
} }
} }
spin_unlock_irqrestore(&priv->lec_arp_lock, flags); spin_unlock_irqrestore(&priv->lec_arp_lock, flags);
if (!(dst[0]&0x01) && /* Never filter Multi/Broadcast */ if (!(dst[0] & 0x01) && /* Never filter Multi/Broadcast */
!priv->is_proxy && /* Proxy wants all the packets */ !priv->is_proxy && /* Proxy wants all the packets */
memcmp(dst, dev->dev_addr, dev->addr_len)) { memcmp(dst, dev->dev_addr, dev->addr_len)) {
dev_kfree_skb(skb); dev_kfree_skb(skb);
return; return;
} }
if (priv->lec_arp_empty_ones) { if (!hlist_empty(&priv->lec_arp_empty_ones)) {
lec_arp_check_empties(priv, vcc, skb); lec_arp_check_empties(priv, vcc, skb);
} }
skb->dev = dev; skb->dev = dev;
skb_pull(skb, 2); /* skip lec_id */ skb_pull(skb, 2); /* skip lec_id */
#ifdef CONFIG_TR #ifdef CONFIG_TR
if (priv->is_trdev) skb->protocol = tr_type_trans(skb, dev); if (priv->is_trdev)
else skb->protocol = tr_type_trans(skb, dev);
else
#endif #endif
skb->protocol = eth_type_trans(skb, dev); skb->protocol = eth_type_trans(skb, dev);
priv->stats.rx_packets++; priv->stats.rx_packets++;
priv->stats.rx_bytes += skb->len; priv->stats.rx_bytes += skb->len;
memset(ATM_SKB(skb), 0, sizeof(struct atm_skb_data)); memset(ATM_SKB(skb), 0, sizeof(struct atm_skb_data));
netif_rx(skb); netif_rx(skb);
} }
} }
static void static void lec_pop(struct atm_vcc *vcc, struct sk_buff *skb)
lec_pop(struct atm_vcc *vcc, struct sk_buff *skb)
{ {
struct lec_vcc_priv *vpriv = LEC_VCC_PRIV(vcc); struct lec_vcc_priv *vpriv = LEC_VCC_PRIV(vcc);
struct net_device *dev = skb->dev; struct net_device *dev = skb->dev;
...@@ -820,123 +859,121 @@ lec_pop(struct atm_vcc *vcc, struct sk_buff *skb) ...@@ -820,123 +859,121 @@ lec_pop(struct atm_vcc *vcc, struct sk_buff *skb)
} }
} }
static int static int lec_vcc_attach(struct atm_vcc *vcc, void __user *arg)
lec_vcc_attach(struct atm_vcc *vcc, void __user *arg)
{ {
struct lec_vcc_priv *vpriv; struct lec_vcc_priv *vpriv;
int bytes_left; int bytes_left;
struct atmlec_ioc ioc_data; struct atmlec_ioc ioc_data;
/* Lecd must be up in this case */ /* Lecd must be up in this case */
bytes_left = copy_from_user(&ioc_data, arg, sizeof(struct atmlec_ioc)); bytes_left = copy_from_user(&ioc_data, arg, sizeof(struct atmlec_ioc));
if (bytes_left != 0) { if (bytes_left != 0) {
printk("lec: lec_vcc_attach, copy from user failed for %d bytes\n", printk
bytes_left); ("lec: lec_vcc_attach, copy from user failed for %d bytes\n",
} bytes_left);
if (ioc_data.dev_num < 0 || ioc_data.dev_num >= MAX_LEC_ITF || }
!dev_lec[ioc_data.dev_num]) if (ioc_data.dev_num < 0 || ioc_data.dev_num >= MAX_LEC_ITF ||
return -EINVAL; !dev_lec[ioc_data.dev_num])
return -EINVAL;
if (!(vpriv = kmalloc(sizeof(struct lec_vcc_priv), GFP_KERNEL))) if (!(vpriv = kmalloc(sizeof(struct lec_vcc_priv), GFP_KERNEL)))
return -ENOMEM; return -ENOMEM;
vpriv->xoff = 0; vpriv->xoff = 0;
vpriv->old_pop = vcc->pop; vpriv->old_pop = vcc->pop;
vcc->user_back = vpriv; vcc->user_back = vpriv;
vcc->pop = lec_pop; vcc->pop = lec_pop;
lec_vcc_added(dev_lec[ioc_data.dev_num]->priv, lec_vcc_added(dev_lec[ioc_data.dev_num]->priv,
&ioc_data, vcc, vcc->push); &ioc_data, vcc, vcc->push);
vcc->proto_data = dev_lec[ioc_data.dev_num]; vcc->proto_data = dev_lec[ioc_data.dev_num];
vcc->push = lec_push; vcc->push = lec_push;
return 0; return 0;
} }
static int static int lec_mcast_attach(struct atm_vcc *vcc, int arg)
lec_mcast_attach(struct atm_vcc *vcc, int arg)
{ {
if (arg <0 || arg >= MAX_LEC_ITF || !dev_lec[arg]) if (arg < 0 || arg >= MAX_LEC_ITF || !dev_lec[arg])
return -EINVAL; return -EINVAL;
vcc->proto_data = dev_lec[arg]; vcc->proto_data = dev_lec[arg];
return (lec_mcast_make((struct lec_priv*)dev_lec[arg]->priv, vcc)); return (lec_mcast_make((struct lec_priv *)dev_lec[arg]->priv, vcc));
} }
/* Initialize device. */ /* Initialize device. */
static int static int lecd_attach(struct atm_vcc *vcc, int arg)
lecd_attach(struct atm_vcc *vcc, int arg) {
{ int i;
int i; struct lec_priv *priv;
struct lec_priv *priv;
if (arg < 0)
if (arg<0) i = 0;
i = 0; else
else i = arg;
i = arg;
#ifdef CONFIG_TR #ifdef CONFIG_TR
if (arg >= MAX_LEC_ITF) if (arg >= MAX_LEC_ITF)
return -EINVAL; return -EINVAL;
#else /* Reserve the top NUM_TR_DEVS for TR */ #else /* Reserve the top NUM_TR_DEVS for TR */
if (arg >= (MAX_LEC_ITF-NUM_TR_DEVS)) if (arg >= (MAX_LEC_ITF - NUM_TR_DEVS))
return -EINVAL; return -EINVAL;
#endif #endif
if (!dev_lec[i]) { if (!dev_lec[i]) {
int is_trdev, size; int is_trdev, size;
is_trdev = 0; is_trdev = 0;
if (i >= (MAX_LEC_ITF - NUM_TR_DEVS)) if (i >= (MAX_LEC_ITF - NUM_TR_DEVS))
is_trdev = 1; is_trdev = 1;
size = sizeof(struct lec_priv); size = sizeof(struct lec_priv);
#ifdef CONFIG_TR #ifdef CONFIG_TR
if (is_trdev) if (is_trdev)
dev_lec[i] = alloc_trdev(size); dev_lec[i] = alloc_trdev(size);
else else
#endif #endif
dev_lec[i] = alloc_etherdev(size); dev_lec[i] = alloc_etherdev(size);
if (!dev_lec[i]) if (!dev_lec[i])
return -ENOMEM; return -ENOMEM;
snprintf(dev_lec[i]->name, IFNAMSIZ, "lec%d", i); snprintf(dev_lec[i]->name, IFNAMSIZ, "lec%d", i);
if (register_netdev(dev_lec[i])) { if (register_netdev(dev_lec[i])) {
free_netdev(dev_lec[i]); free_netdev(dev_lec[i]);
return -EINVAL; return -EINVAL;
} }
priv = dev_lec[i]->priv; priv = dev_lec[i]->priv;
priv->is_trdev = is_trdev; priv->is_trdev = is_trdev;
lec_init(dev_lec[i]); lec_init(dev_lec[i]);
} else { } else {
priv = dev_lec[i]->priv; priv = dev_lec[i]->priv;
if (priv->lecd) if (priv->lecd)
return -EADDRINUSE; return -EADDRINUSE;
} }
lec_arp_init(priv); lec_arp_init(priv);
priv->itfnum = i; /* LANE2 addition */ priv->itfnum = i; /* LANE2 addition */
priv->lecd = vcc; priv->lecd = vcc;
vcc->dev = &lecatm_dev; vcc->dev = &lecatm_dev;
vcc_insert_socket(sk_atm(vcc)); vcc_insert_socket(sk_atm(vcc));
vcc->proto_data = dev_lec[i]; vcc->proto_data = dev_lec[i];
set_bit(ATM_VF_META,&vcc->flags); set_bit(ATM_VF_META, &vcc->flags);
set_bit(ATM_VF_READY,&vcc->flags); set_bit(ATM_VF_READY, &vcc->flags);
/* Set default values to these variables */ /* Set default values to these variables */
priv->maximum_unknown_frame_count = 1; priv->maximum_unknown_frame_count = 1;
priv->max_unknown_frame_time = (1*HZ); priv->max_unknown_frame_time = (1 * HZ);
priv->vcc_timeout_period = (1200*HZ); priv->vcc_timeout_period = (1200 * HZ);
priv->max_retry_count = 1; priv->max_retry_count = 1;
priv->aging_time = (300*HZ); priv->aging_time = (300 * HZ);
priv->forward_delay_time = (15*HZ); priv->forward_delay_time = (15 * HZ);
priv->topology_change = 0; priv->topology_change = 0;
priv->arp_response_time = (1*HZ); priv->arp_response_time = (1 * HZ);
priv->flush_timeout = (4*HZ); priv->flush_timeout = (4 * HZ);
priv->path_switching_delay = (6*HZ); priv->path_switching_delay = (6 * HZ);
if (dev_lec[i]->flags & IFF_UP) { if (dev_lec[i]->flags & IFF_UP) {
netif_start_queue(dev_lec[i]); netif_start_queue(dev_lec[i]);
} }
__module_get(THIS_MODULE); __module_get(THIS_MODULE);
return i; return i;
} }
#ifdef CONFIG_PROC_FS #ifdef CONFIG_PROC_FS
static char* lec_arp_get_status_string(unsigned char status) static char *lec_arp_get_status_string(unsigned char status)
{ {
static char *lec_arp_status_string[] = { static char *lec_arp_status_string[] = {
"ESI_UNKNOWN ", "ESI_UNKNOWN ",
...@@ -966,52 +1003,54 @@ static void lec_info(struct seq_file *seq, struct lec_arp_table *entry) ...@@ -966,52 +1003,54 @@ static void lec_info(struct seq_file *seq, struct lec_arp_table *entry)
if (entry->vcc) if (entry->vcc)
seq_printf(seq, "%3d %3d ", entry->vcc->vpi, entry->vcc->vci); seq_printf(seq, "%3d %3d ", entry->vcc->vpi, entry->vcc->vci);
else else
seq_printf(seq, " "); seq_printf(seq, " ");
if (entry->recv_vcc) { if (entry->recv_vcc) {
seq_printf(seq, " %3d %3d", entry->recv_vcc->vpi, seq_printf(seq, " %3d %3d", entry->recv_vcc->vpi,
entry->recv_vcc->vci); entry->recv_vcc->vci);
} }
seq_putc(seq, '\n'); seq_putc(seq, '\n');
} }
struct lec_state { struct lec_state {
unsigned long flags; unsigned long flags;
struct lec_priv *locked; struct lec_priv *locked;
struct lec_arp_table *entry; struct hlist_node *node;
struct net_device *dev; struct net_device *dev;
int itf; int itf;
int arp_table; int arp_table;
int misc_table; int misc_table;
}; };
static void *lec_tbl_walk(struct lec_state *state, struct lec_arp_table *tbl, static void *lec_tbl_walk(struct lec_state *state, struct hlist_head *tbl,
loff_t *l) loff_t *l)
{ {
struct lec_arp_table *e = state->entry; struct hlist_node *e = state->node;
struct lec_arp_table *tmp;
if (!e) if (!e)
e = tbl; e = tbl->first;
if (e == (void *)1) { if (e == (void *)1) {
e = tbl; e = tbl->first;
--*l; --*l;
} }
for (; e; e = e->next) {
hlist_for_each_entry_from(tmp, e, next) {
if (--*l < 0) if (--*l < 0)
break; break;
} }
state->entry = e; state->node = e;
return (*l < 0) ? state : NULL; return (*l < 0) ? state : NULL;
} }
static void *lec_arp_walk(struct lec_state *state, loff_t *l, static void *lec_arp_walk(struct lec_state *state, loff_t *l,
struct lec_priv *priv) struct lec_priv *priv)
{ {
void *v = NULL; void *v = NULL;
int p; int p;
for (p = state->arp_table; p < LEC_ARP_TABLE_SIZE; p++) { for (p = state->arp_table; p < LEC_ARP_TABLE_SIZE; p++) {
v = lec_tbl_walk(state, priv->lec_arp_tables[p], l); v = lec_tbl_walk(state, &priv->lec_arp_tables[p], l);
if (v) if (v)
break; break;
} }
...@@ -1022,10 +1061,10 @@ static void *lec_arp_walk(struct lec_state *state, loff_t *l, ...@@ -1022,10 +1061,10 @@ static void *lec_arp_walk(struct lec_state *state, loff_t *l,
static void *lec_misc_walk(struct lec_state *state, loff_t *l, static void *lec_misc_walk(struct lec_state *state, loff_t *l,
struct lec_priv *priv) struct lec_priv *priv)
{ {
struct lec_arp_table *lec_misc_tables[] = { struct hlist_head *lec_misc_tables[] = {
priv->lec_arp_empty_ones, &priv->lec_arp_empty_ones,
priv->lec_no_forward, &priv->lec_no_forward,
priv->mcast_fwds &priv->mcast_fwds
}; };
void *v = NULL; void *v = NULL;
int q; int q;
...@@ -1046,8 +1085,7 @@ static void *lec_priv_walk(struct lec_state *state, loff_t *l, ...@@ -1046,8 +1085,7 @@ static void *lec_priv_walk(struct lec_state *state, loff_t *l,
state->locked = priv; state->locked = priv;
spin_lock_irqsave(&priv->lec_arp_lock, state->flags); spin_lock_irqsave(&priv->lec_arp_lock, state->flags);
} }
if (!lec_arp_walk(state, l, priv) && if (!lec_arp_walk(state, l, priv) && !lec_misc_walk(state, l, priv)) {
!lec_misc_walk(state, l, priv)) {
spin_unlock_irqrestore(&priv->lec_arp_lock, state->flags); spin_unlock_irqrestore(&priv->lec_arp_lock, state->flags);
state->locked = NULL; state->locked = NULL;
/* Partial state reset for the next time we get called */ /* Partial state reset for the next time we get called */
...@@ -1081,7 +1119,7 @@ static void *lec_get_idx(struct lec_state *state, loff_t l) ...@@ -1081,7 +1119,7 @@ static void *lec_get_idx(struct lec_state *state, loff_t l)
if (v) if (v)
break; break;
} }
return v; return v;
} }
static void *lec_seq_start(struct seq_file *seq, loff_t *pos) static void *lec_seq_start(struct seq_file *seq, loff_t *pos)
...@@ -1093,9 +1131,9 @@ static void *lec_seq_start(struct seq_file *seq, loff_t *pos) ...@@ -1093,9 +1131,9 @@ static void *lec_seq_start(struct seq_file *seq, loff_t *pos)
state->locked = NULL; state->locked = NULL;
state->arp_table = 0; state->arp_table = 0;
state->misc_table = 0; state->misc_table = 0;
state->entry = (void *)1; state->node = (void *)1;
return *pos ? lec_get_idx(state, *pos) : (void*)1; return *pos ? lec_get_idx(state, *pos) : (void *)1;
} }
static void lec_seq_stop(struct seq_file *seq, void *v) static void lec_seq_stop(struct seq_file *seq, void *v)
...@@ -1120,27 +1158,28 @@ static void *lec_seq_next(struct seq_file *seq, void *v, loff_t *pos) ...@@ -1120,27 +1158,28 @@ static void *lec_seq_next(struct seq_file *seq, void *v, loff_t *pos)
static int lec_seq_show(struct seq_file *seq, void *v) static int lec_seq_show(struct seq_file *seq, void *v)
{ {
static char lec_banner[] = "Itf MAC ATM destination" static char lec_banner[] = "Itf MAC ATM destination"
" Status Flags " " Status Flags "
"VPI/VCI Recv VPI/VCI\n"; "VPI/VCI Recv VPI/VCI\n";
if (v == (void *)1) if (v == (void *)1)
seq_puts(seq, lec_banner); seq_puts(seq, lec_banner);
else { else {
struct lec_state *state = seq->private; struct lec_state *state = seq->private;
struct net_device *dev = state->dev; struct net_device *dev = state->dev;
struct lec_arp_table *entry = hlist_entry(state->node, struct lec_arp_table, next);
seq_printf(seq, "%s ", dev->name); seq_printf(seq, "%s ", dev->name);
lec_info(seq, state->entry); lec_info(seq, entry);
} }
return 0; return 0;
} }
static struct seq_operations lec_seq_ops = { static struct seq_operations lec_seq_ops = {
.start = lec_seq_start, .start = lec_seq_start,
.next = lec_seq_next, .next = lec_seq_next,
.stop = lec_seq_stop, .stop = lec_seq_stop,
.show = lec_seq_show, .show = lec_seq_show,
}; };
static int lec_seq_open(struct inode *inode, struct file *file) static int lec_seq_open(struct inode *inode, struct file *file)
...@@ -1174,11 +1213,11 @@ static int lec_seq_release(struct inode *inode, struct file *file) ...@@ -1174,11 +1213,11 @@ static int lec_seq_release(struct inode *inode, struct file *file)
} }
static struct file_operations lec_seq_fops = { static struct file_operations lec_seq_fops = {
.owner = THIS_MODULE, .owner = THIS_MODULE,
.open = lec_seq_open, .open = lec_seq_open,
.read = seq_read, .read = seq_read,
.llseek = seq_lseek, .llseek = seq_lseek,
.release = lec_seq_release, .release = lec_seq_release,
}; };
#endif #endif
...@@ -1186,38 +1225,38 @@ static int lane_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) ...@@ -1186,38 +1225,38 @@ static int lane_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
{ {
struct atm_vcc *vcc = ATM_SD(sock); struct atm_vcc *vcc = ATM_SD(sock);
int err = 0; int err = 0;
switch (cmd) { switch (cmd) {
case ATMLEC_CTRL: case ATMLEC_CTRL:
case ATMLEC_MCAST: case ATMLEC_MCAST:
case ATMLEC_DATA: case ATMLEC_DATA:
if (!capable(CAP_NET_ADMIN)) if (!capable(CAP_NET_ADMIN))
return -EPERM; return -EPERM;
break; break;
default: default:
return -ENOIOCTLCMD; return -ENOIOCTLCMD;
} }
switch (cmd) { switch (cmd) {
case ATMLEC_CTRL: case ATMLEC_CTRL:
err = lecd_attach(vcc, (int) arg); err = lecd_attach(vcc, (int)arg);
if (err >= 0) if (err >= 0)
sock->state = SS_CONNECTED; sock->state = SS_CONNECTED;
break; break;
case ATMLEC_MCAST: case ATMLEC_MCAST:
err = lec_mcast_attach(vcc, (int) arg); err = lec_mcast_attach(vcc, (int)arg);
break; break;
case ATMLEC_DATA: case ATMLEC_DATA:
err = lec_vcc_attach(vcc, (void __user *) arg); err = lec_vcc_attach(vcc, (void __user *)arg);
break; break;
} }
return err; return err;
} }
static struct atm_ioctl lane_ioctl_ops = { static struct atm_ioctl lane_ioctl_ops = {
.owner = THIS_MODULE, .owner = THIS_MODULE,
.ioctl = lane_ioctl, .ioctl = lane_ioctl,
}; };
static int __init lane_module_init(void) static int __init lane_module_init(void)
...@@ -1231,29 +1270,29 @@ static int __init lane_module_init(void) ...@@ -1231,29 +1270,29 @@ static int __init lane_module_init(void)
#endif #endif
register_atm_ioctl(&lane_ioctl_ops); register_atm_ioctl(&lane_ioctl_ops);
printk("lec.c: " __DATE__ " " __TIME__ " initialized\n"); printk("lec.c: " __DATE__ " " __TIME__ " initialized\n");
return 0; return 0;
} }
static void __exit lane_module_cleanup(void) static void __exit lane_module_cleanup(void)
{ {
int i; int i;
struct lec_priv *priv; struct lec_priv *priv;
remove_proc_entry("lec", atm_proc_root); remove_proc_entry("lec", atm_proc_root);
deregister_atm_ioctl(&lane_ioctl_ops); deregister_atm_ioctl(&lane_ioctl_ops);
for (i = 0; i < MAX_LEC_ITF; i++) { for (i = 0; i < MAX_LEC_ITF; i++) {
if (dev_lec[i] != NULL) { if (dev_lec[i] != NULL) {
priv = (struct lec_priv *)dev_lec[i]->priv; priv = (struct lec_priv *)dev_lec[i]->priv;
unregister_netdev(dev_lec[i]); unregister_netdev(dev_lec[i]);
free_netdev(dev_lec[i]); free_netdev(dev_lec[i]);
dev_lec[i] = NULL; dev_lec[i] = NULL;
} }
} }
return; return;
} }
module_init(lane_module_init); module_init(lane_module_init);
...@@ -1267,34 +1306,34 @@ module_exit(lane_module_cleanup); ...@@ -1267,34 +1306,34 @@ module_exit(lane_module_cleanup);
* If dst_mac == NULL, targetless LE_ARP will be sent * If dst_mac == NULL, targetless LE_ARP will be sent
*/ */
static int lane2_resolve(struct net_device *dev, u8 *dst_mac, int force, static int lane2_resolve(struct net_device *dev, u8 *dst_mac, int force,
u8 **tlvs, u32 *sizeoftlvs) u8 **tlvs, u32 *sizeoftlvs)
{ {
unsigned long flags; unsigned long flags;
struct lec_priv *priv = (struct lec_priv *)dev->priv; struct lec_priv *priv = (struct lec_priv *)dev->priv;
struct lec_arp_table *table; struct lec_arp_table *table;
struct sk_buff *skb; struct sk_buff *skb;
int retval; int retval;
if (force == 0) { if (force == 0) {
spin_lock_irqsave(&priv->lec_arp_lock, flags); spin_lock_irqsave(&priv->lec_arp_lock, flags);
table = lec_arp_find(priv, dst_mac); table = lec_arp_find(priv, dst_mac);
spin_unlock_irqrestore(&priv->lec_arp_lock, flags); spin_unlock_irqrestore(&priv->lec_arp_lock, flags);
if(table == NULL) if (table == NULL)
return -1; return -1;
*tlvs = kmalloc(table->sizeoftlvs, GFP_ATOMIC); *tlvs = kmalloc(table->sizeoftlvs, GFP_ATOMIC);
if (*tlvs == NULL) if (*tlvs == NULL)
return -1; return -1;
memcpy(*tlvs, table->tlvs, table->sizeoftlvs); memcpy(*tlvs, table->tlvs, table->sizeoftlvs);
*sizeoftlvs = table->sizeoftlvs; *sizeoftlvs = table->sizeoftlvs;
return 0; return 0;
} }
if (sizeoftlvs == NULL) if (sizeoftlvs == NULL)
retval = send_to_lecd(priv, l_arp_xmt, dst_mac, NULL, NULL); retval = send_to_lecd(priv, l_arp_xmt, dst_mac, NULL, NULL);
else { else {
skb = alloc_skb(*sizeoftlvs, GFP_ATOMIC); skb = alloc_skb(*sizeoftlvs, GFP_ATOMIC);
if (skb == NULL) if (skb == NULL)
...@@ -1303,9 +1342,8 @@ static int lane2_resolve(struct net_device *dev, u8 *dst_mac, int force, ...@@ -1303,9 +1342,8 @@ static int lane2_resolve(struct net_device *dev, u8 *dst_mac, int force,
memcpy(skb->data, *tlvs, *sizeoftlvs); memcpy(skb->data, *tlvs, *sizeoftlvs);
retval = send_to_lecd(priv, l_arp_xmt, dst_mac, NULL, skb); retval = send_to_lecd(priv, l_arp_xmt, dst_mac, NULL, skb);
} }
return retval; return retval;
} }
/* /*
* LANE2: 3.1.4, LE_ASSOCIATE.request * LANE2: 3.1.4, LE_ASSOCIATE.request
...@@ -1314,80 +1352,85 @@ static int lane2_resolve(struct net_device *dev, u8 *dst_mac, int force, ...@@ -1314,80 +1352,85 @@ static int lane2_resolve(struct net_device *dev, u8 *dst_mac, int force,
* Returns 1 for success, 0 for failure (out of memory) * Returns 1 for success, 0 for failure (out of memory)
* *
*/ */
static int lane2_associate_req (struct net_device *dev, u8 *lan_dst, static int lane2_associate_req(struct net_device *dev, u8 *lan_dst,
u8 *tlvs, u32 sizeoftlvs) u8 *tlvs, u32 sizeoftlvs)
{ {
int retval; int retval;
struct sk_buff *skb; struct sk_buff *skb;
struct lec_priv *priv = (struct lec_priv*)dev->priv; struct lec_priv *priv = (struct lec_priv *)dev->priv;
if (compare_ether_addr(lan_dst, dev->dev_addr)) if (compare_ether_addr(lan_dst, dev->dev_addr))
return (0); /* not our mac address */ return (0); /* not our mac address */
kfree(priv->tlvs); /* NULL if there was no previous association */ kfree(priv->tlvs); /* NULL if there was no previous association */
priv->tlvs = kmalloc(sizeoftlvs, GFP_KERNEL); priv->tlvs = kmalloc(sizeoftlvs, GFP_KERNEL);
if (priv->tlvs == NULL) if (priv->tlvs == NULL)
return (0); return (0);
priv->sizeoftlvs = sizeoftlvs; priv->sizeoftlvs = sizeoftlvs;
memcpy(priv->tlvs, tlvs, sizeoftlvs); memcpy(priv->tlvs, tlvs, sizeoftlvs);
skb = alloc_skb(sizeoftlvs, GFP_ATOMIC); skb = alloc_skb(sizeoftlvs, GFP_ATOMIC);
if (skb == NULL) if (skb == NULL)
return 0; return 0;
skb->len = sizeoftlvs; skb->len = sizeoftlvs;
memcpy(skb->data, tlvs, sizeoftlvs); memcpy(skb->data, tlvs, sizeoftlvs);
retval = send_to_lecd(priv, l_associate_req, NULL, NULL, skb); retval = send_to_lecd(priv, l_associate_req, NULL, NULL, skb);
if (retval != 0) if (retval != 0)
printk("lec.c: lane2_associate_req() failed\n"); printk("lec.c: lane2_associate_req() failed\n");
/* If the previous association has changed we must /*
* somehow notify other LANE entities about the change * If the previous association has changed we must
*/ * somehow notify other LANE entities about the change
return (1); */
return (1);
} }
/* /*
* LANE2: 3.1.5, LE_ASSOCIATE.indication * LANE2: 3.1.5, LE_ASSOCIATE.indication
* *
*/ */
static void lane2_associate_ind (struct net_device *dev, u8 *mac_addr, static void lane2_associate_ind(struct net_device *dev, u8 *mac_addr,
u8 *tlvs, u32 sizeoftlvs) u8 *tlvs, u32 sizeoftlvs)
{ {
#if 0 #if 0
int i = 0; int i = 0;
#endif #endif
struct lec_priv *priv = (struct lec_priv *)dev->priv; struct lec_priv *priv = (struct lec_priv *)dev->priv;
#if 0 /* Why have the TLVs in LE_ARP entries since we do not use them? When you #if 0 /*
uncomment this code, make sure the TLVs get freed when entry is killed */ * Why have the TLVs in LE_ARP entries
struct lec_arp_table *entry = lec_arp_find(priv, mac_addr); * since we do not use them? When you
* uncomment this code, make sure the
* TLVs get freed when entry is killed
*/
struct lec_arp_table *entry = lec_arp_find(priv, mac_addr);
if (entry == NULL) if (entry == NULL)
return; /* should not happen */ return; /* should not happen */
kfree(entry->tlvs); kfree(entry->tlvs);
entry->tlvs = kmalloc(sizeoftlvs, GFP_KERNEL); entry->tlvs = kmalloc(sizeoftlvs, GFP_KERNEL);
if (entry->tlvs == NULL) if (entry->tlvs == NULL)
return; return;
entry->sizeoftlvs = sizeoftlvs; entry->sizeoftlvs = sizeoftlvs;
memcpy(entry->tlvs, tlvs, sizeoftlvs); memcpy(entry->tlvs, tlvs, sizeoftlvs);
#endif #endif
#if 0 #if 0
printk("lec.c: lane2_associate_ind()\n"); printk("lec.c: lane2_associate_ind()\n");
printk("dump of tlvs, sizeoftlvs=%d\n", sizeoftlvs); printk("dump of tlvs, sizeoftlvs=%d\n", sizeoftlvs);
while (i < sizeoftlvs) while (i < sizeoftlvs)
printk("%02x ", tlvs[i++]); printk("%02x ", tlvs[i++]);
printk("\n"); printk("\n");
#endif #endif
/* tell MPOA about the TLVs we saw */ /* tell MPOA about the TLVs we saw */
if (priv->lane2_ops && priv->lane2_ops->associate_indicator) { if (priv->lane2_ops && priv->lane2_ops->associate_indicator) {
priv->lane2_ops->associate_indicator(dev, mac_addr, priv->lane2_ops->associate_indicator(dev, mac_addr,
tlvs, sizeoftlvs); tlvs, sizeoftlvs);
} }
return; return;
} }
/* /*
...@@ -1395,7 +1438,6 @@ static void lane2_associate_ind (struct net_device *dev, u8 *mac_addr, ...@@ -1395,7 +1438,6 @@ static void lane2_associate_ind (struct net_device *dev, u8 *mac_addr,
* *
* lec_arpc.c was added here when making * lec_arpc.c was added here when making
* lane client modular. October 1997 * lane client modular. October 1997
*
*/ */
#include <linux/types.h> #include <linux/types.h>
...@@ -1406,7 +1448,6 @@ static void lane2_associate_ind (struct net_device *dev, u8 *mac_addr, ...@@ -1406,7 +1448,6 @@ static void lane2_associate_ind (struct net_device *dev, u8 *mac_addr,
#include <linux/inetdevice.h> #include <linux/inetdevice.h>
#include <net/route.h> #include <net/route.h>
#if 0 #if 0
#define DPRINTK(format,args...) #define DPRINTK(format,args...)
/* /*
...@@ -1417,7 +1458,7 @@ static void lane2_associate_ind (struct net_device *dev, u8 *mac_addr, ...@@ -1417,7 +1458,7 @@ static void lane2_associate_ind (struct net_device *dev, u8 *mac_addr,
#define LEC_ARP_REFRESH_INTERVAL (3*HZ) #define LEC_ARP_REFRESH_INTERVAL (3*HZ)
static void lec_arp_check_expire(unsigned long data); static void lec_arp_check_expire(void *data);
static void lec_arp_expire_arp(unsigned long data); static void lec_arp_expire_arp(unsigned long data);
/* /*
...@@ -1429,474 +1470,397 @@ static void lec_arp_expire_arp(unsigned long data); ...@@ -1429,474 +1470,397 @@ static void lec_arp_expire_arp(unsigned long data);
/* /*
* Initialization of arp-cache * Initialization of arp-cache
*/ */
static void static void lec_arp_init(struct lec_priv *priv)
lec_arp_init(struct lec_priv *priv)
{ {
unsigned short i; unsigned short i;
for (i = 0; i < LEC_ARP_TABLE_SIZE; i++) { for (i = 0; i < LEC_ARP_TABLE_SIZE; i++) {
priv->lec_arp_tables[i] = NULL; INIT_HLIST_HEAD(&priv->lec_arp_tables[i]);
} }
INIT_HLIST_HEAD(&priv->lec_arp_empty_ones);
INIT_HLIST_HEAD(&priv->lec_no_forward);
INIT_HLIST_HEAD(&priv->mcast_fwds);
spin_lock_init(&priv->lec_arp_lock); spin_lock_init(&priv->lec_arp_lock);
init_timer(&priv->lec_arp_timer); INIT_WORK(&priv->lec_arp_work, lec_arp_check_expire, priv);
priv->lec_arp_timer.expires = jiffies + LEC_ARP_REFRESH_INTERVAL; schedule_delayed_work(&priv->lec_arp_work, LEC_ARP_REFRESH_INTERVAL);
priv->lec_arp_timer.data = (unsigned long)priv;
priv->lec_arp_timer.function = lec_arp_check_expire;
add_timer(&priv->lec_arp_timer);
} }
static void static void lec_arp_clear_vccs(struct lec_arp_table *entry)
lec_arp_clear_vccs(struct lec_arp_table *entry)
{ {
if (entry->vcc) { if (entry->vcc) {
struct atm_vcc *vcc = entry->vcc; struct atm_vcc *vcc = entry->vcc;
struct lec_vcc_priv *vpriv = LEC_VCC_PRIV(vcc); struct lec_vcc_priv *vpriv = LEC_VCC_PRIV(vcc);
struct net_device *dev = (struct net_device*) vcc->proto_data; struct net_device *dev = (struct net_device *)vcc->proto_data;
vcc->pop = vpriv->old_pop; vcc->pop = vpriv->old_pop;
if (vpriv->xoff) if (vpriv->xoff)
netif_wake_queue(dev); netif_wake_queue(dev);
kfree(vpriv); kfree(vpriv);
vcc->user_back = NULL; vcc->user_back = NULL;
vcc->push = entry->old_push; vcc->push = entry->old_push;
vcc_release_async(vcc, -EPIPE); vcc_release_async(vcc, -EPIPE);
vcc = NULL; entry->vcc = NULL;
} }
if (entry->recv_vcc) { if (entry->recv_vcc) {
entry->recv_vcc->push = entry->old_recv_push; entry->recv_vcc->push = entry->old_recv_push;
vcc_release_async(entry->recv_vcc, -EPIPE); vcc_release_async(entry->recv_vcc, -EPIPE);
entry->recv_vcc = NULL; entry->recv_vcc = NULL;
} }
} }
/* /*
* Insert entry to lec_arp_table * Insert entry to lec_arp_table
* LANE2: Add to the end of the list to satisfy 8.1.13 * LANE2: Add to the end of the list to satisfy 8.1.13
*/ */
static inline void static inline void
lec_arp_add(struct lec_priv *priv, struct lec_arp_table *to_add) lec_arp_add(struct lec_priv *priv, struct lec_arp_table *entry)
{ {
unsigned short place; struct hlist_head *tmp;
struct lec_arp_table *tmp;
tmp = &priv->lec_arp_tables[HASH(entry->mac_addr[ETH_ALEN - 1])];
place = HASH(to_add->mac_addr[ETH_ALEN-1]); hlist_add_head(&entry->next, tmp);
tmp = priv->lec_arp_tables[place];
to_add->next = NULL; DPRINTK("LEC_ARP: Added entry:%2.2x %2.2x %2.2x %2.2x %2.2x %2.2x\n",
if (tmp == NULL) 0xff & entry->mac_addr[0], 0xff & entry->mac_addr[1],
priv->lec_arp_tables[place] = to_add; 0xff & entry->mac_addr[2], 0xff & entry->mac_addr[3],
0xff & entry->mac_addr[4], 0xff & entry->mac_addr[5]);
else { /* add to the end */
while (tmp->next)
tmp = tmp->next;
tmp->next = to_add;
}
DPRINTK("LEC_ARP: Added entry:%2.2x %2.2x %2.2x %2.2x %2.2x %2.2x\n",
0xff&to_add->mac_addr[0], 0xff&to_add->mac_addr[1],
0xff&to_add->mac_addr[2], 0xff&to_add->mac_addr[3],
0xff&to_add->mac_addr[4], 0xff&to_add->mac_addr[5]);
} }
/* /*
* Remove entry from lec_arp_table * Remove entry from lec_arp_table
*/ */
static int static int
lec_arp_remove(struct lec_priv *priv, lec_arp_remove(struct lec_priv *priv, struct lec_arp_table *to_remove)
struct lec_arp_table *to_remove)
{ {
unsigned short place; struct hlist_node *node;
struct lec_arp_table *tmp; struct lec_arp_table *entry;
int remove_vcc=1; int i, remove_vcc = 1;
if (!to_remove) { if (!to_remove) {
return -1; return -1;
} }
place = HASH(to_remove->mac_addr[ETH_ALEN-1]);
tmp = priv->lec_arp_tables[place]; hlist_del(&to_remove->next);
if (tmp == to_remove) { del_timer(&to_remove->timer);
priv->lec_arp_tables[place] = tmp->next;
} else { /* If this is the only MAC connected to this VCC, also tear down the VCC */
while(tmp && tmp->next != to_remove) { if (to_remove->status >= ESI_FLUSH_PENDING) {
tmp = tmp->next; /*
} * ESI_FLUSH_PENDING, ESI_FORWARD_DIRECT
if (!tmp) {/* Entry was not found */ */
return -1; for (i = 0; i < LEC_ARP_TABLE_SIZE; i++) {
} hlist_for_each_entry(entry, node, &priv->lec_arp_tables[i], next) {
} if (memcmp(to_remove->atm_addr,
tmp->next = to_remove->next; entry->atm_addr, ATM_ESA_LEN) == 0) {
del_timer(&to_remove->timer); remove_vcc = 0;
break;
/* If this is the only MAC connected to this VCC, also tear down }
the VCC */ }
if (to_remove->status >= ESI_FLUSH_PENDING) { }
/* if (remove_vcc)
* ESI_FLUSH_PENDING, ESI_FORWARD_DIRECT lec_arp_clear_vccs(to_remove);
*/ }
for(place = 0; place < LEC_ARP_TABLE_SIZE; place++) { skb_queue_purge(&to_remove->tx_wait); /* FIXME: good place for this? */
for(tmp = priv->lec_arp_tables[place]; tmp != NULL; tmp = tmp->next) {
if (memcmp(tmp->atm_addr, to_remove->atm_addr, DPRINTK("LEC_ARP: Removed entry:%2.2x %2.2x %2.2x %2.2x %2.2x %2.2x\n",
ATM_ESA_LEN)==0) { 0xff & to_remove->mac_addr[0], 0xff & to_remove->mac_addr[1],
remove_vcc=0; 0xff & to_remove->mac_addr[2], 0xff & to_remove->mac_addr[3],
break; 0xff & to_remove->mac_addr[4], 0xff & to_remove->mac_addr[5]);
} return 0;
}
}
if (remove_vcc)
lec_arp_clear_vccs(to_remove);
}
skb_queue_purge(&to_remove->tx_wait); /* FIXME: good place for this? */
DPRINTK("LEC_ARP: Removed entry:%2.2x %2.2x %2.2x %2.2x %2.2x %2.2x\n",
0xff&to_remove->mac_addr[0], 0xff&to_remove->mac_addr[1],
0xff&to_remove->mac_addr[2], 0xff&to_remove->mac_addr[3],
0xff&to_remove->mac_addr[4], 0xff&to_remove->mac_addr[5]);
return 0;
} }
#if DEBUG_ARP_TABLE #if DEBUG_ARP_TABLE
static char* static char *get_status_string(unsigned char st)
get_status_string(unsigned char st)
{ {
switch(st) { switch (st) {
case ESI_UNKNOWN: case ESI_UNKNOWN:
return "ESI_UNKNOWN"; return "ESI_UNKNOWN";
case ESI_ARP_PENDING: case ESI_ARP_PENDING:
return "ESI_ARP_PENDING"; return "ESI_ARP_PENDING";
case ESI_VC_PENDING: case ESI_VC_PENDING:
return "ESI_VC_PENDING"; return "ESI_VC_PENDING";
case ESI_FLUSH_PENDING: case ESI_FLUSH_PENDING:
return "ESI_FLUSH_PENDING"; return "ESI_FLUSH_PENDING";
case ESI_FORWARD_DIRECT: case ESI_FORWARD_DIRECT:
return "ESI_FORWARD_DIRECT"; return "ESI_FORWARD_DIRECT";
default: default:
return "<UNKNOWN>"; return "<UNKNOWN>";
} }
} }
#endif
static void static void dump_arp_table(struct lec_priv *priv)
dump_arp_table(struct lec_priv *priv)
{ {
#if DEBUG_ARP_TABLE struct hlist_node *node;
int i,j, offset; struct lec_arp_table *rulla;
struct lec_arp_table *rulla; char buf[256];
char buf[1024]; int i, j, offset;
struct lec_arp_table **lec_arp_tables =
(struct lec_arp_table **)priv->lec_arp_tables; printk("Dump %p:\n", priv);
struct lec_arp_table *lec_arp_empty_ones = for (i = 0; i < LEC_ARP_TABLE_SIZE; i++) {
(struct lec_arp_table *)priv->lec_arp_empty_ones; hlist_for_each_entry(rulla, node, &priv->lec_arp_tables[i], next) {
struct lec_arp_table *lec_no_forward = offset = 0;
(struct lec_arp_table *)priv->lec_no_forward; offset += sprintf(buf, "%d: %p\n", i, rulla);
struct lec_arp_table *mcast_fwds = priv->mcast_fwds; offset += sprintf(buf + offset, "Mac:");
for (j = 0; j < ETH_ALEN; j++) {
offset += sprintf(buf + offset,
printk("Dump %p:\n",priv); "%2.2x ",
for (i=0;i<LEC_ARP_TABLE_SIZE;i++) { rulla->mac_addr[j] & 0xff);
rulla = lec_arp_tables[i]; }
offset = 0; offset += sprintf(buf + offset, "Atm:");
offset += sprintf(buf,"%d: %p\n",i, rulla); for (j = 0; j < ATM_ESA_LEN; j++) {
while (rulla) { offset += sprintf(buf + offset,
offset += sprintf(buf+offset,"Mac:"); "%2.2x ",
for(j=0;j<ETH_ALEN;j++) { rulla->atm_addr[j] & 0xff);
offset+=sprintf(buf+offset, }
"%2.2x ", offset += sprintf(buf + offset,
rulla->mac_addr[j]&0xff); "Vcc vpi:%d vci:%d, Recv_vcc vpi:%d vci:%d Last_used:%lx, Timestamp:%lx, No_tries:%d ",
} rulla->vcc ? rulla->vcc->vpi : 0,
offset +=sprintf(buf+offset,"Atm:"); rulla->vcc ? rulla->vcc->vci : 0,
for(j=0;j<ATM_ESA_LEN;j++) { rulla->recv_vcc ? rulla->recv_vcc->
offset+=sprintf(buf+offset, vpi : 0,
"%2.2x ", rulla->recv_vcc ? rulla->recv_vcc->
rulla->atm_addr[j]&0xff); vci : 0, rulla->last_used,
} rulla->timestamp, rulla->no_tries);
offset+=sprintf(buf+offset, offset +=
"Vcc vpi:%d vci:%d, Recv_vcc vpi:%d vci:%d Last_used:%lx, Timestamp:%lx, No_tries:%d ", sprintf(buf + offset,
rulla->vcc?rulla->vcc->vpi:0, "Flags:%x, Packets_flooded:%x, Status: %s ",
rulla->vcc?rulla->vcc->vci:0, rulla->flags, rulla->packets_flooded,
rulla->recv_vcc?rulla->recv_vcc->vpi:0, get_status_string(rulla->status));
rulla->recv_vcc?rulla->recv_vcc->vci:0, printk("%s\n", buf);
rulla->last_used, }
rulla->timestamp, rulla->no_tries); }
offset+=sprintf(buf+offset,
"Flags:%x, Packets_flooded:%x, Status: %s ", if (!hlist_empty(&priv->lec_no_forward))
rulla->flags, rulla->packets_flooded, printk("No forward\n");
get_status_string(rulla->status)); hlist_for_each_entry(rulla, node, &priv->lec_no_forward, next) {
offset+=sprintf(buf+offset,"->%p\n",rulla->next); offset = 0;
rulla = rulla->next; offset += sprintf(buf + offset, "Mac:");
} for (j = 0; j < ETH_ALEN; j++) {
printk("%s",buf); offset += sprintf(buf + offset, "%2.2x ",
} rulla->mac_addr[j] & 0xff);
rulla = lec_no_forward; }
if (rulla) offset += sprintf(buf + offset, "Atm:");
printk("No forward\n"); for (j = 0; j < ATM_ESA_LEN; j++) {
while(rulla) { offset += sprintf(buf + offset, "%2.2x ",
offset=0; rulla->atm_addr[j] & 0xff);
offset += sprintf(buf+offset,"Mac:"); }
for(j=0;j<ETH_ALEN;j++) { offset += sprintf(buf + offset,
offset+=sprintf(buf+offset,"%2.2x ", "Vcc vpi:%d vci:%d, Recv_vcc vpi:%d vci:%d Last_used:%lx, Timestamp:%lx, No_tries:%d ",
rulla->mac_addr[j]&0xff); rulla->vcc ? rulla->vcc->vpi : 0,
} rulla->vcc ? rulla->vcc->vci : 0,
offset +=sprintf(buf+offset,"Atm:"); rulla->recv_vcc ? rulla->recv_vcc->vpi : 0,
for(j=0;j<ATM_ESA_LEN;j++) { rulla->recv_vcc ? rulla->recv_vcc->vci : 0,
offset+=sprintf(buf+offset,"%2.2x ", rulla->last_used,
rulla->atm_addr[j]&0xff); rulla->timestamp, rulla->no_tries);
} offset += sprintf(buf + offset,
offset+=sprintf(buf+offset, "Flags:%x, Packets_flooded:%x, Status: %s ",
"Vcc vpi:%d vci:%d, Recv_vcc vpi:%d vci:%d Last_used:%lx, Timestamp:%lx, No_tries:%d ", rulla->flags, rulla->packets_flooded,
rulla->vcc?rulla->vcc->vpi:0, get_status_string(rulla->status));
rulla->vcc?rulla->vcc->vci:0, printk("%s\n", buf);
rulla->recv_vcc?rulla->recv_vcc->vpi:0, }
rulla->recv_vcc?rulla->recv_vcc->vci:0,
rulla->last_used, if (!hlist_empty(&priv->lec_arp_empty_ones))
rulla->timestamp, rulla->no_tries); printk("Empty ones\n");
offset+=sprintf(buf+offset, hlist_for_each_entry(rulla, node, &priv->lec_arp_empty_ones, next) {
"Flags:%x, Packets_flooded:%x, Status: %s ", offset = 0;
rulla->flags, rulla->packets_flooded, offset += sprintf(buf + offset, "Mac:");
get_status_string(rulla->status)); for (j = 0; j < ETH_ALEN; j++) {
offset+=sprintf(buf+offset,"->%lx\n",(long)rulla->next); offset += sprintf(buf + offset, "%2.2x ",
rulla = rulla->next; rulla->mac_addr[j] & 0xff);
printk("%s",buf); }
} offset += sprintf(buf + offset, "Atm:");
rulla = lec_arp_empty_ones; for (j = 0; j < ATM_ESA_LEN; j++) {
if (rulla) offset += sprintf(buf + offset, "%2.2x ",
printk("Empty ones\n"); rulla->atm_addr[j] & 0xff);
while(rulla) { }
offset=0; offset += sprintf(buf + offset,
offset += sprintf(buf+offset,"Mac:"); "Vcc vpi:%d vci:%d, Recv_vcc vpi:%d vci:%d Last_used:%lx, Timestamp:%lx, No_tries:%d ",
for(j=0;j<ETH_ALEN;j++) { rulla->vcc ? rulla->vcc->vpi : 0,
offset+=sprintf(buf+offset,"%2.2x ", rulla->vcc ? rulla->vcc->vci : 0,
rulla->mac_addr[j]&0xff); rulla->recv_vcc ? rulla->recv_vcc->vpi : 0,
} rulla->recv_vcc ? rulla->recv_vcc->vci : 0,
offset +=sprintf(buf+offset,"Atm:"); rulla->last_used,
for(j=0;j<ATM_ESA_LEN;j++) { rulla->timestamp, rulla->no_tries);
offset+=sprintf(buf+offset,"%2.2x ", offset += sprintf(buf + offset,
rulla->atm_addr[j]&0xff); "Flags:%x, Packets_flooded:%x, Status: %s ",
} rulla->flags, rulla->packets_flooded,
offset+=sprintf(buf+offset, get_status_string(rulla->status));
"Vcc vpi:%d vci:%d, Recv_vcc vpi:%d vci:%d Last_used:%lx, Timestamp:%lx, No_tries:%d ", printk("%s", buf);
rulla->vcc?rulla->vcc->vpi:0, }
rulla->vcc?rulla->vcc->vci:0,
rulla->recv_vcc?rulla->recv_vcc->vpi:0, if (!hlist_empty(&priv->mcast_fwds))
rulla->recv_vcc?rulla->recv_vcc->vci:0, printk("Multicast Forward VCCs\n");
rulla->last_used, hlist_for_each_entry(rulla, node, &priv->mcast_fwds, next) {
rulla->timestamp, rulla->no_tries); offset = 0;
offset+=sprintf(buf+offset, offset += sprintf(buf + offset, "Mac:");
"Flags:%x, Packets_flooded:%x, Status: %s ", for (j = 0; j < ETH_ALEN; j++) {
rulla->flags, rulla->packets_flooded, offset += sprintf(buf + offset, "%2.2x ",
get_status_string(rulla->status)); rulla->mac_addr[j] & 0xff);
offset+=sprintf(buf+offset,"->%lx\n",(long)rulla->next); }
rulla = rulla->next; offset += sprintf(buf + offset, "Atm:");
printk("%s",buf); for (j = 0; j < ATM_ESA_LEN; j++) {
} offset += sprintf(buf + offset, "%2.2x ",
rulla->atm_addr[j] & 0xff);
rulla = mcast_fwds; }
if (rulla) offset += sprintf(buf + offset,
printk("Multicast Forward VCCs\n"); "Vcc vpi:%d vci:%d, Recv_vcc vpi:%d vci:%d Last_used:%lx, Timestamp:%lx, No_tries:%d ",
while(rulla) { rulla->vcc ? rulla->vcc->vpi : 0,
offset=0; rulla->vcc ? rulla->vcc->vci : 0,
offset += sprintf(buf+offset,"Mac:"); rulla->recv_vcc ? rulla->recv_vcc->vpi : 0,
for(j=0;j<ETH_ALEN;j++) { rulla->recv_vcc ? rulla->recv_vcc->vci : 0,
offset+=sprintf(buf+offset,"%2.2x ", rulla->last_used,
rulla->mac_addr[j]&0xff); rulla->timestamp, rulla->no_tries);
} offset += sprintf(buf + offset,
offset +=sprintf(buf+offset,"Atm:"); "Flags:%x, Packets_flooded:%x, Status: %s ",
for(j=0;j<ATM_ESA_LEN;j++) { rulla->flags, rulla->packets_flooded,
offset+=sprintf(buf+offset,"%2.2x ", get_status_string(rulla->status));
rulla->atm_addr[j]&0xff); printk("%s\n", buf);
} }
offset+=sprintf(buf+offset,
"Vcc vpi:%d vci:%d, Recv_vcc vpi:%d vci:%d Last_used:%lx, Timestamp:%lx, No_tries:%d ",
rulla->vcc?rulla->vcc->vpi:0,
rulla->vcc?rulla->vcc->vci:0,
rulla->recv_vcc?rulla->recv_vcc->vpi:0,
rulla->recv_vcc?rulla->recv_vcc->vci:0,
rulla->last_used,
rulla->timestamp, rulla->no_tries);
offset+=sprintf(buf+offset,
"Flags:%x, Packets_flooded:%x, Status: %s ",
rulla->flags, rulla->packets_flooded,
get_status_string(rulla->status));
offset+=sprintf(buf+offset,"->%lx\n",(long)rulla->next);
rulla = rulla->next;
printk("%s",buf);
}
#endif
} }
#else
#define dump_arp_table(priv) do { } while (0)
#endif
/* /*
* Destruction of arp-cache * Destruction of arp-cache
*/ */
static void static void lec_arp_destroy(struct lec_priv *priv)
lec_arp_destroy(struct lec_priv *priv)
{ {
unsigned long flags; unsigned long flags;
struct lec_arp_table *entry, *next; struct hlist_node *node, *next;
int i; struct lec_arp_table *entry;
int i;
cancel_rearming_delayed_work(&priv->lec_arp_work);
del_timer_sync(&priv->lec_arp_timer); /*
* Remove all entries
/* */
* Remove all entries
*/
spin_lock_irqsave(&priv->lec_arp_lock, flags); spin_lock_irqsave(&priv->lec_arp_lock, flags);
for (i = 0; i < LEC_ARP_TABLE_SIZE; i++) { for (i = 0; i < LEC_ARP_TABLE_SIZE; i++) {
for(entry = priv->lec_arp_tables[i]; entry != NULL; entry=next) { hlist_for_each_entry_safe(entry, node, next, &priv->lec_arp_tables[i], next) {
next = entry->next; lec_arp_remove(priv, entry);
lec_arp_remove(priv, entry); lec_arp_put(entry);
kfree(entry); }
} INIT_HLIST_HEAD(&priv->lec_arp_tables[i]);
} }
entry = priv->lec_arp_empty_ones;
while(entry) { hlist_for_each_entry_safe(entry, node, next, &priv->lec_arp_empty_ones, next) {
next = entry->next; del_timer_sync(&entry->timer);
del_timer_sync(&entry->timer); lec_arp_clear_vccs(entry);
lec_arp_clear_vccs(entry); hlist_del(&entry->next);
kfree(entry); lec_arp_put(entry);
entry = next; }
} INIT_HLIST_HEAD(&priv->lec_arp_empty_ones);
priv->lec_arp_empty_ones = NULL;
entry = priv->lec_no_forward; hlist_for_each_entry_safe(entry, node, next, &priv->lec_no_forward, next) {
while(entry) { del_timer_sync(&entry->timer);
next = entry->next; lec_arp_clear_vccs(entry);
del_timer_sync(&entry->timer); hlist_del(&entry->next);
lec_arp_clear_vccs(entry); lec_arp_put(entry);
kfree(entry); }
entry = next; INIT_HLIST_HEAD(&priv->lec_no_forward);
}
priv->lec_no_forward = NULL; hlist_for_each_entry_safe(entry, node, next, &priv->mcast_fwds, next) {
entry = priv->mcast_fwds; /* No timer, LANEv2 7.1.20 and 2.3.5.3 */
while(entry) { lec_arp_clear_vccs(entry);
next = entry->next; hlist_del(&entry->next);
/* No timer, LANEv2 7.1.20 and 2.3.5.3 */ lec_arp_put(entry);
lec_arp_clear_vccs(entry); }
kfree(entry); INIT_HLIST_HEAD(&priv->mcast_fwds);
entry = next; priv->mcast_vcc = NULL;
}
priv->mcast_fwds = NULL;
priv->mcast_vcc = NULL;
memset(priv->lec_arp_tables, 0,
sizeof(struct lec_arp_table *) * LEC_ARP_TABLE_SIZE);
spin_unlock_irqrestore(&priv->lec_arp_lock, flags); spin_unlock_irqrestore(&priv->lec_arp_lock, flags);
} }
/* /*
* Find entry by mac_address * Find entry by mac_address
*/ */
static struct lec_arp_table* static struct lec_arp_table *lec_arp_find(struct lec_priv *priv,
lec_arp_find(struct lec_priv *priv, unsigned char *mac_addr)
unsigned char *mac_addr)
{ {
unsigned short place; struct hlist_node *node;
struct lec_arp_table *to_return; struct hlist_head *head;
struct lec_arp_table *entry;
DPRINTK("LEC_ARP: lec_arp_find :%2.2x %2.2x %2.2x %2.2x %2.2x %2.2x\n",
mac_addr[0]&0xff, mac_addr[1]&0xff, mac_addr[2]&0xff, DPRINTK("LEC_ARP: lec_arp_find :%2.2x %2.2x %2.2x %2.2x %2.2x %2.2x\n",
mac_addr[3]&0xff, mac_addr[4]&0xff, mac_addr[5]&0xff); mac_addr[0] & 0xff, mac_addr[1] & 0xff, mac_addr[2] & 0xff,
place = HASH(mac_addr[ETH_ALEN-1]); mac_addr[3] & 0xff, mac_addr[4] & 0xff, mac_addr[5] & 0xff);
to_return = priv->lec_arp_tables[place]; head = &priv->lec_arp_tables[HASH(mac_addr[ETH_ALEN - 1])];
while(to_return) { hlist_for_each_entry(entry, node, head, next) {
if (!compare_ether_addr(mac_addr, to_return->mac_addr)) { if (!compare_ether_addr(mac_addr, entry->mac_addr)) {
return to_return; return entry;
} }
to_return = to_return->next; }
} return NULL;
return NULL;
} }
static struct lec_arp_table* static struct lec_arp_table *make_entry(struct lec_priv *priv,
make_entry(struct lec_priv *priv, unsigned char *mac_addr) unsigned char *mac_addr)
{ {
struct lec_arp_table *to_return; struct lec_arp_table *to_return;
to_return = kzalloc(sizeof(struct lec_arp_table), GFP_ATOMIC); to_return = kzalloc(sizeof(struct lec_arp_table), GFP_ATOMIC);
if (!to_return) { if (!to_return) {
printk("LEC: Arp entry kmalloc failed\n"); printk("LEC: Arp entry kmalloc failed\n");
return NULL; return NULL;
} }
memcpy(to_return->mac_addr, mac_addr, ETH_ALEN); memcpy(to_return->mac_addr, mac_addr, ETH_ALEN);
init_timer(&to_return->timer); INIT_HLIST_NODE(&to_return->next);
to_return->timer.function = lec_arp_expire_arp; init_timer(&to_return->timer);
to_return->timer.data = (unsigned long) to_return; to_return->timer.function = lec_arp_expire_arp;
to_return->last_used = jiffies; to_return->timer.data = (unsigned long)to_return;
to_return->priv = priv; to_return->last_used = jiffies;
skb_queue_head_init(&to_return->tx_wait); to_return->priv = priv;
return to_return; skb_queue_head_init(&to_return->tx_wait);
atomic_set(&to_return->usage, 1);
return to_return;
} }
/* /* Arp sent timer expired */
* static void lec_arp_expire_arp(unsigned long data)
* Arp sent timer expired
*
*/
static void
lec_arp_expire_arp(unsigned long data)
{ {
struct lec_arp_table *entry; struct lec_arp_table *entry;
entry = (struct lec_arp_table *)data; entry = (struct lec_arp_table *)data;
DPRINTK("lec_arp_expire_arp\n"); DPRINTK("lec_arp_expire_arp\n");
if (entry->status == ESI_ARP_PENDING) { if (entry->status == ESI_ARP_PENDING) {
if (entry->no_tries <= entry->priv->max_retry_count) { if (entry->no_tries <= entry->priv->max_retry_count) {
if (entry->is_rdesc) if (entry->is_rdesc)
send_to_lecd(entry->priv, l_rdesc_arp_xmt, entry->mac_addr, NULL, NULL); send_to_lecd(entry->priv, l_rdesc_arp_xmt,
else entry->mac_addr, NULL, NULL);
send_to_lecd(entry->priv, l_arp_xmt, entry->mac_addr, NULL, NULL); else
entry->no_tries++; send_to_lecd(entry->priv, l_arp_xmt,
} entry->mac_addr, NULL, NULL);
mod_timer(&entry->timer, jiffies + (1*HZ)); entry->no_tries++;
} }
mod_timer(&entry->timer, jiffies + (1 * HZ));
}
} }
/* /* Unknown/unused vcc expire, remove associated entry */
* static void lec_arp_expire_vcc(unsigned long data)
* Unknown/unused vcc expire, remove associated entry
*
*/
static void
lec_arp_expire_vcc(unsigned long data)
{ {
unsigned long flags; unsigned long flags;
struct lec_arp_table *to_remove = (struct lec_arp_table*)data; struct lec_arp_table *to_remove = (struct lec_arp_table *)data;
struct lec_priv *priv = (struct lec_priv *)to_remove->priv; struct lec_priv *priv = (struct lec_priv *)to_remove->priv;
struct lec_arp_table *entry = NULL;
del_timer(&to_remove->timer); del_timer(&to_remove->timer);
DPRINTK("LEC_ARP %p %p: lec_arp_expire_vcc vpi:%d vci:%d\n", DPRINTK("LEC_ARP %p %p: lec_arp_expire_vcc vpi:%d vci:%d\n",
to_remove, priv, to_remove, priv,
to_remove->vcc?to_remove->recv_vcc->vpi:0, to_remove->vcc ? to_remove->recv_vcc->vpi : 0,
to_remove->vcc?to_remove->recv_vcc->vci:0); to_remove->vcc ? to_remove->recv_vcc->vci : 0);
DPRINTK("eo:%p nf:%p\n",priv->lec_arp_empty_ones,priv->lec_no_forward);
spin_lock_irqsave(&priv->lec_arp_lock, flags); spin_lock_irqsave(&priv->lec_arp_lock, flags);
if (to_remove == priv->lec_arp_empty_ones) hlist_del(&to_remove->next);
priv->lec_arp_empty_ones = to_remove->next;
else {
entry = priv->lec_arp_empty_ones;
while (entry && entry->next != to_remove)
entry = entry->next;
if (entry)
entry->next = to_remove->next;
}
if (!entry) {
if (to_remove == priv->lec_no_forward) {
priv->lec_no_forward = to_remove->next;
} else {
entry = priv->lec_no_forward;
while (entry && entry->next != to_remove)
entry = entry->next;
if (entry)
entry->next = to_remove->next;
}
}
spin_unlock_irqrestore(&priv->lec_arp_lock, flags); spin_unlock_irqrestore(&priv->lec_arp_lock, flags);
lec_arp_clear_vccs(to_remove); lec_arp_clear_vccs(to_remove);
kfree(to_remove); lec_arp_put(to_remove);
} }
/* /*
...@@ -1915,158 +1879,171 @@ lec_arp_expire_vcc(unsigned long data) ...@@ -1915,158 +1879,171 @@ lec_arp_expire_vcc(unsigned long data)
* to ESI_FORWARD_DIRECT. This causes the flush period to end * to ESI_FORWARD_DIRECT. This causes the flush period to end
* regardless of the progress of the flush protocol. * regardless of the progress of the flush protocol.
*/ */
static void static void lec_arp_check_expire(void *data)
lec_arp_check_expire(unsigned long data)
{ {
unsigned long flags; unsigned long flags;
struct lec_priv *priv = (struct lec_priv *)data; struct lec_priv *priv = data;
struct lec_arp_table *entry, *next; struct hlist_node *node, *next;
unsigned long now; struct lec_arp_table *entry;
unsigned long time_to_check; unsigned long now;
int i; unsigned long time_to_check;
int i;
DPRINTK("lec_arp_check_expire %p\n",priv);
DPRINTK("expire: eo:%p nf:%p\n",priv->lec_arp_empty_ones, DPRINTK("lec_arp_check_expire %p\n", priv);
priv->lec_no_forward);
now = jiffies; now = jiffies;
restart:
spin_lock_irqsave(&priv->lec_arp_lock, flags); spin_lock_irqsave(&priv->lec_arp_lock, flags);
for(i = 0; i < LEC_ARP_TABLE_SIZE; i++) { for (i = 0; i < LEC_ARP_TABLE_SIZE; i++) {
for(entry = priv->lec_arp_tables[i]; entry != NULL; ) { hlist_for_each_entry_safe(entry, node, next, &priv->lec_arp_tables[i], next) {
if ((entry->flags) & LEC_REMOTE_FLAG && if ((entry->flags) & LEC_REMOTE_FLAG &&
priv->topology_change) priv->topology_change)
time_to_check = priv->forward_delay_time; time_to_check = priv->forward_delay_time;
else else
time_to_check = priv->aging_time; time_to_check = priv->aging_time;
DPRINTK("About to expire: %lx - %lx > %lx\n", DPRINTK("About to expire: %lx - %lx > %lx\n",
now,entry->last_used, time_to_check); now, entry->last_used, time_to_check);
if( time_after(now, entry->last_used+ if (time_after(now, entry->last_used + time_to_check)
time_to_check) && && !(entry->flags & LEC_PERMANENT_FLAG)
!(entry->flags & LEC_PERMANENT_FLAG) && && !(entry->mac_addr[0] & 0x01)) { /* LANE2: 7.1.20 */
!(entry->mac_addr[0] & 0x01) ) { /* LANE2: 7.1.20 */
/* Remove entry */ /* Remove entry */
DPRINTK("LEC:Entry timed out\n"); DPRINTK("LEC:Entry timed out\n");
next = entry->next;
lec_arp_remove(priv, entry); lec_arp_remove(priv, entry);
kfree(entry); lec_arp_put(entry);
entry = next;
} else { } else {
/* Something else */ /* Something else */
if ((entry->status == ESI_VC_PENDING || if ((entry->status == ESI_VC_PENDING ||
entry->status == ESI_ARP_PENDING) entry->status == ESI_ARP_PENDING)
&& time_after_eq(now, && time_after_eq(now,
entry->timestamp + entry->timestamp +
priv->max_unknown_frame_time)) { priv->
max_unknown_frame_time)) {
entry->timestamp = jiffies; entry->timestamp = jiffies;
entry->packets_flooded = 0; entry->packets_flooded = 0;
if (entry->status == ESI_VC_PENDING) if (entry->status == ESI_VC_PENDING)
send_to_lecd(priv, l_svc_setup, entry->mac_addr, entry->atm_addr, NULL); send_to_lecd(priv, l_svc_setup,
entry->mac_addr,
entry->atm_addr,
NULL);
} }
if (entry->status == ESI_FLUSH_PENDING if (entry->status == ESI_FLUSH_PENDING
&& &&
time_after_eq(now, entry->timestamp+ time_after_eq(now, entry->timestamp +
priv->path_switching_delay)) { priv->path_switching_delay)) {
struct sk_buff *skb; struct sk_buff *skb;
struct atm_vcc *vcc = entry->vcc;
lec_arp_hold(entry);
spin_unlock_irqrestore(&priv->lec_arp_lock, flags);
while ((skb = skb_dequeue(&entry->tx_wait)) != NULL) while ((skb = skb_dequeue(&entry->tx_wait)) != NULL)
lec_send(entry->vcc, skb, entry->priv); lec_send(vcc, skb, entry->priv);
entry->last_used = jiffies; entry->last_used = jiffies;
entry->status = entry->status = ESI_FORWARD_DIRECT;
ESI_FORWARD_DIRECT; lec_arp_put(entry);
goto restart;
} }
entry = entry->next;
} }
} }
} }
spin_unlock_irqrestore(&priv->lec_arp_lock, flags); spin_unlock_irqrestore(&priv->lec_arp_lock, flags);
mod_timer(&priv->lec_arp_timer, jiffies + LEC_ARP_REFRESH_INTERVAL); schedule_delayed_work(&priv->lec_arp_work, LEC_ARP_REFRESH_INTERVAL);
} }
/* /*
* Try to find vcc where mac_address is attached. * Try to find vcc where mac_address is attached.
* *
*/ */
static struct atm_vcc* static struct atm_vcc *lec_arp_resolve(struct lec_priv *priv,
lec_arp_resolve(struct lec_priv *priv, unsigned char *mac_to_find, unsigned char *mac_to_find, int is_rdesc,
int is_rdesc, struct lec_arp_table **ret_entry) struct lec_arp_table **ret_entry)
{ {
unsigned long flags; unsigned long flags;
struct lec_arp_table *entry; struct lec_arp_table *entry;
struct atm_vcc *found; struct atm_vcc *found;
if (mac_to_find[0] & 0x01) { if (mac_to_find[0] & 0x01) {
switch (priv->lane_version) { switch (priv->lane_version) {
case 1: case 1:
return priv->mcast_vcc; return priv->mcast_vcc;
break; break;
case 2: /* LANE2 wants arp for multicast addresses */ case 2: /* LANE2 wants arp for multicast addresses */
if (!compare_ether_addr(mac_to_find, bus_mac)) if (!compare_ether_addr(mac_to_find, bus_mac))
return priv->mcast_vcc; return priv->mcast_vcc;
break; break;
default: default:
break; break;
} }
} }
spin_lock_irqsave(&priv->lec_arp_lock, flags); spin_lock_irqsave(&priv->lec_arp_lock, flags);
entry = lec_arp_find(priv, mac_to_find); entry = lec_arp_find(priv, mac_to_find);
if (entry) { if (entry) {
if (entry->status == ESI_FORWARD_DIRECT) { if (entry->status == ESI_FORWARD_DIRECT) {
/* Connection Ok */ /* Connection Ok */
entry->last_used = jiffies; entry->last_used = jiffies;
*ret_entry = entry; lec_arp_hold(entry);
found = entry->vcc; *ret_entry = entry;
found = entry->vcc;
goto out; goto out;
} }
/* If the LE_ARP cache entry is still pending, reset count to 0 /*
* If the LE_ARP cache entry is still pending, reset count to 0
* so another LE_ARP request can be made for this frame. * so another LE_ARP request can be made for this frame.
*/ */
if (entry->status == ESI_ARP_PENDING) { if (entry->status == ESI_ARP_PENDING) {
entry->no_tries = 0; entry->no_tries = 0;
} }
/* Data direct VC not yet set up, check to see if the unknown /*
frame count is greater than the limit. If the limit has * Data direct VC not yet set up, check to see if the unknown
not been reached, allow the caller to send packet to * frame count is greater than the limit. If the limit has
BUS. */ * not been reached, allow the caller to send packet to
if (entry->status != ESI_FLUSH_PENDING && * BUS.
entry->packets_flooded<priv->maximum_unknown_frame_count) { */
entry->packets_flooded++; if (entry->status != ESI_FLUSH_PENDING &&
DPRINTK("LEC_ARP: Flooding..\n"); entry->packets_flooded <
found = priv->mcast_vcc; priv->maximum_unknown_frame_count) {
entry->packets_flooded++;
DPRINTK("LEC_ARP: Flooding..\n");
found = priv->mcast_vcc;
goto out; goto out;
} }
/* We got here because entry->status == ESI_FLUSH_PENDING /*
* We got here because entry->status == ESI_FLUSH_PENDING
* or BUS flood limit was reached for an entry which is * or BUS flood limit was reached for an entry which is
* in ESI_ARP_PENDING or ESI_VC_PENDING state. * in ESI_ARP_PENDING or ESI_VC_PENDING state.
*/ */
*ret_entry = entry; lec_arp_hold(entry);
DPRINTK("lec: entry->status %d entry->vcc %p\n", entry->status, entry->vcc); *ret_entry = entry;
found = NULL; DPRINTK("lec: entry->status %d entry->vcc %p\n", entry->status,
} else { entry->vcc);
/* No matching entry was found */ found = NULL;
entry = make_entry(priv, mac_to_find); } else {
DPRINTK("LEC_ARP: Making entry\n"); /* No matching entry was found */
if (!entry) { entry = make_entry(priv, mac_to_find);
found = priv->mcast_vcc; DPRINTK("LEC_ARP: Making entry\n");
if (!entry) {
found = priv->mcast_vcc;
goto out; goto out;
} }
lec_arp_add(priv, entry); lec_arp_add(priv, entry);
/* We want arp-request(s) to be sent */ /* We want arp-request(s) to be sent */
entry->packets_flooded =1; entry->packets_flooded = 1;
entry->status = ESI_ARP_PENDING; entry->status = ESI_ARP_PENDING;
entry->no_tries = 1; entry->no_tries = 1;
entry->last_used = entry->timestamp = jiffies; entry->last_used = entry->timestamp = jiffies;
entry->is_rdesc = is_rdesc; entry->is_rdesc = is_rdesc;
if (entry->is_rdesc) if (entry->is_rdesc)
send_to_lecd(priv, l_rdesc_arp_xmt, mac_to_find, NULL, NULL); send_to_lecd(priv, l_rdesc_arp_xmt, mac_to_find, NULL,
else NULL);
send_to_lecd(priv, l_arp_xmt, mac_to_find, NULL, NULL); else
entry->timer.expires = jiffies + (1*HZ); send_to_lecd(priv, l_arp_xmt, mac_to_find, NULL, NULL);
entry->timer.function = lec_arp_expire_arp; entry->timer.expires = jiffies + (1 * HZ);
add_timer(&entry->timer); entry->timer.function = lec_arp_expire_arp;
found = priv->mcast_vcc; add_timer(&entry->timer);
} found = priv->mcast_vcc;
}
out: out:
spin_unlock_irqrestore(&priv->lec_arp_lock, flags); spin_unlock_irqrestore(&priv->lec_arp_lock, flags);
...@@ -2074,30 +2051,30 @@ lec_arp_resolve(struct lec_priv *priv, unsigned char *mac_to_find, ...@@ -2074,30 +2051,30 @@ lec_arp_resolve(struct lec_priv *priv, unsigned char *mac_to_find,
} }
static int static int
lec_addr_delete(struct lec_priv *priv, unsigned char *atm_addr, lec_addr_delete(struct lec_priv *priv, unsigned char *atm_addr,
unsigned long permanent) unsigned long permanent)
{ {
unsigned long flags; unsigned long flags;
struct lec_arp_table *entry, *next; struct hlist_node *node, *next;
int i; struct lec_arp_table *entry;
int i;
DPRINTK("lec_addr_delete\n"); DPRINTK("lec_addr_delete\n");
spin_lock_irqsave(&priv->lec_arp_lock, flags); spin_lock_irqsave(&priv->lec_arp_lock, flags);
for(i = 0; i < LEC_ARP_TABLE_SIZE; i++) { for (i = 0; i < LEC_ARP_TABLE_SIZE; i++) {
for(entry = priv->lec_arp_tables[i]; entry != NULL; entry = next) { hlist_for_each_entry_safe(entry, node, next, &priv->lec_arp_tables[i], next) {
next = entry->next; if (!memcmp(atm_addr, entry->atm_addr, ATM_ESA_LEN)
if (!memcmp(atm_addr, entry->atm_addr, ATM_ESA_LEN) && (permanent ||
&& (permanent || !(entry->flags & LEC_PERMANENT_FLAG))) {
!(entry->flags & LEC_PERMANENT_FLAG))) {
lec_arp_remove(priv, entry); lec_arp_remove(priv, entry);
kfree(entry); lec_arp_put(entry);
} }
spin_unlock_irqrestore(&priv->lec_arp_lock, flags); spin_unlock_irqrestore(&priv->lec_arp_lock, flags);
return 0; return 0;
} }
} }
spin_unlock_irqrestore(&priv->lec_arp_lock, flags); spin_unlock_irqrestore(&priv->lec_arp_lock, flags);
return -1; return -1;
} }
/* /*
...@@ -2105,109 +2082,98 @@ lec_addr_delete(struct lec_priv *priv, unsigned char *atm_addr, ...@@ -2105,109 +2082,98 @@ lec_addr_delete(struct lec_priv *priv, unsigned char *atm_addr,
*/ */
static void static void
lec_arp_update(struct lec_priv *priv, unsigned char *mac_addr, lec_arp_update(struct lec_priv *priv, unsigned char *mac_addr,
unsigned char *atm_addr, unsigned long remoteflag, unsigned char *atm_addr, unsigned long remoteflag,
unsigned int targetless_le_arp) unsigned int targetless_le_arp)
{ {
unsigned long flags; unsigned long flags;
struct lec_arp_table *entry, *tmp; struct hlist_node *node, *next;
int i; struct lec_arp_table *entry, *tmp;
int i;
DPRINTK("lec:%s", (targetless_le_arp) ? "targetless ": " "); DPRINTK("lec:%s", (targetless_le_arp) ? "targetless " : " ");
DPRINTK("lec_arp_update mac:%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x\n", DPRINTK("lec_arp_update mac:%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x\n",
mac_addr[0],mac_addr[1],mac_addr[2],mac_addr[3], mac_addr[0], mac_addr[1], mac_addr[2], mac_addr[3],
mac_addr[4],mac_addr[5]); mac_addr[4], mac_addr[5]);
spin_lock_irqsave(&priv->lec_arp_lock, flags); spin_lock_irqsave(&priv->lec_arp_lock, flags);
entry = lec_arp_find(priv, mac_addr); entry = lec_arp_find(priv, mac_addr);
if (entry == NULL && targetless_le_arp) if (entry == NULL && targetless_le_arp)
goto out; /* LANE2: ignore targetless LE_ARPs for which goto out; /*
* we have no entry in the cache. 7.1.30 * LANE2: ignore targetless LE_ARPs for which
*/ * we have no entry in the cache. 7.1.30
if (priv->lec_arp_empty_ones) { */
entry = priv->lec_arp_empty_ones; if (!hlist_empty(&priv->lec_arp_empty_ones)) {
if (!memcmp(entry->atm_addr, atm_addr, ATM_ESA_LEN)) { hlist_for_each_entry_safe(entry, node, next, &priv->lec_arp_empty_ones, next) {
priv->lec_arp_empty_ones = entry->next; if (memcmp(entry->atm_addr, atm_addr, ATM_ESA_LEN) == 0) {
} else { hlist_del(&entry->next);
while(entry->next && memcmp(entry->next->atm_addr, del_timer(&entry->timer);
atm_addr, ATM_ESA_LEN)) tmp = lec_arp_find(priv, mac_addr);
entry = entry->next; if (tmp) {
if (entry->next) { del_timer(&tmp->timer);
tmp = entry; tmp->status = ESI_FORWARD_DIRECT;
entry = entry->next; memcpy(tmp->atm_addr, atm_addr, ATM_ESA_LEN);
tmp->next = entry->next; tmp->vcc = entry->vcc;
} else tmp->old_push = entry->old_push;
entry = NULL; tmp->last_used = jiffies;
del_timer(&entry->timer);
} lec_arp_put(entry);
if (entry) { entry = tmp;
del_timer(&entry->timer); } else {
tmp = lec_arp_find(priv, mac_addr); entry->status = ESI_FORWARD_DIRECT;
if (tmp) { memcpy(entry->mac_addr, mac_addr, ETH_ALEN);
del_timer(&tmp->timer); entry->last_used = jiffies;
tmp->status = ESI_FORWARD_DIRECT; lec_arp_add(priv, entry);
memcpy(tmp->atm_addr, atm_addr, ATM_ESA_LEN); }
tmp->vcc = entry->vcc; if (remoteflag)
tmp->old_push = entry->old_push; entry->flags |= LEC_REMOTE_FLAG;
tmp->last_used = jiffies; else
del_timer(&entry->timer); entry->flags &= ~LEC_REMOTE_FLAG;
kfree(entry); DPRINTK("After update\n");
entry=tmp; dump_arp_table(priv);
} else { goto out;
entry->status = ESI_FORWARD_DIRECT; }
memcpy(entry->mac_addr, mac_addr, ETH_ALEN); }
entry->last_used = jiffies; }
lec_arp_add(priv, entry);
} entry = lec_arp_find(priv, mac_addr);
if (remoteflag) if (!entry) {
entry->flags|=LEC_REMOTE_FLAG; entry = make_entry(priv, mac_addr);
else if (!entry)
entry->flags&=~LEC_REMOTE_FLAG;
DPRINTK("After update\n");
dump_arp_table(priv);
goto out;
}
}
entry = lec_arp_find(priv, mac_addr);
if (!entry) {
entry = make_entry(priv, mac_addr);
if (!entry)
goto out; goto out;
entry->status = ESI_UNKNOWN; entry->status = ESI_UNKNOWN;
lec_arp_add(priv, entry); lec_arp_add(priv, entry);
/* Temporary, changes before end of function */ /* Temporary, changes before end of function */
} }
memcpy(entry->atm_addr, atm_addr, ATM_ESA_LEN); memcpy(entry->atm_addr, atm_addr, ATM_ESA_LEN);
del_timer(&entry->timer); del_timer(&entry->timer);
for(i = 0; i < LEC_ARP_TABLE_SIZE; i++) { for (i = 0; i < LEC_ARP_TABLE_SIZE; i++) {
for(tmp = priv->lec_arp_tables[i]; tmp; tmp=tmp->next) { hlist_for_each_entry(tmp, node, &priv->lec_arp_tables[i], next) {
if (entry != tmp && if (entry != tmp &&
!memcmp(tmp->atm_addr, atm_addr, !memcmp(tmp->atm_addr, atm_addr, ATM_ESA_LEN)) {
ATM_ESA_LEN)) { /* Vcc to this host exists */
/* Vcc to this host exists */ if (tmp->status > ESI_VC_PENDING) {
if (tmp->status > ESI_VC_PENDING) { /*
/* * ESI_FLUSH_PENDING,
* ESI_FLUSH_PENDING, * ESI_FORWARD_DIRECT
* ESI_FORWARD_DIRECT */
*/ entry->vcc = tmp->vcc;
entry->vcc = tmp->vcc; entry->old_push = tmp->old_push;
entry->old_push=tmp->old_push; }
} entry->status = tmp->status;
entry->status=tmp->status; break;
break; }
} }
} }
} if (remoteflag)
if (remoteflag) entry->flags |= LEC_REMOTE_FLAG;
entry->flags|=LEC_REMOTE_FLAG; else
else entry->flags &= ~LEC_REMOTE_FLAG;
entry->flags&=~LEC_REMOTE_FLAG; if (entry->status == ESI_ARP_PENDING || entry->status == ESI_UNKNOWN) {
if (entry->status == ESI_ARP_PENDING || entry->status = ESI_VC_PENDING;
entry->status == ESI_UNKNOWN) { send_to_lecd(priv, l_svc_setup, entry->mac_addr, atm_addr, NULL);
entry->status = ESI_VC_PENDING; }
send_to_lecd(priv, l_svc_setup, entry->mac_addr, atm_addr, NULL); DPRINTK("After update2\n");
} dump_arp_table(priv);
DPRINTK("After update2\n");
dump_arp_table(priv);
out: out:
spin_unlock_irqrestore(&priv->lec_arp_lock, flags); spin_unlock_irqrestore(&priv->lec_arp_lock, flags);
} }
...@@ -2217,299 +2183,299 @@ lec_arp_update(struct lec_priv *priv, unsigned char *mac_addr, ...@@ -2217,299 +2183,299 @@ lec_arp_update(struct lec_priv *priv, unsigned char *mac_addr,
*/ */
static void static void
lec_vcc_added(struct lec_priv *priv, struct atmlec_ioc *ioc_data, lec_vcc_added(struct lec_priv *priv, struct atmlec_ioc *ioc_data,
struct atm_vcc *vcc, struct atm_vcc *vcc,
void (*old_push)(struct atm_vcc *vcc, struct sk_buff *skb)) void (*old_push) (struct atm_vcc *vcc, struct sk_buff *skb))
{ {
unsigned long flags; unsigned long flags;
struct lec_arp_table *entry; struct hlist_node *node;
int i, found_entry=0; struct lec_arp_table *entry;
int i, found_entry = 0;
spin_lock_irqsave(&priv->lec_arp_lock, flags); spin_lock_irqsave(&priv->lec_arp_lock, flags);
if (ioc_data->receive == 2) { if (ioc_data->receive == 2) {
/* Vcc for Multicast Forward. No timer, LANEv2 7.1.20 and 2.3.5.3 */ /* Vcc for Multicast Forward. No timer, LANEv2 7.1.20 and 2.3.5.3 */
DPRINTK("LEC_ARP: Attaching mcast forward\n"); DPRINTK("LEC_ARP: Attaching mcast forward\n");
#if 0 #if 0
entry = lec_arp_find(priv, bus_mac); entry = lec_arp_find(priv, bus_mac);
if (!entry) { if (!entry) {
printk("LEC_ARP: Multicast entry not found!\n"); printk("LEC_ARP: Multicast entry not found!\n");
goto out; goto out;
} }
memcpy(entry->atm_addr, ioc_data->atm_addr, ATM_ESA_LEN); memcpy(entry->atm_addr, ioc_data->atm_addr, ATM_ESA_LEN);
entry->recv_vcc = vcc; entry->recv_vcc = vcc;
entry->old_recv_push = old_push; entry->old_recv_push = old_push;
#endif #endif
entry = make_entry(priv, bus_mac); entry = make_entry(priv, bus_mac);
if (entry == NULL) if (entry == NULL)
goto out; goto out;
del_timer(&entry->timer); del_timer(&entry->timer);
memcpy(entry->atm_addr, ioc_data->atm_addr, ATM_ESA_LEN); memcpy(entry->atm_addr, ioc_data->atm_addr, ATM_ESA_LEN);
entry->recv_vcc = vcc; entry->recv_vcc = vcc;
entry->old_recv_push = old_push; entry->old_recv_push = old_push;
entry->next = priv->mcast_fwds; hlist_add_head(&entry->next, &priv->mcast_fwds);
priv->mcast_fwds = entry; goto out;
goto out; } else if (ioc_data->receive == 1) {
} else if (ioc_data->receive == 1) { /*
/* Vcc which we don't want to make default vcc, attach it * Vcc which we don't want to make default vcc,
anyway. */ * attach it anyway.
DPRINTK("LEC_ARP:Attaching data direct, not default :%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x\n", */
ioc_data->atm_addr[0],ioc_data->atm_addr[1], DPRINTK
ioc_data->atm_addr[2],ioc_data->atm_addr[3], ("LEC_ARP:Attaching data direct, not default: "
ioc_data->atm_addr[4],ioc_data->atm_addr[5], "%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x\n",
ioc_data->atm_addr[6],ioc_data->atm_addr[7], ioc_data->atm_addr[0], ioc_data->atm_addr[1],
ioc_data->atm_addr[8],ioc_data->atm_addr[9], ioc_data->atm_addr[2], ioc_data->atm_addr[3],
ioc_data->atm_addr[10],ioc_data->atm_addr[11], ioc_data->atm_addr[4], ioc_data->atm_addr[5],
ioc_data->atm_addr[12],ioc_data->atm_addr[13], ioc_data->atm_addr[6], ioc_data->atm_addr[7],
ioc_data->atm_addr[14],ioc_data->atm_addr[15], ioc_data->atm_addr[8], ioc_data->atm_addr[9],
ioc_data->atm_addr[16],ioc_data->atm_addr[17], ioc_data->atm_addr[10], ioc_data->atm_addr[11],
ioc_data->atm_addr[18],ioc_data->atm_addr[19]); ioc_data->atm_addr[12], ioc_data->atm_addr[13],
entry = make_entry(priv, bus_mac); ioc_data->atm_addr[14], ioc_data->atm_addr[15],
if (entry == NULL) ioc_data->atm_addr[16], ioc_data->atm_addr[17],
ioc_data->atm_addr[18], ioc_data->atm_addr[19]);
entry = make_entry(priv, bus_mac);
if (entry == NULL)
goto out; goto out;
memcpy(entry->atm_addr, ioc_data->atm_addr, ATM_ESA_LEN); memcpy(entry->atm_addr, ioc_data->atm_addr, ATM_ESA_LEN);
memset(entry->mac_addr, 0, ETH_ALEN); memset(entry->mac_addr, 0, ETH_ALEN);
entry->recv_vcc = vcc; entry->recv_vcc = vcc;
entry->old_recv_push = old_push; entry->old_recv_push = old_push;
entry->status = ESI_UNKNOWN; entry->status = ESI_UNKNOWN;
entry->timer.expires = jiffies + priv->vcc_timeout_period; entry->timer.expires = jiffies + priv->vcc_timeout_period;
entry->timer.function = lec_arp_expire_vcc; entry->timer.function = lec_arp_expire_vcc;
add_timer(&entry->timer); hlist_add_head(&entry->next, &priv->lec_no_forward);
entry->next = priv->lec_no_forward; add_timer(&entry->timer);
priv->lec_no_forward = entry;
dump_arp_table(priv); dump_arp_table(priv);
goto out; goto out;
} }
DPRINTK("LEC_ARP:Attaching data direct, default:%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x\n", DPRINTK
ioc_data->atm_addr[0],ioc_data->atm_addr[1], ("LEC_ARP:Attaching data direct, default: "
ioc_data->atm_addr[2],ioc_data->atm_addr[3], "%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x%2.2x\n",
ioc_data->atm_addr[4],ioc_data->atm_addr[5], ioc_data->atm_addr[0], ioc_data->atm_addr[1],
ioc_data->atm_addr[6],ioc_data->atm_addr[7], ioc_data->atm_addr[2], ioc_data->atm_addr[3],
ioc_data->atm_addr[8],ioc_data->atm_addr[9], ioc_data->atm_addr[4], ioc_data->atm_addr[5],
ioc_data->atm_addr[10],ioc_data->atm_addr[11], ioc_data->atm_addr[6], ioc_data->atm_addr[7],
ioc_data->atm_addr[12],ioc_data->atm_addr[13], ioc_data->atm_addr[8], ioc_data->atm_addr[9],
ioc_data->atm_addr[14],ioc_data->atm_addr[15], ioc_data->atm_addr[10], ioc_data->atm_addr[11],
ioc_data->atm_addr[16],ioc_data->atm_addr[17], ioc_data->atm_addr[12], ioc_data->atm_addr[13],
ioc_data->atm_addr[18],ioc_data->atm_addr[19]); ioc_data->atm_addr[14], ioc_data->atm_addr[15],
for (i = 0; i < LEC_ARP_TABLE_SIZE; i++) { ioc_data->atm_addr[16], ioc_data->atm_addr[17],
for (entry = priv->lec_arp_tables[i]; entry; entry=entry->next) { ioc_data->atm_addr[18], ioc_data->atm_addr[19]);
if (memcmp(ioc_data->atm_addr, entry->atm_addr, for (i = 0; i < LEC_ARP_TABLE_SIZE; i++) {
ATM_ESA_LEN)==0) { hlist_for_each_entry(entry, node, &priv->lec_arp_tables[i], next) {
DPRINTK("LEC_ARP: Attaching data direct\n"); if (memcmp
DPRINTK("Currently -> Vcc: %d, Rvcc:%d\n", (ioc_data->atm_addr, entry->atm_addr,
entry->vcc?entry->vcc->vci:0, ATM_ESA_LEN) == 0) {
entry->recv_vcc?entry->recv_vcc->vci:0); DPRINTK("LEC_ARP: Attaching data direct\n");
found_entry=1; DPRINTK("Currently -> Vcc: %d, Rvcc:%d\n",
del_timer(&entry->timer); entry->vcc ? entry->vcc->vci : 0,
entry->vcc = vcc; entry->recv_vcc ? entry->recv_vcc->
entry->old_push = old_push; vci : 0);
if (entry->status == ESI_VC_PENDING) { found_entry = 1;
if(priv->maximum_unknown_frame_count del_timer(&entry->timer);
==0) entry->vcc = vcc;
entry->status = entry->old_push = old_push;
ESI_FORWARD_DIRECT; if (entry->status == ESI_VC_PENDING) {
else { if (priv->maximum_unknown_frame_count
entry->timestamp = jiffies; == 0)
entry->status = entry->status =
ESI_FLUSH_PENDING; ESI_FORWARD_DIRECT;
else {
entry->timestamp = jiffies;
entry->status =
ESI_FLUSH_PENDING;
#if 0 #if 0
send_to_lecd(priv,l_flush_xmt, send_to_lecd(priv, l_flush_xmt,
NULL, NULL,
entry->atm_addr, entry->atm_addr,
NULL); NULL);
#endif #endif
} }
} else { } else {
/* They were forming a connection /*
to us, and we to them. Our * They were forming a connection
ATM address is numerically lower * to us, and we to them. Our
than theirs, so we make connection * ATM address is numerically lower
we formed into default VCC (8.1.11). * than theirs, so we make connection
Connection they made gets torn * we formed into default VCC (8.1.11).
down. This might confuse some * Connection they made gets torn
clients. Can be changed if * down. This might confuse some
someone reports trouble... */ * clients. Can be changed if
; * someone reports trouble...
} */
} ;
} }
} }
if (found_entry) { }
DPRINTK("After vcc was added\n"); }
dump_arp_table(priv); if (found_entry) {
DPRINTK("After vcc was added\n");
dump_arp_table(priv);
goto out; goto out;
} }
/* Not found, snatch address from first data packet that arrives from /*
this vcc */ * Not found, snatch address from first data packet that arrives
entry = make_entry(priv, bus_mac); * from this vcc
if (!entry) */
entry = make_entry(priv, bus_mac);
if (!entry)
goto out; goto out;
entry->vcc = vcc; entry->vcc = vcc;
entry->old_push = old_push; entry->old_push = old_push;
memcpy(entry->atm_addr, ioc_data->atm_addr, ATM_ESA_LEN); memcpy(entry->atm_addr, ioc_data->atm_addr, ATM_ESA_LEN);
memset(entry->mac_addr, 0, ETH_ALEN); memset(entry->mac_addr, 0, ETH_ALEN);
entry->status = ESI_UNKNOWN; entry->status = ESI_UNKNOWN;
entry->next = priv->lec_arp_empty_ones; hlist_add_head(&entry->next, &priv->lec_arp_empty_ones);
priv->lec_arp_empty_ones = entry; entry->timer.expires = jiffies + priv->vcc_timeout_period;
entry->timer.expires = jiffies + priv->vcc_timeout_period; entry->timer.function = lec_arp_expire_vcc;
entry->timer.function = lec_arp_expire_vcc; add_timer(&entry->timer);
add_timer(&entry->timer); DPRINTK("After vcc was added\n");
DPRINTK("After vcc was added\n");
dump_arp_table(priv); dump_arp_table(priv);
out: out:
spin_unlock_irqrestore(&priv->lec_arp_lock, flags); spin_unlock_irqrestore(&priv->lec_arp_lock, flags);
} }
static void static void lec_flush_complete(struct lec_priv *priv, unsigned long tran_id)
lec_flush_complete(struct lec_priv *priv, unsigned long tran_id)
{ {
unsigned long flags; unsigned long flags;
struct lec_arp_table *entry; struct hlist_node *node;
int i; struct lec_arp_table *entry;
int i;
DPRINTK("LEC:lec_flush_complete %lx\n",tran_id);
DPRINTK("LEC:lec_flush_complete %lx\n", tran_id);
restart:
spin_lock_irqsave(&priv->lec_arp_lock, flags); spin_lock_irqsave(&priv->lec_arp_lock, flags);
for (i = 0; i < LEC_ARP_TABLE_SIZE; i++) { for (i = 0; i < LEC_ARP_TABLE_SIZE; i++) {
for (entry = priv->lec_arp_tables[i]; entry; entry=entry->next) { hlist_for_each_entry(entry, node, &priv->lec_arp_tables[i], next) {
if (entry->flush_tran_id == tran_id && if (entry->flush_tran_id == tran_id
entry->status == ESI_FLUSH_PENDING) { && entry->status == ESI_FLUSH_PENDING) {
struct sk_buff *skb; struct sk_buff *skb;
struct atm_vcc *vcc = entry->vcc;
while ((skb = skb_dequeue(&entry->tx_wait)) != NULL)
lec_send(entry->vcc, skb, entry->priv); lec_arp_hold(entry);
entry->status = ESI_FORWARD_DIRECT; spin_unlock_irqrestore(&priv->lec_arp_lock, flags);
DPRINTK("LEC_ARP: Flushed\n"); while ((skb = skb_dequeue(&entry->tx_wait)) != NULL)
} lec_send(vcc, skb, entry->priv);
} entry->last_used = jiffies;
} entry->status = ESI_FORWARD_DIRECT;
lec_arp_put(entry);
DPRINTK("LEC_ARP: Flushed\n");
goto restart;
}
}
}
spin_unlock_irqrestore(&priv->lec_arp_lock, flags); spin_unlock_irqrestore(&priv->lec_arp_lock, flags);
dump_arp_table(priv); dump_arp_table(priv);
} }
static void static void
lec_set_flush_tran_id(struct lec_priv *priv, lec_set_flush_tran_id(struct lec_priv *priv,
unsigned char *atm_addr, unsigned long tran_id) unsigned char *atm_addr, unsigned long tran_id)
{ {
unsigned long flags; unsigned long flags;
struct lec_arp_table *entry; struct hlist_node *node;
int i; struct lec_arp_table *entry;
int i;
spin_lock_irqsave(&priv->lec_arp_lock, flags); spin_lock_irqsave(&priv->lec_arp_lock, flags);
for (i = 0; i < LEC_ARP_TABLE_SIZE; i++) for (i = 0; i < LEC_ARP_TABLE_SIZE; i++)
for(entry = priv->lec_arp_tables[i]; entry; entry=entry->next) hlist_for_each_entry(entry, node, &priv->lec_arp_tables[i], next) {
if (!memcmp(atm_addr, entry->atm_addr, ATM_ESA_LEN)) { if (!memcmp(atm_addr, entry->atm_addr, ATM_ESA_LEN)) {
entry->flush_tran_id = tran_id; entry->flush_tran_id = tran_id;
DPRINTK("Set flush transaction id to %lx for %p\n",tran_id,entry); DPRINTK("Set flush transaction id to %lx for %p\n",
} tran_id, entry);
}
}
spin_unlock_irqrestore(&priv->lec_arp_lock, flags); spin_unlock_irqrestore(&priv->lec_arp_lock, flags);
} }
static int static int lec_mcast_make(struct lec_priv *priv, struct atm_vcc *vcc)
lec_mcast_make(struct lec_priv *priv, struct atm_vcc *vcc)
{ {
unsigned long flags; unsigned long flags;
unsigned char mac_addr[] = { unsigned char mac_addr[] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
struct lec_arp_table *to_add; };
struct lec_arp_table *to_add;
struct lec_vcc_priv *vpriv; struct lec_vcc_priv *vpriv;
int err = 0; int err = 0;
if (!(vpriv = kmalloc(sizeof(struct lec_vcc_priv), GFP_KERNEL))) if (!(vpriv = kmalloc(sizeof(struct lec_vcc_priv), GFP_KERNEL)))
return -ENOMEM; return -ENOMEM;
vpriv->xoff = 0; vpriv->xoff = 0;
vpriv->old_pop = vcc->pop; vpriv->old_pop = vcc->pop;
vcc->user_back = vpriv; vcc->user_back = vpriv;
vcc->pop = lec_pop; vcc->pop = lec_pop;
spin_lock_irqsave(&priv->lec_arp_lock, flags); spin_lock_irqsave(&priv->lec_arp_lock, flags);
to_add = make_entry(priv, mac_addr); to_add = make_entry(priv, mac_addr);
if (!to_add) { if (!to_add) {
vcc->pop = vpriv->old_pop; vcc->pop = vpriv->old_pop;
kfree(vpriv); kfree(vpriv);
err = -ENOMEM; err = -ENOMEM;
goto out; goto out;
} }
memcpy(to_add->atm_addr, vcc->remote.sas_addr.prv, ATM_ESA_LEN); memcpy(to_add->atm_addr, vcc->remote.sas_addr.prv, ATM_ESA_LEN);
to_add->status = ESI_FORWARD_DIRECT; to_add->status = ESI_FORWARD_DIRECT;
to_add->flags |= LEC_PERMANENT_FLAG; to_add->flags |= LEC_PERMANENT_FLAG;
to_add->vcc = vcc; to_add->vcc = vcc;
to_add->old_push = vcc->push; to_add->old_push = vcc->push;
vcc->push = lec_push; vcc->push = lec_push;
priv->mcast_vcc = vcc; priv->mcast_vcc = vcc;
lec_arp_add(priv, to_add); lec_arp_add(priv, to_add);
out: out:
spin_unlock_irqrestore(&priv->lec_arp_lock, flags); spin_unlock_irqrestore(&priv->lec_arp_lock, flags);
return err; return err;
} }
static void static void lec_vcc_close(struct lec_priv *priv, struct atm_vcc *vcc)
lec_vcc_close(struct lec_priv *priv, struct atm_vcc *vcc)
{ {
unsigned long flags; unsigned long flags;
struct lec_arp_table *entry, *next; struct hlist_node *node, *next;
int i; struct lec_arp_table *entry;
int i;
DPRINTK("LEC_ARP: lec_vcc_close vpi:%d vci:%d\n", vcc->vpi, vcc->vci);
dump_arp_table(priv);
DPRINTK("LEC_ARP: lec_vcc_close vpi:%d vci:%d\n",vcc->vpi,vcc->vci);
dump_arp_table(priv);
spin_lock_irqsave(&priv->lec_arp_lock, flags); spin_lock_irqsave(&priv->lec_arp_lock, flags);
for(i=0;i<LEC_ARP_TABLE_SIZE;i++) {
for(entry = priv->lec_arp_tables[i];entry; entry=next) { for (i = 0; i < LEC_ARP_TABLE_SIZE; i++) {
next = entry->next; hlist_for_each_entry_safe(entry, node, next, &priv->lec_arp_tables[i], next) {
if (vcc == entry->vcc) { if (vcc == entry->vcc) {
lec_arp_remove(priv, entry); lec_arp_remove(priv, entry);
kfree(entry); lec_arp_put(entry);
if (priv->mcast_vcc == vcc) { if (priv->mcast_vcc == vcc) {
priv->mcast_vcc = NULL; priv->mcast_vcc = NULL;
} }
} }
} }
} }
entry = priv->lec_arp_empty_ones; hlist_for_each_entry_safe(entry, node, next, &priv->lec_arp_empty_ones, next) {
priv->lec_arp_empty_ones = NULL; if (entry->vcc == vcc) {
while (entry != NULL) { lec_arp_clear_vccs(entry);
next = entry->next; del_timer(&entry->timer);
if (entry->vcc == vcc) { /* leave it out from the list */ hlist_del(&entry->next);
lec_arp_clear_vccs(entry); lec_arp_put(entry);
del_timer(&entry->timer); }
kfree(entry); }
}
else { /* put it back to the list */ hlist_for_each_entry_safe(entry, node, next, &priv->lec_no_forward, next) {
entry->next = priv->lec_arp_empty_ones; if (entry->recv_vcc == vcc) {
priv->lec_arp_empty_ones = entry; lec_arp_clear_vccs(entry);
} del_timer(&entry->timer);
entry = next; hlist_del(&entry->next);
} lec_arp_put(entry);
}
entry = priv->lec_no_forward; }
priv->lec_no_forward = NULL;
while (entry != NULL) { hlist_for_each_entry_safe(entry, node, next, &priv->mcast_fwds, next) {
next = entry->next; if (entry->recv_vcc == vcc) {
if (entry->recv_vcc == vcc) { lec_arp_clear_vccs(entry);
lec_arp_clear_vccs(entry); /* No timer, LANEv2 7.1.20 and 2.3.5.3 */
del_timer(&entry->timer); hlist_del(&entry->next);
kfree(entry); lec_arp_put(entry);
} }
else { }
entry->next = priv->lec_no_forward;
priv->lec_no_forward = entry;
}
entry = next;
}
entry = priv->mcast_fwds;
priv->mcast_fwds = NULL;
while (entry != NULL) {
next = entry->next;
if (entry->recv_vcc == vcc) {
lec_arp_clear_vccs(entry);
/* No timer, LANEv2 7.1.20 and 2.3.5.3 */
kfree(entry);
}
else {
entry->next = priv->mcast_fwds;
priv->mcast_fwds = entry;
}
entry = next;
}
spin_unlock_irqrestore(&priv->lec_arp_lock, flags); spin_unlock_irqrestore(&priv->lec_arp_lock, flags);
dump_arp_table(priv); dump_arp_table(priv);
...@@ -2517,57 +2483,42 @@ lec_vcc_close(struct lec_priv *priv, struct atm_vcc *vcc) ...@@ -2517,57 +2483,42 @@ lec_vcc_close(struct lec_priv *priv, struct atm_vcc *vcc)
static void static void
lec_arp_check_empties(struct lec_priv *priv, lec_arp_check_empties(struct lec_priv *priv,
struct atm_vcc *vcc, struct sk_buff *skb) struct atm_vcc *vcc, struct sk_buff *skb)
{ {
unsigned long flags; unsigned long flags;
struct lec_arp_table *entry, *prev; struct hlist_node *node, *next;
struct lecdatahdr_8023 *hdr = (struct lecdatahdr_8023 *)skb->data; struct lec_arp_table *entry, *tmp;
unsigned char *src; struct lecdatahdr_8023 *hdr = (struct lecdatahdr_8023 *)skb->data;
unsigned char *src;
#ifdef CONFIG_TR #ifdef CONFIG_TR
struct lecdatahdr_8025 *tr_hdr = (struct lecdatahdr_8025 *)skb->data; struct lecdatahdr_8025 *tr_hdr = (struct lecdatahdr_8025 *)skb->data;
if (priv->is_trdev) src = tr_hdr->h_source; if (priv->is_trdev)
else src = tr_hdr->h_source;
else
#endif #endif
src = hdr->h_source; src = hdr->h_source;
spin_lock_irqsave(&priv->lec_arp_lock, flags); spin_lock_irqsave(&priv->lec_arp_lock, flags);
entry = priv->lec_arp_empty_ones; hlist_for_each_entry_safe(entry, node, next, &priv->lec_arp_empty_ones, next) {
if (vcc == entry->vcc) { if (vcc == entry->vcc) {
del_timer(&entry->timer); del_timer(&entry->timer);
memcpy(entry->mac_addr, src, ETH_ALEN); memcpy(entry->mac_addr, src, ETH_ALEN);
entry->status = ESI_FORWARD_DIRECT; entry->status = ESI_FORWARD_DIRECT;
entry->last_used = jiffies; entry->last_used = jiffies;
priv->lec_arp_empty_ones = entry->next; /* We might have got an entry */
/* We might have got an entry */ if ((tmp = lec_arp_find(priv, src))) {
if ((prev = lec_arp_find(priv,src))) { lec_arp_remove(priv, tmp);
lec_arp_remove(priv, prev); lec_arp_put(tmp);
kfree(prev); }
} hlist_del(&entry->next);
lec_arp_add(priv, entry); lec_arp_add(priv, entry);
goto out; goto out;
} }
prev = entry; }
entry = entry->next; DPRINTK("LEC_ARP: Arp_check_empties: entry not found!\n");
while (entry && entry->vcc != vcc) {
prev= entry;
entry = entry->next;
}
if (!entry) {
DPRINTK("LEC_ARP: Arp_check_empties: entry not found!\n");
goto out;
}
del_timer(&entry->timer);
memcpy(entry->mac_addr, src, ETH_ALEN);
entry->status = ESI_FORWARD_DIRECT;
entry->last_used = jiffies;
prev->next = entry->next;
if ((prev = lec_arp_find(priv, src))) {
lec_arp_remove(priv, prev);
kfree(prev);
}
lec_arp_add(priv, entry);
out: out:
spin_unlock_irqrestore(&priv->lec_arp_lock, flags); spin_unlock_irqrestore(&priv->lec_arp_lock, flags);
} }
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");
/* /*
*
* Lan Emulation client header file * Lan Emulation client header file
* *
* Marko Kiiskila mkiiskila@yahoo.com * Marko Kiiskila <mkiiskila@yahoo.com>
*
*/ */
#ifndef _LEC_H_ #ifndef _LEC_H_
#define _LEC_H_ #define _LEC_H_
#include <linux/config.h>
#include <linux/atmdev.h> #include <linux/atmdev.h>
#include <linux/netdevice.h> #include <linux/netdevice.h>
#include <linux/atmlec.h> #include <linux/atmlec.h>
...@@ -16,18 +15,18 @@ ...@@ -16,18 +15,18 @@
#define LEC_HEADER_LEN 16 #define LEC_HEADER_LEN 16
struct lecdatahdr_8023 { struct lecdatahdr_8023 {
unsigned short le_header; unsigned short le_header;
unsigned char h_dest[ETH_ALEN]; unsigned char h_dest[ETH_ALEN];
unsigned char h_source[ETH_ALEN]; unsigned char h_source[ETH_ALEN];
unsigned short h_type; unsigned short h_type;
}; };
struct lecdatahdr_8025 { struct lecdatahdr_8025 {
unsigned short le_header; unsigned short le_header;
unsigned char ac_pad; unsigned char ac_pad;
unsigned char fc; unsigned char fc;
unsigned char h_dest[ETH_ALEN]; unsigned char h_dest[ETH_ALEN];
unsigned char h_source[ETH_ALEN]; unsigned char h_source[ETH_ALEN];
}; };
#define LEC_MINIMUM_8023_SIZE 62 #define LEC_MINIMUM_8023_SIZE 62
...@@ -44,17 +43,18 @@ struct lecdatahdr_8025 { ...@@ -44,17 +43,18 @@ struct lecdatahdr_8025 {
* *
*/ */
struct lane2_ops { struct lane2_ops {
int (*resolve)(struct net_device *dev, u8 *dst_mac, int force, int (*resolve) (struct net_device *dev, u8 *dst_mac, int force,
u8 **tlvs, u32 *sizeoftlvs); u8 **tlvs, u32 *sizeoftlvs);
int (*associate_req)(struct net_device *dev, u8 *lan_dst, int (*associate_req) (struct net_device *dev, u8 *lan_dst,
u8 *tlvs, u32 sizeoftlvs); u8 *tlvs, u32 sizeoftlvs);
void (*associate_indicator)(struct net_device *dev, u8 *mac_addr, void (*associate_indicator) (struct net_device *dev, u8 *mac_addr,
u8 *tlvs, u32 sizeoftlvs); u8 *tlvs, u32 sizeoftlvs);
}; };
/* /*
* ATM LAN Emulation supports both LLC & Dix Ethernet EtherType * ATM LAN Emulation supports both LLC & Dix Ethernet EtherType
* frames. * frames.
*
* 1. Dix Ethernet EtherType frames encoded by placing EtherType * 1. Dix Ethernet EtherType frames encoded by placing EtherType
* field in h_type field. Data follows immediatelly after header. * field in h_type field. Data follows immediatelly after header.
* 2. LLC Data frames whose total length, including LLC field and data, * 2. LLC Data frames whose total length, including LLC field and data,
...@@ -70,72 +70,88 @@ struct lane2_ops { ...@@ -70,72 +70,88 @@ struct lane2_ops {
#define LEC_ARP_TABLE_SIZE 16 #define LEC_ARP_TABLE_SIZE 16
struct lec_priv { struct lec_priv {
struct net_device_stats stats; struct net_device_stats stats;
unsigned short lecid; /* Lecid of this client */ unsigned short lecid; /* Lecid of this client */
struct lec_arp_table *lec_arp_empty_ones; struct hlist_head lec_arp_empty_ones;
/* Used for storing VCC's that don't have a MAC address attached yet */ /* Used for storing VCC's that don't have a MAC address attached yet */
struct lec_arp_table *lec_arp_tables[LEC_ARP_TABLE_SIZE]; struct hlist_head lec_arp_tables[LEC_ARP_TABLE_SIZE];
/* Actual LE ARP table */ /* Actual LE ARP table */
struct lec_arp_table *lec_no_forward; struct hlist_head lec_no_forward;
/* Used for storing VCC's (and forward packets from) which are to /*
age out by not using them to forward packets. * Used for storing VCC's (and forward packets from) which are to
This is because to some LE clients there will be 2 VCCs. Only * age out by not using them to forward packets.
one of them gets used. */ * This is because to some LE clients there will be 2 VCCs. Only
struct lec_arp_table *mcast_fwds; * one of them gets used.
/* With LANEv2 it is possible that BUS (or a special multicast server) */
establishes multiple Multicast Forward VCCs to us. This list struct hlist_head mcast_fwds;
collects all those VCCs. LANEv1 client has only one item in this /*
list. These entries are not aged out. */ * With LANEv2 it is possible that BUS (or a special multicast server)
spinlock_t lec_arp_lock; * establishes multiple Multicast Forward VCCs to us. This list
struct atm_vcc *mcast_vcc; /* Default Multicast Send VCC */ * collects all those VCCs. LANEv1 client has only one item in this
struct atm_vcc *lecd; * list. These entries are not aged out.
struct timer_list lec_arp_timer; */
/* C10 */ spinlock_t lec_arp_lock;
unsigned int maximum_unknown_frame_count; struct atm_vcc *mcast_vcc; /* Default Multicast Send VCC */
/* Within the period of time defined by this variable, the client will send struct atm_vcc *lecd;
no more than C10 frames to BUS for a given unicast destination. (C11) */ struct work_struct lec_arp_work; /* C10 */
unsigned long max_unknown_frame_time; unsigned int maximum_unknown_frame_count;
/* If no traffic has been sent in this vcc for this period of time, /*
vcc will be torn down (C12)*/ * Within the period of time defined by this variable, the client will send
unsigned long vcc_timeout_period; * no more than C10 frames to BUS for a given unicast destination. (C11)
/* An LE Client MUST not retry an LE_ARP_REQUEST for a */
given frame's LAN Destination more than maximum retry count times, unsigned long max_unknown_frame_time;
after the first LEC_ARP_REQUEST (C13)*/ /*
unsigned short max_retry_count; * If no traffic has been sent in this vcc for this period of time,
/* Max time the client will maintain an entry in its arp cache in * vcc will be torn down (C12)
absence of a verification of that relationship (C17)*/ */
unsigned long aging_time; unsigned long vcc_timeout_period;
/* Max time the client will maintain an entry in cache when /*
topology change flag is true (C18) */ * An LE Client MUST not retry an LE_ARP_REQUEST for a
unsigned long forward_delay_time; * given frame's LAN Destination more than maximum retry count times,
/* Topology change flag (C19)*/ * after the first LEC_ARP_REQUEST (C13)
int topology_change; */
/* Max time the client expects an LE_ARP_REQUEST/LE_ARP_RESPONSE unsigned short max_retry_count;
cycle to take (C20)*/ /*
unsigned long arp_response_time; * Max time the client will maintain an entry in its arp cache in
/* Time limit ot wait to receive an LE_FLUSH_RESPONSE after the * absence of a verification of that relationship (C17)
LE_FLUSH_REQUEST has been sent before taking recover action. (C21)*/ */
unsigned long flush_timeout; unsigned long aging_time;
/* The time since sending a frame to the bus after which the /*
LE Client may assume that the frame has been either discarded or * Max time the client will maintain an entry in cache when
delivered to the recipient (C22) */ * topology change flag is true (C18)
unsigned long path_switching_delay; */
unsigned long forward_delay_time; /* Topology change flag (C19) */
int topology_change;
/*
* Max time the client expects an LE_ARP_REQUEST/LE_ARP_RESPONSE
* cycle to take (C20)
*/
unsigned long arp_response_time;
/*
* Time limit ot wait to receive an LE_FLUSH_RESPONSE after the
* LE_FLUSH_REQUEST has been sent before taking recover action. (C21)
*/
unsigned long flush_timeout;
/* The time since sending a frame to the bus after which the
* LE Client may assume that the frame has been either discarded or
* delivered to the recipient (C22)
*/
unsigned long path_switching_delay;
u8 *tlvs; /* LANE2: TLVs are new */ u8 *tlvs; /* LANE2: TLVs are new */
u32 sizeoftlvs; /* The size of the tlv array in bytes */ u32 sizeoftlvs; /* The size of the tlv array in bytes */
int lane_version; /* LANE2 */ int lane_version; /* LANE2 */
int itfnum; /* e.g. 2 for lec2, 5 for lec5 */ int itfnum; /* e.g. 2 for lec2, 5 for lec5 */
struct lane2_ops *lane2_ops; /* can be NULL for LANE v1 */ struct lane2_ops *lane2_ops; /* can be NULL for LANE v1 */
int is_proxy; /* bridge between ATM and Ethernet */ int is_proxy; /* bridge between ATM and Ethernet */
int is_trdev; /* Device type, 0 = Ethernet, 1 = TokenRing */ int is_trdev; /* Device type, 0 = Ethernet, 1 = TokenRing */
}; };
struct lec_vcc_priv { struct lec_vcc_priv {
void (*old_pop)(struct atm_vcc *vcc, struct sk_buff *skb); void (*old_pop) (struct atm_vcc *vcc, struct sk_buff *skb);
int xoff; int xoff;
}; };
#define LEC_VCC_PRIV(vcc) ((struct lec_vcc_priv *)((vcc)->user_back)) #define LEC_VCC_PRIV(vcc) ((struct lec_vcc_priv *)((vcc)->user_back))
#endif /* _LEC_H_ */ #endif /* _LEC_H_ */
/* /*
* Lec arp cache * Lec arp cache
* Marko Kiiskila mkiiskila@yahoo.com
* *
* Marko Kiiskila <mkiiskila@yahoo.com>
*/ */
#ifndef _LEC_ARP_H #ifndef _LEC_ARP_H_
#define _LEC_ARP_H #define _LEC_ARP_H_
#include <linux/atm.h> #include <linux/atm.h>
#include <linux/atmdev.h> #include <linux/atmdev.h>
#include <linux/if_ether.h> #include <linux/if_ether.h>
#include <linux/atmlec.h> #include <linux/atmlec.h>
struct lec_arp_table { struct lec_arp_table {
struct lec_arp_table *next; /* Linked entry list */ struct hlist_node next; /* Linked entry list */
unsigned char atm_addr[ATM_ESA_LEN]; /* Atm address */ unsigned char atm_addr[ATM_ESA_LEN]; /* Atm address */
unsigned char mac_addr[ETH_ALEN]; /* Mac address */ unsigned char mac_addr[ETH_ALEN]; /* Mac address */
int is_rdesc; /* Mac address is a route descriptor */ int is_rdesc; /* Mac address is a route descriptor */
struct atm_vcc *vcc; /* Vcc this entry is attached */ struct atm_vcc *vcc; /* Vcc this entry is attached */
struct atm_vcc *recv_vcc; /* Vcc we receive data from */ struct atm_vcc *recv_vcc; /* Vcc we receive data from */
void (*old_push)(struct atm_vcc *vcc,struct sk_buff *skb);
/* Push that leads to daemon */
void (*old_recv_push)(struct atm_vcc *vcc, struct sk_buff *skb);
/* Push that leads to daemon */
void (*old_close)(struct atm_vcc *vcc);
/* We want to see when this
* vcc gets closed */
unsigned long last_used; /* For expiry */
unsigned long timestamp; /* Used for various timestamping
* things:
* 1. FLUSH started
* (status=ESI_FLUSH_PENDING)
* 2. Counting to
* max_unknown_frame_time
* (status=ESI_ARP_PENDING||
* status=ESI_VC_PENDING)
*/
unsigned char no_tries; /* No of times arp retry has been
tried */
unsigned char status; /* Status of this entry */
unsigned short flags; /* Flags for this entry */
unsigned short packets_flooded; /* Data packets flooded */
unsigned long flush_tran_id; /* Transaction id in flush protocol */
struct timer_list timer; /* Arping timer */
struct lec_priv *priv; /* Pointer back */
u8 *tlvs; /* LANE2: Each MAC address can have TLVs */ void (*old_push) (struct atm_vcc *vcc, struct sk_buff *skb);
u32 sizeoftlvs; /* associated with it. sizeoftlvs tells the */ /* Push that leads to daemon */
/* the length of the tlvs array */
struct sk_buff_head tx_wait; /* wait queue for outgoing packets */ void (*old_recv_push) (struct atm_vcc *vcc, struct sk_buff *skb);
/* Push that leads to daemon */
unsigned long last_used; /* For expiry */
unsigned long timestamp; /* Used for various timestamping things:
* 1. FLUSH started
* (status=ESI_FLUSH_PENDING)
* 2. Counting to
* max_unknown_frame_time
* (status=ESI_ARP_PENDING||
* status=ESI_VC_PENDING)
*/
unsigned char no_tries; /* No of times arp retry has been tried */
unsigned char status; /* Status of this entry */
unsigned short flags; /* Flags for this entry */
unsigned short packets_flooded; /* Data packets flooded */
unsigned long flush_tran_id; /* Transaction id in flush protocol */
struct timer_list timer; /* Arping timer */
struct lec_priv *priv; /* Pointer back */
u8 *tlvs;
u32 sizeoftlvs; /*
* LANE2: Each MAC address can have TLVs
* associated with it. sizeoftlvs tells the
* the length of the tlvs array
*/
struct sk_buff_head tx_wait; /* wait queue for outgoing packets */
atomic_t usage; /* usage count */
}; };
struct tlv { /* LANE2: Template tlv struct for accessing */ /*
/* the tlvs in the lec_arp_table->tlvs array*/ * LANE2: Template tlv struct for accessing
u32 type; * the tlvs in the lec_arp_table->tlvs array
u8 length; */
u8 value[255]; struct tlv {
u32 type;
u8 length;
u8 value[255];
}; };
/* Status fields */ /* Status fields */
#define ESI_UNKNOWN 0 /* #define ESI_UNKNOWN 0 /*
* Next packet sent to this mac address * Next packet sent to this mac address
* causes ARP-request to be sent * causes ARP-request to be sent
*/ */
#define ESI_ARP_PENDING 1 /* #define ESI_ARP_PENDING 1 /*
* There is no ATM address associated with this * There is no ATM address associated with this
* 48-bit address. The LE-ARP protocol is in * 48-bit address. The LE-ARP protocol is in
* progress. * progress.
*/ */
#define ESI_VC_PENDING 2 /* #define ESI_VC_PENDING 2 /*
* There is a valid ATM address associated with * There is a valid ATM address associated with
* this 48-bit address but there is no VC set * this 48-bit address but there is no VC set
* up to that ATM address. The signaling * up to that ATM address. The signaling
* protocol is in process. * protocol is in process.
*/ */
#define ESI_FLUSH_PENDING 4 /* #define ESI_FLUSH_PENDING 4 /*
* The LEC has been notified of the FLUSH_START * The LEC has been notified of the FLUSH_START
* status and it is assumed that the flush * status and it is assumed that the flush
* protocol is in process. * protocol is in process.
*/ */
#define ESI_FORWARD_DIRECT 5 /* #define ESI_FORWARD_DIRECT 5 /*
* Either the Path Switching Delay (C22) has * Either the Path Switching Delay (C22) has
* elapsed or the LEC has notified the Mapping * elapsed or the LEC has notified the Mapping
* that the flush protocol has completed. In * that the flush protocol has completed. In
* either case, it is safe to forward packets * either case, it is safe to forward packets
* to this address via the data direct VC. * to this address via the data direct VC.
*/ */
/* Flag values */ /* Flag values */
#define LEC_REMOTE_FLAG 0x0001 #define LEC_REMOTE_FLAG 0x0001
#define LEC_PERMANENT_FLAG 0x0002 #define LEC_PERMANENT_FLAG 0x0002
#endif #endif /* _LEC_ARP_H_ */
...@@ -485,7 +485,7 @@ int cipso_v4_doi_add(struct cipso_v4_doi *doi_def) ...@@ -485,7 +485,7 @@ int cipso_v4_doi_add(struct cipso_v4_doi *doi_def)
* *
*/ */
int cipso_v4_doi_remove(u32 doi, int cipso_v4_doi_remove(u32 doi,
u32 audit_secid, struct netlbl_audit *audit_info,
void (*callback) (struct rcu_head * head)) void (*callback) (struct rcu_head * head))
{ {
struct cipso_v4_doi *doi_def; struct cipso_v4_doi *doi_def;
...@@ -506,7 +506,7 @@ int cipso_v4_doi_remove(u32 doi, ...@@ -506,7 +506,7 @@ int cipso_v4_doi_remove(u32 doi,
list_for_each_entry_rcu(dom_iter, &doi_def->dom_list, list) list_for_each_entry_rcu(dom_iter, &doi_def->dom_list, list)
if (dom_iter->valid) if (dom_iter->valid)
netlbl_domhsh_remove(dom_iter->domain, netlbl_domhsh_remove(dom_iter->domain,
audit_secid); audit_info);
cipso_v4_cache_invalidate(); cipso_v4_cache_invalidate();
rcu_read_unlock(); rcu_read_unlock();
......
...@@ -384,11 +384,15 @@ static int netlbl_cipsov4_add(struct sk_buff *skb, struct genl_info *info) ...@@ -384,11 +384,15 @@ static int netlbl_cipsov4_add(struct sk_buff *skb, struct genl_info *info)
u32 doi; u32 doi;
const char *type_str = "(unknown)"; const char *type_str = "(unknown)";
struct audit_buffer *audit_buf; struct audit_buffer *audit_buf;
struct netlbl_audit audit_info;
if (!info->attrs[NLBL_CIPSOV4_A_DOI] || if (!info->attrs[NLBL_CIPSOV4_A_DOI] ||
!info->attrs[NLBL_CIPSOV4_A_MTYPE]) !info->attrs[NLBL_CIPSOV4_A_MTYPE])
return -EINVAL; return -EINVAL;
doi = nla_get_u32(info->attrs[NLBL_CIPSOV4_A_DOI]);
netlbl_netlink_auditinfo(skb, &audit_info);
type = nla_get_u32(info->attrs[NLBL_CIPSOV4_A_MTYPE]); type = nla_get_u32(info->attrs[NLBL_CIPSOV4_A_MTYPE]);
switch (type) { switch (type) {
case CIPSO_V4_MAP_STD: case CIPSO_V4_MAP_STD:
...@@ -401,13 +405,14 @@ static int netlbl_cipsov4_add(struct sk_buff *skb, struct genl_info *info) ...@@ -401,13 +405,14 @@ static int netlbl_cipsov4_add(struct sk_buff *skb, struct genl_info *info)
break; break;
} }
if (ret_val == 0) { audit_buf = netlbl_audit_start_common(AUDIT_MAC_CIPSOV4_ADD,
doi = nla_get_u32(info->attrs[NLBL_CIPSOV4_A_DOI]); &audit_info);
audit_buf = netlbl_audit_start_common(AUDIT_MAC_CIPSOV4_ADD, audit_log_format(audit_buf,
NETLINK_CB(skb).sid); " cipso_doi=%u cipso_type=%s res=%u",
audit_log_format(audit_buf, " doi=%u type=%s", doi, type_str); doi,
audit_log_end(audit_buf); type_str,
} ret_val == 0 ? 1 : 0);
audit_log_end(audit_buf);
return ret_val; return ret_val;
} }
...@@ -668,20 +673,25 @@ static int netlbl_cipsov4_remove(struct sk_buff *skb, struct genl_info *info) ...@@ -668,20 +673,25 @@ static int netlbl_cipsov4_remove(struct sk_buff *skb, struct genl_info *info)
int ret_val = -EINVAL; int ret_val = -EINVAL;
u32 doi = 0; u32 doi = 0;
struct audit_buffer *audit_buf; struct audit_buffer *audit_buf;
struct netlbl_audit audit_info;
if (info->attrs[NLBL_CIPSOV4_A_DOI]) { if (!info->attrs[NLBL_CIPSOV4_A_DOI])
doi = nla_get_u32(info->attrs[NLBL_CIPSOV4_A_DOI]); return -EINVAL;
ret_val = cipso_v4_doi_remove(doi,
NETLINK_CB(skb).sid,
netlbl_cipsov4_doi_free);
}
if (ret_val == 0) { doi = nla_get_u32(info->attrs[NLBL_CIPSOV4_A_DOI]);
audit_buf = netlbl_audit_start_common(AUDIT_MAC_CIPSOV4_DEL, netlbl_netlink_auditinfo(skb, &audit_info);
NETLINK_CB(skb).sid);
audit_log_format(audit_buf, " doi=%u", doi); ret_val = cipso_v4_doi_remove(doi,
audit_log_end(audit_buf); &audit_info,
} netlbl_cipsov4_doi_free);
audit_buf = netlbl_audit_start_common(AUDIT_MAC_CIPSOV4_DEL,
&audit_info);
audit_log_format(audit_buf,
" cipso_doi=%u res=%u",
doi,
ret_val == 0 ? 1 : 0);
audit_log_end(audit_buf);
return ret_val; return ret_val;
} }
......
...@@ -188,7 +188,7 @@ int netlbl_domhsh_init(u32 size) ...@@ -188,7 +188,7 @@ int netlbl_domhsh_init(u32 size)
/** /**
* netlbl_domhsh_add - Adds a entry to the domain hash table * netlbl_domhsh_add - Adds a entry to the domain hash table
* @entry: the entry to add * @entry: the entry to add
* @audit_secid: the LSM secid to use in the audit message * @audit_info: NetLabel audit information
* *
* Description: * Description:
* Adds a new entry to the domain hash table and handles any updates to the * Adds a new entry to the domain hash table and handles any updates to the
...@@ -196,7 +196,8 @@ int netlbl_domhsh_init(u32 size) ...@@ -196,7 +196,8 @@ int netlbl_domhsh_init(u32 size)
* negative on failure. * negative on failure.
* *
*/ */
int netlbl_domhsh_add(struct netlbl_dom_map *entry, u32 audit_secid) int netlbl_domhsh_add(struct netlbl_dom_map *entry,
struct netlbl_audit *audit_info)
{ {
int ret_val; int ret_val;
u32 bkt; u32 bkt;
...@@ -241,26 +242,26 @@ int netlbl_domhsh_add(struct netlbl_dom_map *entry, u32 audit_secid) ...@@ -241,26 +242,26 @@ int netlbl_domhsh_add(struct netlbl_dom_map *entry, u32 audit_secid)
spin_unlock(&netlbl_domhsh_def_lock); spin_unlock(&netlbl_domhsh_def_lock);
} else } else
ret_val = -EINVAL; ret_val = -EINVAL;
if (ret_val == 0) {
if (entry->domain != NULL) if (entry->domain != NULL)
audit_domain = entry->domain; audit_domain = entry->domain;
else else
audit_domain = "(default)"; audit_domain = "(default)";
audit_buf = netlbl_audit_start_common(AUDIT_MAC_MAP_ADD, audit_buf = netlbl_audit_start_common(AUDIT_MAC_MAP_ADD, audit_info);
audit_secid); audit_log_format(audit_buf, " nlbl_domain=%s", audit_domain);
audit_log_format(audit_buf, " domain=%s", audit_domain); switch (entry->type) {
switch (entry->type) { case NETLBL_NLTYPE_UNLABELED:
case NETLBL_NLTYPE_UNLABELED: audit_log_format(audit_buf, " nlbl_protocol=unlbl");
audit_log_format(audit_buf, " protocol=unlbl"); break;
break; case NETLBL_NLTYPE_CIPSOV4:
case NETLBL_NLTYPE_CIPSOV4: audit_log_format(audit_buf,
audit_log_format(audit_buf, " nlbl_protocol=cipsov4 cipso_doi=%u",
" protocol=cipsov4 doi=%u", entry->type_def.cipsov4->doi);
entry->type_def.cipsov4->doi); break;
break;
}
audit_log_end(audit_buf);
} }
audit_log_format(audit_buf, " res=%u", ret_val == 0 ? 1 : 0);
audit_log_end(audit_buf);
rcu_read_unlock(); rcu_read_unlock();
if (ret_val != 0) { if (ret_val != 0) {
...@@ -279,7 +280,7 @@ int netlbl_domhsh_add(struct netlbl_dom_map *entry, u32 audit_secid) ...@@ -279,7 +280,7 @@ int netlbl_domhsh_add(struct netlbl_dom_map *entry, u32 audit_secid)
/** /**
* netlbl_domhsh_add_default - Adds the default entry to the domain hash table * netlbl_domhsh_add_default - Adds the default entry to the domain hash table
* @entry: the entry to add * @entry: the entry to add
* @audit_secid: the LSM secid to use in the audit message * @audit_info: NetLabel audit information
* *
* Description: * Description:
* Adds a new default entry to the domain hash table and handles any updates * Adds a new default entry to the domain hash table and handles any updates
...@@ -287,15 +288,16 @@ int netlbl_domhsh_add(struct netlbl_dom_map *entry, u32 audit_secid) ...@@ -287,15 +288,16 @@ int netlbl_domhsh_add(struct netlbl_dom_map *entry, u32 audit_secid)
* negative on failure. * negative on failure.
* *
*/ */
int netlbl_domhsh_add_default(struct netlbl_dom_map *entry, u32 audit_secid) int netlbl_domhsh_add_default(struct netlbl_dom_map *entry,
struct netlbl_audit *audit_info)
{ {
return netlbl_domhsh_add(entry, audit_secid); return netlbl_domhsh_add(entry, audit_info);
} }
/** /**
* netlbl_domhsh_remove - Removes an entry from the domain hash table * netlbl_domhsh_remove - Removes an entry from the domain hash table
* @domain: the domain to remove * @domain: the domain to remove
* @audit_secid: the LSM secid to use in the audit message * @audit_info: NetLabel audit information
* *
* Description: * Description:
* Removes an entry from the domain hash table and handles any updates to the * Removes an entry from the domain hash table and handles any updates to the
...@@ -303,7 +305,7 @@ int netlbl_domhsh_add_default(struct netlbl_dom_map *entry, u32 audit_secid) ...@@ -303,7 +305,7 @@ int netlbl_domhsh_add_default(struct netlbl_dom_map *entry, u32 audit_secid)
* negative on failure. * negative on failure.
* *
*/ */
int netlbl_domhsh_remove(const char *domain, u32 audit_secid) int netlbl_domhsh_remove(const char *domain, struct netlbl_audit *audit_info)
{ {
int ret_val = -ENOENT; int ret_val = -ENOENT;
struct netlbl_dom_map *entry; struct netlbl_dom_map *entry;
...@@ -345,18 +347,20 @@ int netlbl_domhsh_remove(const char *domain, u32 audit_secid) ...@@ -345,18 +347,20 @@ int netlbl_domhsh_remove(const char *domain, u32 audit_secid)
ret_val = -ENOENT; ret_val = -ENOENT;
spin_unlock(&netlbl_domhsh_def_lock); spin_unlock(&netlbl_domhsh_def_lock);
} }
if (ret_val == 0) {
if (entry->domain != NULL)
audit_domain = entry->domain;
else
audit_domain = "(default)";
audit_buf = netlbl_audit_start_common(AUDIT_MAC_MAP_DEL,
audit_secid);
audit_log_format(audit_buf, " domain=%s", audit_domain);
audit_log_end(audit_buf);
if (entry->domain != NULL)
audit_domain = entry->domain;
else
audit_domain = "(default)";
audit_buf = netlbl_audit_start_common(AUDIT_MAC_MAP_DEL, audit_info);
audit_log_format(audit_buf,
" nlbl_domain=%s res=%u",
audit_domain,
ret_val == 0 ? 1 : 0);
audit_log_end(audit_buf);
if (ret_val == 0)
call_rcu(&entry->rcu, netlbl_domhsh_free_entry); call_rcu(&entry->rcu, netlbl_domhsh_free_entry);
}
remove_return: remove_return:
rcu_read_unlock(); rcu_read_unlock();
...@@ -365,7 +369,7 @@ int netlbl_domhsh_remove(const char *domain, u32 audit_secid) ...@@ -365,7 +369,7 @@ int netlbl_domhsh_remove(const char *domain, u32 audit_secid)
/** /**
* netlbl_domhsh_remove_default - Removes the default entry from the table * netlbl_domhsh_remove_default - Removes the default entry from the table
* @audit_secid: the LSM secid to use in the audit message * @audit_info: NetLabel audit information
* *
* Description: * Description:
* Removes/resets the default entry for the domain hash table and handles any * Removes/resets the default entry for the domain hash table and handles any
...@@ -373,9 +377,9 @@ int netlbl_domhsh_remove(const char *domain, u32 audit_secid) ...@@ -373,9 +377,9 @@ int netlbl_domhsh_remove(const char *domain, u32 audit_secid)
* success, non-zero on failure. * success, non-zero on failure.
* *
*/ */
int netlbl_domhsh_remove_default(u32 audit_secid) int netlbl_domhsh_remove_default(struct netlbl_audit *audit_info)
{ {
return netlbl_domhsh_remove(NULL, audit_secid); return netlbl_domhsh_remove(NULL, audit_info);
} }
/** /**
......
...@@ -57,9 +57,11 @@ struct netlbl_dom_map { ...@@ -57,9 +57,11 @@ struct netlbl_dom_map {
int netlbl_domhsh_init(u32 size); int netlbl_domhsh_init(u32 size);
/* Manipulate the domain hash table */ /* Manipulate the domain hash table */
int netlbl_domhsh_add(struct netlbl_dom_map *entry, u32 audit_secid); int netlbl_domhsh_add(struct netlbl_dom_map *entry,
int netlbl_domhsh_add_default(struct netlbl_dom_map *entry, u32 audit_secid); struct netlbl_audit *audit_info);
int netlbl_domhsh_remove_default(u32 audit_secid); int netlbl_domhsh_add_default(struct netlbl_dom_map *entry,
struct netlbl_audit *audit_info);
int netlbl_domhsh_remove_default(struct netlbl_audit *audit_info);
struct netlbl_dom_map *netlbl_domhsh_getentry(const char *domain); struct netlbl_dom_map *netlbl_domhsh_getentry(const char *domain);
int netlbl_domhsh_walk(u32 *skip_bkt, int netlbl_domhsh_walk(u32 *skip_bkt,
u32 *skip_chain, u32 *skip_chain,
......
...@@ -87,11 +87,14 @@ static int netlbl_mgmt_add(struct sk_buff *skb, struct genl_info *info) ...@@ -87,11 +87,14 @@ static int netlbl_mgmt_add(struct sk_buff *skb, struct genl_info *info)
struct netlbl_dom_map *entry = NULL; struct netlbl_dom_map *entry = NULL;
size_t tmp_size; size_t tmp_size;
u32 tmp_val; u32 tmp_val;
struct netlbl_audit audit_info;
if (!info->attrs[NLBL_MGMT_A_DOMAIN] || if (!info->attrs[NLBL_MGMT_A_DOMAIN] ||
!info->attrs[NLBL_MGMT_A_PROTOCOL]) !info->attrs[NLBL_MGMT_A_PROTOCOL])
goto add_failure; goto add_failure;
netlbl_netlink_auditinfo(skb, &audit_info);
entry = kzalloc(sizeof(*entry), GFP_KERNEL); entry = kzalloc(sizeof(*entry), GFP_KERNEL);
if (entry == NULL) { if (entry == NULL) {
ret_val = -ENOMEM; ret_val = -ENOMEM;
...@@ -108,7 +111,7 @@ static int netlbl_mgmt_add(struct sk_buff *skb, struct genl_info *info) ...@@ -108,7 +111,7 @@ static int netlbl_mgmt_add(struct sk_buff *skb, struct genl_info *info)
switch (entry->type) { switch (entry->type) {
case NETLBL_NLTYPE_UNLABELED: case NETLBL_NLTYPE_UNLABELED:
ret_val = netlbl_domhsh_add(entry, NETLINK_CB(skb).sid); ret_val = netlbl_domhsh_add(entry, &audit_info);
break; break;
case NETLBL_NLTYPE_CIPSOV4: case NETLBL_NLTYPE_CIPSOV4:
if (!info->attrs[NLBL_MGMT_A_CV4DOI]) if (!info->attrs[NLBL_MGMT_A_CV4DOI])
...@@ -125,7 +128,7 @@ static int netlbl_mgmt_add(struct sk_buff *skb, struct genl_info *info) ...@@ -125,7 +128,7 @@ static int netlbl_mgmt_add(struct sk_buff *skb, struct genl_info *info)
rcu_read_unlock(); rcu_read_unlock();
goto add_failure; goto add_failure;
} }
ret_val = netlbl_domhsh_add(entry, NETLINK_CB(skb).sid); ret_val = netlbl_domhsh_add(entry, &audit_info);
rcu_read_unlock(); rcu_read_unlock();
break; break;
default: default:
...@@ -156,12 +159,15 @@ static int netlbl_mgmt_add(struct sk_buff *skb, struct genl_info *info) ...@@ -156,12 +159,15 @@ static int netlbl_mgmt_add(struct sk_buff *skb, struct genl_info *info)
static int netlbl_mgmt_remove(struct sk_buff *skb, struct genl_info *info) static int netlbl_mgmt_remove(struct sk_buff *skb, struct genl_info *info)
{ {
char *domain; char *domain;
struct netlbl_audit audit_info;
if (!info->attrs[NLBL_MGMT_A_DOMAIN]) if (!info->attrs[NLBL_MGMT_A_DOMAIN])
return -EINVAL; return -EINVAL;
netlbl_netlink_auditinfo(skb, &audit_info);
domain = nla_data(info->attrs[NLBL_MGMT_A_DOMAIN]); domain = nla_data(info->attrs[NLBL_MGMT_A_DOMAIN]);
return netlbl_domhsh_remove(domain, NETLINK_CB(skb).sid); return netlbl_domhsh_remove(domain, &audit_info);
} }
/** /**
...@@ -264,10 +270,13 @@ static int netlbl_mgmt_adddef(struct sk_buff *skb, struct genl_info *info) ...@@ -264,10 +270,13 @@ static int netlbl_mgmt_adddef(struct sk_buff *skb, struct genl_info *info)
int ret_val = -EINVAL; int ret_val = -EINVAL;
struct netlbl_dom_map *entry = NULL; struct netlbl_dom_map *entry = NULL;
u32 tmp_val; u32 tmp_val;
struct netlbl_audit audit_info;
if (!info->attrs[NLBL_MGMT_A_PROTOCOL]) if (!info->attrs[NLBL_MGMT_A_PROTOCOL])
goto adddef_failure; goto adddef_failure;
netlbl_netlink_auditinfo(skb, &audit_info);
entry = kzalloc(sizeof(*entry), GFP_KERNEL); entry = kzalloc(sizeof(*entry), GFP_KERNEL);
if (entry == NULL) { if (entry == NULL) {
ret_val = -ENOMEM; ret_val = -ENOMEM;
...@@ -277,8 +286,7 @@ static int netlbl_mgmt_adddef(struct sk_buff *skb, struct genl_info *info) ...@@ -277,8 +286,7 @@ static int netlbl_mgmt_adddef(struct sk_buff *skb, struct genl_info *info)
switch (entry->type) { switch (entry->type) {
case NETLBL_NLTYPE_UNLABELED: case NETLBL_NLTYPE_UNLABELED:
ret_val = netlbl_domhsh_add_default(entry, ret_val = netlbl_domhsh_add_default(entry, &audit_info);
NETLINK_CB(skb).sid);
break; break;
case NETLBL_NLTYPE_CIPSOV4: case NETLBL_NLTYPE_CIPSOV4:
if (!info->attrs[NLBL_MGMT_A_CV4DOI]) if (!info->attrs[NLBL_MGMT_A_CV4DOI])
...@@ -295,8 +303,7 @@ static int netlbl_mgmt_adddef(struct sk_buff *skb, struct genl_info *info) ...@@ -295,8 +303,7 @@ static int netlbl_mgmt_adddef(struct sk_buff *skb, struct genl_info *info)
rcu_read_unlock(); rcu_read_unlock();
goto adddef_failure; goto adddef_failure;
} }
ret_val = netlbl_domhsh_add_default(entry, ret_val = netlbl_domhsh_add_default(entry, &audit_info);
NETLINK_CB(skb).sid);
rcu_read_unlock(); rcu_read_unlock();
break; break;
default: default:
...@@ -324,7 +331,11 @@ static int netlbl_mgmt_adddef(struct sk_buff *skb, struct genl_info *info) ...@@ -324,7 +331,11 @@ static int netlbl_mgmt_adddef(struct sk_buff *skb, struct genl_info *info)
*/ */
static int netlbl_mgmt_removedef(struct sk_buff *skb, struct genl_info *info) static int netlbl_mgmt_removedef(struct sk_buff *skb, struct genl_info *info)
{ {
return netlbl_domhsh_remove_default(NETLINK_CB(skb).sid); struct netlbl_audit audit_info;
netlbl_netlink_auditinfo(skb, &audit_info);
return netlbl_domhsh_remove_default(&audit_info);
} }
/** /**
......
...@@ -70,18 +70,25 @@ static struct nla_policy netlbl_unlabel_genl_policy[NLBL_UNLABEL_A_MAX + 1] = { ...@@ -70,18 +70,25 @@ static struct nla_policy netlbl_unlabel_genl_policy[NLBL_UNLABEL_A_MAX + 1] = {
/** /**
* netlbl_unlabel_acceptflg_set - Set the unlabeled accept flag * netlbl_unlabel_acceptflg_set - Set the unlabeled accept flag
* @value: desired value * @value: desired value
* @audit_secid: the LSM secid to use in the audit message * @audit_info: NetLabel audit information
* *
* Description: * Description:
* Set the value of the unlabeled accept flag to @value. * Set the value of the unlabeled accept flag to @value.
* *
*/ */
static void netlbl_unlabel_acceptflg_set(u8 value, u32 audit_secid) static void netlbl_unlabel_acceptflg_set(u8 value,
struct netlbl_audit *audit_info)
{ {
struct audit_buffer *audit_buf;
u8 old_val;
old_val = atomic_read(&netlabel_unlabel_accept_flg);
atomic_set(&netlabel_unlabel_accept_flg, value); atomic_set(&netlabel_unlabel_accept_flg, value);
netlbl_audit_nomsg((value ?
AUDIT_MAC_UNLBL_ACCEPT : AUDIT_MAC_UNLBL_DENY), audit_buf = netlbl_audit_start_common(AUDIT_MAC_UNLBL_ALLOW,
audit_secid); audit_info);
audit_log_format(audit_buf, " unlbl_accept=%u old=%u", value, old_val);
audit_log_end(audit_buf);
} }
/* /*
...@@ -101,12 +108,13 @@ static void netlbl_unlabel_acceptflg_set(u8 value, u32 audit_secid) ...@@ -101,12 +108,13 @@ static void netlbl_unlabel_acceptflg_set(u8 value, u32 audit_secid)
static int netlbl_unlabel_accept(struct sk_buff *skb, struct genl_info *info) static int netlbl_unlabel_accept(struct sk_buff *skb, struct genl_info *info)
{ {
u8 value; u8 value;
struct netlbl_audit audit_info;
if (info->attrs[NLBL_UNLABEL_A_ACPTFLG]) { if (info->attrs[NLBL_UNLABEL_A_ACPTFLG]) {
value = nla_get_u8(info->attrs[NLBL_UNLABEL_A_ACPTFLG]); value = nla_get_u8(info->attrs[NLBL_UNLABEL_A_ACPTFLG]);
if (value == 1 || value == 0) { if (value == 1 || value == 0) {
netlbl_unlabel_acceptflg_set(value, netlbl_netlink_auditinfo(skb, &audit_info);
NETLINK_CB(skb).sid); netlbl_unlabel_acceptflg_set(value, &audit_info);
return 0; return 0;
} }
} }
...@@ -250,19 +258,23 @@ int netlbl_unlabel_defconf(void) ...@@ -250,19 +258,23 @@ int netlbl_unlabel_defconf(void)
{ {
int ret_val; int ret_val;
struct netlbl_dom_map *entry; struct netlbl_dom_map *entry;
u32 secid; struct netlbl_audit audit_info;
security_task_getsecid(current, &secid); /* Only the kernel is allowed to call this function and the only time
* it is called is at bootup before the audit subsystem is reporting
* messages so don't worry to much about these values. */
security_task_getsecid(current, &audit_info.secid);
audit_info.loginuid = 0;
entry = kzalloc(sizeof(*entry), GFP_KERNEL); entry = kzalloc(sizeof(*entry), GFP_KERNEL);
if (entry == NULL) if (entry == NULL)
return -ENOMEM; return -ENOMEM;
entry->type = NETLBL_NLTYPE_UNLABELED; entry->type = NETLBL_NLTYPE_UNLABELED;
ret_val = netlbl_domhsh_add_default(entry, secid); ret_val = netlbl_domhsh_add_default(entry, &audit_info);
if (ret_val != 0) if (ret_val != 0)
return ret_val; return ret_val;
netlbl_unlabel_acceptflg_set(1, secid); netlbl_unlabel_acceptflg_set(1, &audit_info);
return 0; return 0;
} }
...@@ -85,7 +85,7 @@ int netlbl_netlink_init(void) ...@@ -85,7 +85,7 @@ int netlbl_netlink_init(void)
/** /**
* netlbl_audit_start_common - Start an audit message * netlbl_audit_start_common - Start an audit message
* @type: audit message type * @type: audit message type
* @secid: LSM context ID * @audit_info: NetLabel audit information
* *
* Description: * Description:
* Start an audit message using the type specified in @type and fill the audit * Start an audit message using the type specified in @type and fill the audit
...@@ -93,14 +93,11 @@ int netlbl_netlink_init(void) ...@@ -93,14 +93,11 @@ int netlbl_netlink_init(void)
* a pointer to the audit buffer on success, NULL on failure. * a pointer to the audit buffer on success, NULL on failure.
* *
*/ */
struct audit_buffer *netlbl_audit_start_common(int type, u32 secid) struct audit_buffer *netlbl_audit_start_common(int type,
struct netlbl_audit *audit_info)
{ {
struct audit_context *audit_ctx = current->audit_context; struct audit_context *audit_ctx = current->audit_context;
struct audit_buffer *audit_buf; struct audit_buffer *audit_buf;
uid_t audit_loginuid;
const char *audit_tty;
char audit_comm[sizeof(current->comm)];
struct vm_area_struct *vma;
char *secctx; char *secctx;
u32 secctx_len; u32 secctx_len;
...@@ -108,60 +105,13 @@ struct audit_buffer *netlbl_audit_start_common(int type, u32 secid) ...@@ -108,60 +105,13 @@ struct audit_buffer *netlbl_audit_start_common(int type, u32 secid)
if (audit_buf == NULL) if (audit_buf == NULL)
return NULL; return NULL;
audit_loginuid = audit_get_loginuid(audit_ctx); audit_log_format(audit_buf, "netlabel: auid=%u", audit_info->loginuid);
if (current->signal &&
current->signal->tty &&
current->signal->tty->name)
audit_tty = current->signal->tty->name;
else
audit_tty = "(none)";
get_task_comm(audit_comm, current);
audit_log_format(audit_buf, if (audit_info->secid != 0 &&
"netlabel: auid=%u uid=%u tty=%s pid=%d", security_secid_to_secctx(audit_info->secid,
audit_loginuid, &secctx,
current->uid, &secctx_len) == 0)
audit_tty,
current->pid);
audit_log_format(audit_buf, " comm=");
audit_log_untrustedstring(audit_buf, audit_comm);
if (current->mm) {
down_read(&current->mm->mmap_sem);
vma = current->mm->mmap;
while (vma) {
if ((vma->vm_flags & VM_EXECUTABLE) &&
vma->vm_file) {
audit_log_d_path(audit_buf,
" exe=",
vma->vm_file->f_dentry,
vma->vm_file->f_vfsmnt);
break;
}
vma = vma->vm_next;
}
up_read(&current->mm->mmap_sem);
}
if (secid != 0 &&
security_secid_to_secctx(secid, &secctx, &secctx_len) == 0)
audit_log_format(audit_buf, " subj=%s", secctx); audit_log_format(audit_buf, " subj=%s", secctx);
return audit_buf; return audit_buf;
} }
/**
* netlbl_audit_nomsg - Send an audit message without additional text
* @type: audit message type
* @secid: LSM context ID
*
* Description:
* Send an audit message with only the common NetLabel audit fields.
*
*/
void netlbl_audit_nomsg(int type, u32 secid)
{
struct audit_buffer *audit_buf;
audit_buf = netlbl_audit_start_common(type, secid);
audit_log_end(audit_buf);
}
...@@ -72,13 +72,25 @@ static inline void *netlbl_netlink_hdr_put(struct sk_buff *skb, ...@@ -72,13 +72,25 @@ static inline void *netlbl_netlink_hdr_put(struct sk_buff *skb,
NETLBL_PROTO_VERSION); NETLBL_PROTO_VERSION);
} }
/**
* netlbl_netlink_auditinfo - Fetch the audit information from a NETLINK msg
* @skb: the packet
* @audit_info: NetLabel audit information
*/
static inline void netlbl_netlink_auditinfo(struct sk_buff *skb,
struct netlbl_audit *audit_info)
{
audit_info->secid = NETLINK_CB(skb).sid;
audit_info->loginuid = NETLINK_CB(skb).loginuid;
}
/* NetLabel NETLINK I/O functions */ /* NetLabel NETLINK I/O functions */
int netlbl_netlink_init(void); int netlbl_netlink_init(void);
/* NetLabel Audit Functions */ /* NetLabel Audit Functions */
struct audit_buffer *netlbl_audit_start_common(int type, u32 secid); struct audit_buffer *netlbl_audit_start_common(int type,
void netlbl_audit_nomsg(int type, u32 secid); struct netlbl_audit *audit_info);
#endif #endif
...@@ -218,12 +218,6 @@ int sctp_rcv(struct sk_buff *skb) ...@@ -218,12 +218,6 @@ int sctp_rcv(struct sk_buff *skb)
} }
} }
/* SCTP seems to always need a timestamp right now (FIXME) */
if (skb->tstamp.off_sec == 0) {
__net_timestamp(skb);
sock_enable_timestamp(sk);
}
if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family)) if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
goto discard_release; goto discard_release;
nf_reset(skb); nf_reset(skb);
...@@ -388,7 +382,7 @@ void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc, ...@@ -388,7 +382,7 @@ void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
* pmtu discovery on this transport. * pmtu discovery on this transport.
*/ */
t->pathmtu = SCTP_DEFAULT_MINSEGMENT; t->pathmtu = SCTP_DEFAULT_MINSEGMENT;
t->param_flags = (t->param_flags & ~SPP_HB) | t->param_flags = (t->param_flags & ~SPP_PMTUD) |
SPP_PMTUD_DISABLE; SPP_PMTUD_DISABLE;
} else { } else {
t->pathmtu = pmtu; t->pathmtu = pmtu;
......
...@@ -633,7 +633,7 @@ static sctp_xmit_t sctp_packet_append_data(struct sctp_packet *packet, ...@@ -633,7 +633,7 @@ static sctp_xmit_t sctp_packet_append_data(struct sctp_packet *packet,
* data will fit or delay in hopes of bundling a full * data will fit or delay in hopes of bundling a full
* sized packet. * sized packet.
*/ */
if (len < asoc->pathmtu - packet->overhead) { if (len < asoc->frag_point) {
retval = SCTP_XMIT_NAGLE_DELAY; retval = SCTP_XMIT_NAGLE_DELAY;
goto finish; goto finish;
} }
...@@ -645,7 +645,13 @@ static sctp_xmit_t sctp_packet_append_data(struct sctp_packet *packet, ...@@ -645,7 +645,13 @@ static sctp_xmit_t sctp_packet_append_data(struct sctp_packet *packet,
/* Keep track of how many bytes are in flight to the receiver. */ /* Keep track of how many bytes are in flight to the receiver. */
asoc->outqueue.outstanding_bytes += datasize; asoc->outqueue.outstanding_bytes += datasize;
/* Update our view of the receiver's rwnd. */ /* Update our view of the receiver's rwnd. Include sk_buff overhead
* while updating peer.rwnd so that it reduces the chances of a
* receiver running out of receive buffer space even when receive
* window is still open. This can happen when a sender is sending
* sending small messages.
*/
datasize += sizeof(struct sk_buff);
if (datasize < rwnd) if (datasize < rwnd)
rwnd -= datasize; rwnd -= datasize;
else else
......
...@@ -416,7 +416,8 @@ void sctp_retransmit_mark(struct sctp_outq *q, ...@@ -416,7 +416,8 @@ void sctp_retransmit_mark(struct sctp_outq *q,
* (Section 7.2.4)), add the data size of those * (Section 7.2.4)), add the data size of those
* chunks to the rwnd. * chunks to the rwnd.
*/ */
q->asoc->peer.rwnd += sctp_data_size(chunk); q->asoc->peer.rwnd += (sctp_data_size(chunk) +
sizeof(struct sk_buff));
q->outstanding_bytes -= sctp_data_size(chunk); q->outstanding_bytes -= sctp_data_size(chunk);
transport->flight_size -= sctp_data_size(chunk); transport->flight_size -= sctp_data_size(chunk);
......
...@@ -1447,8 +1447,16 @@ struct sctp_association *sctp_unpack_cookie( ...@@ -1447,8 +1447,16 @@ struct sctp_association *sctp_unpack_cookie(
/* Check to see if the cookie is stale. If there is already /* Check to see if the cookie is stale. If there is already
* an association, there is no need to check cookie's expiration * an association, there is no need to check cookie's expiration
* for init collision case of lost COOKIE ACK. * for init collision case of lost COOKIE ACK.
* If skb has been timestamped, then use the stamp, otherwise
* use current time. This introduces a small possibility that
* that a cookie may be considered expired, but his would only slow
* down the new association establishment instead of every packet.
*/ */
skb_get_timestamp(skb, &tv); if (sock_flag(ep->base.sk, SOCK_TIMESTAMP))
skb_get_timestamp(skb, &tv);
else
do_gettimeofday(&tv);
if (!asoc && tv_lt(bear_cookie->expiration, tv)) { if (!asoc && tv_lt(bear_cookie->expiration, tv)) {
__u16 len; __u16 len;
/* /*
......
...@@ -3084,8 +3084,8 @@ SCTP_STATIC int sctp_init_sock(struct sock *sk) ...@@ -3084,8 +3084,8 @@ SCTP_STATIC int sctp_init_sock(struct sock *sk)
*/ */
sp->disable_fragments = 0; sp->disable_fragments = 0;
/* Turn on/off any Nagle-like algorithm. */ /* Enable Nagle algorithm by default. */
sp->nodelay = 1; sp->nodelay = 0;
/* Enable by default. */ /* Enable by default. */
sp->v4mapped = 1; sp->v4mapped = 1;
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册