提交 afdd548f 编写于 作者: D Dave Airlie

Merge branch 'linux-4.10' of git://github.com/skeggsb/linux into drm-next

- Initial atomic modesetting support.  Used for "legacy" KMS interfaces,
ioctl not exposed by default, but there is a commandline option to
enable it.
- Initial DP 1.2 MST support
- Misc other code cleanups + fixes

* 'linux-4.10' of git://github.com/skeggsb/linux: (64 commits)
  drm/nouveau/fifo/gf100-: protect channel preempt with subdev mutex
  drm/nouveau/gr: fallback to legacy paths during firmware lookup
  drm/nouveau/kms/nv50: initial support for DP 1.2 multi-stream
  drm/nouveau/kms/nv50: allow encoder update to be called from other modules
  drm/nouveau/kms/nv50: rename remaining nv50_crtc to nv50_head
  drm/nouveau/kms/nv50: remove code to create ctxdma for every framebuffer
  drm/nouveau/kms/nv50: remove code to support non-atomic page flips
  drm/nouveau/kms/nv50: remove code to support non-atomic connector properties
  drm/nouveau/kms/nv50: remove code to support non-atomic dpms
  drm/nouveau/kms/nv50: remove code to support non-atomic modesets
  drm/nouveau/kms/nv50: transition to atomic interfaces internally
  drm/nouveau/kms/nv50: turn mode_set_base_atomic() into a stub
  drm/nouveau/kms/nv50: convert encoder mode_fixup into an atomic_check()
  drm/nouveau/kms/nv50: clean-up encoder functions
  drm/nouveau/kms/nv50: ensure encoder normal power state is enabled at startup
  drm/nouveau/kms/nv50: prepare ctxdma interface to be usable with atomic
  drm/nouveau/kms/nv50: separate out cursor channel commit
  drm/nouveau/kms/nv50: separate out base channel commit
  drm/nouveau/kms/nv50: separate out vblank dmi commit
  drm/nouveau/kms/nv50: separate out procamp commit
  ...
......@@ -33,7 +33,7 @@
#include "nouveau_connector.h"
#include "nouveau_display.h"
#include "nvreg.h"
#include "disp.h"
struct nouveau_plane {
struct drm_plane base;
......
......@@ -34,6 +34,8 @@ struct nv50_disp_mthd_v1 {
#define NV50_DISP_MTHD_V1_SOR_HDMI_PWR 0x22
#define NV50_DISP_MTHD_V1_SOR_LVDS_SCRIPT 0x23
#define NV50_DISP_MTHD_V1_SOR_DP_PWR 0x24
#define NV50_DISP_MTHD_V1_SOR_DP_MST_LINK 0x25
#define NV50_DISP_MTHD_V1_SOR_DP_MST_VCPI 0x26
#define NV50_DISP_MTHD_V1_PIOR_PWR 0x30
__u8 method;
__u16 hasht;
......@@ -90,6 +92,21 @@ struct nv50_disp_sor_dp_pwr_v0 {
__u8 pad02[6];
};
struct nv50_disp_sor_dp_mst_link_v0 {
__u8 version;
__u8 state;
__u8 pad02[6];
};
struct nv50_disp_sor_dp_mst_vcpi_v0 {
__u8 version;
__u8 pad01[1];
__u8 start_slot;
__u8 num_slots;
__u16 pbn;
__u16 aligned_pbn;
};
struct nv50_disp_pior_pwr_v0 {
__u8 version;
__u8 state;
......
......@@ -66,6 +66,35 @@ void nvif_object_unmap(struct nvif_object *);
#define nvif_mthd(a,b,c,d) nvif_object_mthd((a), (b), (c), (d))
struct nvif_mclass {
s32 oclass;
int version;
};
#define nvif_mclass(o,m) ({ \
struct nvif_object *object = (o); \
struct nvif_sclass *sclass; \
const typeof(m[0]) *mclass = (m); \
int ret = -ENODEV; \
int cnt, i, j; \
\
cnt = nvif_object_sclass_get(object, &sclass); \
if (cnt >= 0) { \
for (i = 0; ret < 0 && mclass[i].oclass; i++) { \
for (j = 0; j < cnt; j++) { \
if (mclass[i].oclass == sclass[j].oclass && \
mclass[i].version >= sclass[j].minver && \
mclass[i].version <= sclass[j].maxver) { \
ret = i; \
break; \
} \
} \
} \
nvif_object_sclass_put(&sclass); \
} \
ret; \
})
/*XXX*/
#include <core/object.h>
#define nvxx_object(a) ({ \
......
......@@ -93,6 +93,7 @@ int gk104_fb_new(struct nvkm_device *, int, struct nvkm_fb **);
int gk20a_fb_new(struct nvkm_device *, int, struct nvkm_fb **);
int gm107_fb_new(struct nvkm_device *, int, struct nvkm_fb **);
int gm200_fb_new(struct nvkm_device *, int, struct nvkm_fb **);
int gm20b_fb_new(struct nvkm_device *, int, struct nvkm_fb **);
int gp100_fb_new(struct nvkm_device *, int, struct nvkm_fb **);
int gp104_fb_new(struct nvkm_device *, int, struct nvkm_fb **);
......@@ -156,4 +157,6 @@ struct nvkm_ram_func {
int (*prog)(struct nvkm_ram *);
void (*tidy)(struct nvkm_ram *);
};
extern const u8 gf100_pte_storage_type_map[256];
#endif
......@@ -333,6 +333,9 @@ get_fp_strap(struct drm_device *dev, struct nvbios *bios)
if (bios->major_version < 5 && bios->data[0x48] & 0x4)
return NVReadVgaCrtc5758(dev, 0, 0xf) & 0xf;
if (drm->device.info.family >= NV_DEVICE_INFO_V0_MAXWELL)
return nvif_rd32(device, 0x001800) & 0x0000000f;
else
if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA)
return (nvif_rd32(device, NV_PEXTDEV_BOOT_0) >> 24) & 0xf;
else
......
......@@ -30,6 +30,7 @@
#include <linux/vga_switcheroo.h>
#include <drm/drmP.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_edid.h>
#include <drm/drm_crtc_helper.h>
......@@ -47,6 +48,301 @@
#include <nvif/cl0046.h>
#include <nvif/event.h>
struct drm_display_mode *
nouveau_conn_native_mode(struct drm_connector *connector)
{
const struct drm_connector_helper_funcs *helper = connector->helper_private;
struct nouveau_drm *drm = nouveau_drm(connector->dev);
struct drm_device *dev = connector->dev;
struct drm_display_mode *mode, *largest = NULL;
int high_w = 0, high_h = 0, high_v = 0;
list_for_each_entry(mode, &connector->probed_modes, head) {
mode->vrefresh = drm_mode_vrefresh(mode);
if (helper->mode_valid(connector, mode) != MODE_OK ||
(mode->flags & DRM_MODE_FLAG_INTERLACE))
continue;
/* Use preferred mode if there is one.. */
if (mode->type & DRM_MODE_TYPE_PREFERRED) {
NV_DEBUG(drm, "native mode from preferred\n");
return drm_mode_duplicate(dev, mode);
}
/* Otherwise, take the resolution with the largest width, then
* height, then vertical refresh
*/
if (mode->hdisplay < high_w)
continue;
if (mode->hdisplay == high_w && mode->vdisplay < high_h)
continue;
if (mode->hdisplay == high_w && mode->vdisplay == high_h &&
mode->vrefresh < high_v)
continue;
high_w = mode->hdisplay;
high_h = mode->vdisplay;
high_v = mode->vrefresh;
largest = mode;
}
NV_DEBUG(drm, "native mode from largest: %dx%d@%d\n",
high_w, high_h, high_v);
return largest ? drm_mode_duplicate(dev, largest) : NULL;
}
int
nouveau_conn_atomic_get_property(struct drm_connector *connector,
const struct drm_connector_state *state,
struct drm_property *property, u64 *val)
{
struct nouveau_conn_atom *asyc = nouveau_conn_atom(state);
struct nouveau_display *disp = nouveau_display(connector->dev);
struct drm_device *dev = connector->dev;
if (property == dev->mode_config.scaling_mode_property)
*val = asyc->scaler.mode;
else if (property == disp->underscan_property)
*val = asyc->scaler.underscan.mode;
else if (property == disp->underscan_hborder_property)
*val = asyc->scaler.underscan.hborder;
else if (property == disp->underscan_vborder_property)
*val = asyc->scaler.underscan.vborder;
else if (property == disp->dithering_mode)
*val = asyc->dither.mode;
else if (property == disp->dithering_depth)
*val = asyc->dither.depth;
else if (property == disp->vibrant_hue_property)
*val = asyc->procamp.vibrant_hue;
else if (property == disp->color_vibrance_property)
*val = asyc->procamp.color_vibrance;
else
return -EINVAL;
return 0;
}
int
nouveau_conn_atomic_set_property(struct drm_connector *connector,
struct drm_connector_state *state,
struct drm_property *property, u64 val)
{
struct drm_device *dev = connector->dev;
struct nouveau_conn_atom *asyc = nouveau_conn_atom(state);
struct nouveau_display *disp = nouveau_display(dev);
if (property == dev->mode_config.scaling_mode_property) {
switch (val) {
case DRM_MODE_SCALE_NONE:
/* We allow 'None' for EDID modes, even on a fixed
* panel (some exist with support for lower refresh
* rates, which people might want to use for power-
* saving purposes).
*
* Non-EDID modes will force the use of GPU scaling
* to the native mode regardless of this setting.
*/
switch (connector->connector_type) {
case DRM_MODE_CONNECTOR_LVDS:
case DRM_MODE_CONNECTOR_eDP:
/* ... except prior to G80, where the code
* doesn't support such things.
*/
if (disp->disp.oclass < NV50_DISP)
return -EINVAL;
break;
default:
break;
}
case DRM_MODE_SCALE_FULLSCREEN:
case DRM_MODE_SCALE_CENTER:
case DRM_MODE_SCALE_ASPECT:
break;
default:
return -EINVAL;
}
if (asyc->scaler.mode != val) {
asyc->scaler.mode = val;
asyc->set.scaler = true;
}
} else
if (property == disp->underscan_property) {
if (asyc->scaler.underscan.mode != val) {
asyc->scaler.underscan.mode = val;
asyc->set.scaler = true;
}
} else
if (property == disp->underscan_hborder_property) {
if (asyc->scaler.underscan.hborder != val) {
asyc->scaler.underscan.hborder = val;
asyc->set.scaler = true;
}
} else
if (property == disp->underscan_vborder_property) {
if (asyc->scaler.underscan.vborder != val) {
asyc->scaler.underscan.vborder = val;
asyc->set.scaler = true;
}
} else
if (property == disp->dithering_mode) {
if (asyc->dither.mode != val) {
asyc->dither.mode = val;
asyc->set.dither = true;
}
} else
if (property == disp->dithering_depth) {
if (asyc->dither.mode != val) {
asyc->dither.depth = val;
asyc->set.dither = true;
}
} else
if (property == disp->vibrant_hue_property) {
if (asyc->procamp.vibrant_hue != val) {
asyc->procamp.vibrant_hue = val;
asyc->set.procamp = true;
}
} else
if (property == disp->color_vibrance_property) {
if (asyc->procamp.color_vibrance != val) {
asyc->procamp.color_vibrance = val;
asyc->set.procamp = true;
}
} else {
return -EINVAL;
}
return 0;
}
void
nouveau_conn_atomic_destroy_state(struct drm_connector *connector,
struct drm_connector_state *state)
{
struct nouveau_conn_atom *asyc = nouveau_conn_atom(state);
__drm_atomic_helper_connector_destroy_state(&asyc->state);
kfree(asyc);
}
struct drm_connector_state *
nouveau_conn_atomic_duplicate_state(struct drm_connector *connector)
{
struct nouveau_conn_atom *armc = nouveau_conn_atom(connector->state);
struct nouveau_conn_atom *asyc;
if (!(asyc = kmalloc(sizeof(*asyc), GFP_KERNEL)))
return NULL;
__drm_atomic_helper_connector_duplicate_state(connector, &asyc->state);
asyc->dither = armc->dither;
asyc->scaler = armc->scaler;
asyc->procamp = armc->procamp;
asyc->set.mask = 0;
return &asyc->state;
}
void
nouveau_conn_reset(struct drm_connector *connector)
{
struct nouveau_conn_atom *asyc;
if (WARN_ON(!(asyc = kzalloc(sizeof(*asyc), GFP_KERNEL))))
return;
if (connector->state)
__drm_atomic_helper_connector_destroy_state(connector->state);
__drm_atomic_helper_connector_reset(connector, &asyc->state);
asyc->dither.mode = DITHERING_MODE_AUTO;
asyc->dither.depth = DITHERING_DEPTH_AUTO;
asyc->scaler.mode = DRM_MODE_SCALE_NONE;
asyc->scaler.underscan.mode = UNDERSCAN_OFF;
asyc->procamp.color_vibrance = 150;
asyc->procamp.vibrant_hue = 90;
if (nouveau_display(connector->dev)->disp.oclass < NV50_DISP) {
switch (connector->connector_type) {
case DRM_MODE_CONNECTOR_LVDS:
/* See note in nouveau_conn_atomic_set_property(). */
asyc->scaler.mode = DRM_MODE_SCALE_FULLSCREEN;
break;
default:
break;
}
}
}
void
nouveau_conn_attach_properties(struct drm_connector *connector)
{
struct drm_device *dev = connector->dev;
struct nouveau_conn_atom *armc = nouveau_conn_atom(connector->state);
struct nouveau_display *disp = nouveau_display(dev);
/* Init DVI-I specific properties. */
if (connector->connector_type == DRM_MODE_CONNECTOR_DVII)
drm_object_attach_property(&connector->base, dev->mode_config.
dvi_i_subconnector_property, 0);
/* Add overscan compensation options to digital outputs. */
if (disp->underscan_property &&
(connector->connector_type == DRM_MODE_CONNECTOR_DVID ||
connector->connector_type == DRM_MODE_CONNECTOR_DVII ||
connector->connector_type == DRM_MODE_CONNECTOR_HDMIA ||
connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort)) {
drm_object_attach_property(&connector->base,
disp->underscan_property,
UNDERSCAN_OFF);
drm_object_attach_property(&connector->base,
disp->underscan_hborder_property, 0);
drm_object_attach_property(&connector->base,
disp->underscan_vborder_property, 0);
}
/* Add hue and saturation options. */
if (disp->vibrant_hue_property)
drm_object_attach_property(&connector->base,
disp->vibrant_hue_property,
armc->procamp.vibrant_hue);
if (disp->color_vibrance_property)
drm_object_attach_property(&connector->base,
disp->color_vibrance_property,
armc->procamp.color_vibrance);
/* Scaling mode property. */
switch (connector->connector_type) {
case DRM_MODE_CONNECTOR_TV:
break;
case DRM_MODE_CONNECTOR_VGA:
if (disp->disp.oclass < NV50_DISP)
break; /* Can only scale on DFPs. */
/* Fall-through. */
default:
drm_object_attach_property(&connector->base, dev->mode_config.
scaling_mode_property,
armc->scaler.mode);
break;
}
/* Dithering properties. */
switch (connector->connector_type) {
case DRM_MODE_CONNECTOR_TV:
case DRM_MODE_CONNECTOR_VGA:
break;
default:
if (disp->dithering_mode) {
drm_object_attach_property(&connector->base,
disp->dithering_mode,
armc->dither.mode);
}
if (disp->dithering_depth) {
drm_object_attach_property(&connector->base,
disp->dithering_depth,
armc->dither.depth);
}
break;
}
}
MODULE_PARM_DESC(tv_disable, "Disable TV-out detection");
int nouveau_tv_disable = 0;
module_param_named(tv_disable, nouveau_tv_disable, int, 0400);
......@@ -151,7 +447,9 @@ nouveau_connector_ddc_detect(struct drm_connector *connector)
if (nv_encoder->dcb->type == DCB_OUTPUT_DP) {
int ret = nouveau_dp_detect(nv_encoder);
if (ret == 0)
if (ret == NOUVEAU_DP_MST)
return NULL;
if (ret == NOUVEAU_DP_SST)
break;
} else
if ((vga_switcheroo_handler_flags() &
......@@ -465,199 +763,39 @@ static int
nouveau_connector_set_property(struct drm_connector *connector,
struct drm_property *property, uint64_t value)
{
struct nouveau_display *disp = nouveau_display(connector->dev);
struct nouveau_conn_atom *asyc = nouveau_conn_atom(connector->state);
struct nouveau_connector *nv_connector = nouveau_connector(connector);
struct nouveau_encoder *nv_encoder = nv_connector->detected_encoder;
struct drm_encoder *encoder = to_drm_encoder(nv_encoder);
struct drm_device *dev = connector->dev;
struct nouveau_crtc *nv_crtc;
int ret;
nv_crtc = NULL;
if (connector->encoder && connector->encoder->crtc)
nv_crtc = nouveau_crtc(connector->encoder->crtc);
/* Scaling mode */
if (property == dev->mode_config.scaling_mode_property) {
bool modeset = false;
switch (value) {
case DRM_MODE_SCALE_NONE:
/* We allow 'None' for EDID modes, even on a fixed
* panel (some exist with support for lower refresh
* rates, which people might want to use for power
* saving purposes).
*
* Non-EDID modes will force the use of GPU scaling
* to the native mode regardless of this setting.
*/
switch (nv_connector->type) {
case DCB_CONNECTOR_LVDS:
case DCB_CONNECTOR_LVDS_SPWG:
case DCB_CONNECTOR_eDP:
/* ... except prior to G80, where the code
* doesn't support such things.
*/
if (disp->disp.oclass < NV50_DISP)
return -EINVAL;
break;
default:
break;
}
break;
case DRM_MODE_SCALE_FULLSCREEN:
case DRM_MODE_SCALE_CENTER:
case DRM_MODE_SCALE_ASPECT:
break;
default:
return -EINVAL;
}
/* Changing between GPU and panel scaling requires a full
* modeset
*/
if ((nv_connector->scaling_mode == DRM_MODE_SCALE_NONE) ||
(value == DRM_MODE_SCALE_NONE))
modeset = true;
nv_connector->scaling_mode = value;
if (!nv_crtc)
return 0;
if (modeset || !nv_crtc->set_scale) {
ret = drm_crtc_helper_set_mode(&nv_crtc->base,
&nv_crtc->base.mode,
nv_crtc->base.x,
nv_crtc->base.y, NULL);
if (!ret)
return -EINVAL;
} else {
ret = nv_crtc->set_scale(nv_crtc, true);
if (ret)
return ret;
}
return 0;
}
/* Underscan */
if (property == disp->underscan_property) {
if (nv_connector->underscan != value) {
nv_connector->underscan = value;
if (!nv_crtc || !nv_crtc->set_scale)
return 0;
return nv_crtc->set_scale(nv_crtc, true);
}
return 0;
}
if (property == disp->underscan_hborder_property) {
if (nv_connector->underscan_hborder != value) {
nv_connector->underscan_hborder = value;
if (!nv_crtc || !nv_crtc->set_scale)
return 0;
return nv_crtc->set_scale(nv_crtc, true);
}
return 0;
}
if (property == disp->underscan_vborder_property) {
if (nv_connector->underscan_vborder != value) {
nv_connector->underscan_vborder = value;
if (!nv_crtc || !nv_crtc->set_scale)
return 0;
return nv_crtc->set_scale(nv_crtc, true);
}
return 0;
}
/* Dithering */
if (property == disp->dithering_mode) {
nv_connector->dithering_mode = value;
if (!nv_crtc || !nv_crtc->set_dither)
return 0;
return nv_crtc->set_dither(nv_crtc, true);
}
if (property == disp->dithering_depth) {
nv_connector->dithering_depth = value;
if (!nv_crtc || !nv_crtc->set_dither)
return 0;
return nv_crtc->set_dither(nv_crtc, true);
}
if (nv_crtc && nv_crtc->set_color_vibrance) {
/* Hue */
if (property == disp->vibrant_hue_property) {
nv_crtc->vibrant_hue = value - 90;
return nv_crtc->set_color_vibrance(nv_crtc, true);
}
/* Saturation */
if (property == disp->color_vibrance_property) {
nv_crtc->color_vibrance = value - 100;
return nv_crtc->set_color_vibrance(nv_crtc, true);
}
}
if (connector->dev->mode_config.funcs->atomic_commit)
return drm_atomic_helper_connector_set_property(connector, property, value);
ret = connector->funcs->atomic_set_property(&nv_connector->base,
&asyc->state,
property, value);
if (ret) {
if (nv_encoder && nv_encoder->dcb->type == DCB_OUTPUT_TV)
return get_slave_funcs(encoder)->set_property(
encoder, connector, property, value);
return -EINVAL;
}
static struct drm_display_mode *
nouveau_connector_native_mode(struct drm_connector *connector)
{
const struct drm_connector_helper_funcs *helper = connector->helper_private;
struct nouveau_drm *drm = nouveau_drm(connector->dev);
struct nouveau_connector *nv_connector = nouveau_connector(connector);
struct drm_device *dev = connector->dev;
struct drm_display_mode *mode, *largest = NULL;
int high_w = 0, high_h = 0, high_v = 0;
list_for_each_entry(mode, &nv_connector->base.probed_modes, head) {
mode->vrefresh = drm_mode_vrefresh(mode);
if (helper->mode_valid(connector, mode) != MODE_OK ||
(mode->flags & DRM_MODE_FLAG_INTERLACE))
continue;
/* Use preferred mode if there is one.. */
if (mode->type & DRM_MODE_TYPE_PREFERRED) {
NV_DEBUG(drm, "native mode from preferred\n");
return drm_mode_duplicate(dev, mode);
return ret;
}
/* Otherwise, take the resolution with the largest width, then
* height, then vertical refresh
*/
if (mode->hdisplay < high_w)
continue;
if (mode->hdisplay == high_w && mode->vdisplay < high_h)
continue;
if (mode->hdisplay == high_w && mode->vdisplay == high_h &&
mode->vrefresh < high_v)
continue;
nv_connector->scaling_mode = asyc->scaler.mode;
nv_connector->dithering_mode = asyc->dither.mode;
high_w = mode->hdisplay;
high_h = mode->vdisplay;
high_v = mode->vrefresh;
largest = mode;
if (connector->encoder && connector->encoder->crtc) {
ret = drm_crtc_helper_set_mode(connector->encoder->crtc,
&connector->encoder->crtc->mode,
connector->encoder->crtc->x,
connector->encoder->crtc->y,
NULL);
if (!ret)
return -EINVAL;
}
NV_DEBUG(drm, "native mode from largest: %dx%d@%d\n",
high_w, high_h, high_v);
return largest ? drm_mode_duplicate(dev, largest) : NULL;
return 0;
}
struct moderec {
......@@ -805,8 +943,7 @@ nouveau_connector_get_modes(struct drm_connector *connector)
* the list of modes.
*/
if (!nv_connector->native_mode)
nv_connector->native_mode =
nouveau_connector_native_mode(connector);
nv_connector->native_mode = nouveau_conn_native_mode(connector);
if (ret == 0 && nv_connector->native_mode) {
struct drm_display_mode *mode;
......@@ -934,56 +1071,42 @@ nouveau_connector_helper_funcs = {
.best_encoder = nouveau_connector_best_encoder,
};
static int
nouveau_connector_dpms(struct drm_connector *connector, int mode)
{
if (connector->dev->mode_config.funcs->atomic_commit)
return drm_atomic_helper_connector_dpms(connector, mode);
return drm_helper_connector_dpms(connector, mode);
}
static const struct drm_connector_funcs
nouveau_connector_funcs = {
.dpms = drm_helper_connector_dpms,
.dpms = nouveau_connector_dpms,
.reset = nouveau_conn_reset,
.detect = nouveau_connector_detect,
.destroy = nouveau_connector_destroy,
.force = nouveau_connector_force,
.fill_modes = drm_helper_probe_single_connector_modes,
.set_property = nouveau_connector_set_property,
.force = nouveau_connector_force
.destroy = nouveau_connector_destroy,
.atomic_duplicate_state = nouveau_conn_atomic_duplicate_state,
.atomic_destroy_state = nouveau_conn_atomic_destroy_state,
.atomic_set_property = nouveau_conn_atomic_set_property,
.atomic_get_property = nouveau_conn_atomic_get_property,
};
static const struct drm_connector_funcs
nouveau_connector_funcs_lvds = {
.dpms = drm_helper_connector_dpms,
.dpms = nouveau_connector_dpms,
.reset = nouveau_conn_reset,
.detect = nouveau_connector_detect_lvds,
.destroy = nouveau_connector_destroy,
.force = nouveau_connector_force,
.fill_modes = drm_helper_probe_single_connector_modes,
.set_property = nouveau_connector_set_property,
.force = nouveau_connector_force
};
static int
nouveau_connector_dp_dpms(struct drm_connector *connector, int mode)
{
struct nouveau_encoder *nv_encoder = NULL;
if (connector->encoder)
nv_encoder = nouveau_encoder(connector->encoder);
if (nv_encoder && nv_encoder->dcb &&
nv_encoder->dcb->type == DCB_OUTPUT_DP) {
if (mode == DRM_MODE_DPMS_ON) {
u8 data = DP_SET_POWER_D0;
nvkm_wraux(nv_encoder->aux, DP_SET_POWER, &data, 1);
usleep_range(1000, 2000);
} else {
u8 data = DP_SET_POWER_D3;
nvkm_wraux(nv_encoder->aux, DP_SET_POWER, &data, 1);
}
}
return drm_helper_connector_dpms(connector, mode);
}
static const struct drm_connector_funcs
nouveau_connector_funcs_dp = {
.dpms = nouveau_connector_dp_dpms,
.detect = nouveau_connector_detect,
.destroy = nouveau_connector_destroy,
.fill_modes = drm_helper_probe_single_connector_modes,
.set_property = nouveau_connector_set_property,
.force = nouveau_connector_force
.atomic_duplicate_state = nouveau_conn_atomic_duplicate_state,
.atomic_destroy_state = nouveau_conn_atomic_destroy_state,
.atomic_set_property = nouveau_conn_atomic_set_property,
.atomic_get_property = nouveau_conn_atomic_get_property,
};
static int
......@@ -995,19 +1118,20 @@ nouveau_connector_hotplug(struct nvif_notify *notify)
struct nouveau_drm *drm = nouveau_drm(connector->dev);
const struct nvif_notify_conn_rep_v0 *rep = notify->data;
const char *name = connector->name;
struct nouveau_encoder *nv_encoder;
if (rep->mask & NVIF_NOTIFY_CONN_V0_IRQ) {
NV_DEBUG(drm, "service %s\n", name);
if ((nv_encoder = find_encoder(connector, DCB_OUTPUT_DP)))
nv50_mstm_service(nv_encoder->dp.mstm);
} else {
bool plugged = (rep->mask != NVIF_NOTIFY_CONN_V0_UNPLUG);
NV_DEBUG(drm, "%splugged %s\n", plugged ? "" : "un", name);
mutex_lock(&drm->dev->mode_config.mutex);
if (plugged)
drm_helper_connector_dpms(connector, DRM_MODE_DPMS_ON);
else
drm_helper_connector_dpms(connector, DRM_MODE_DPMS_OFF);
mutex_unlock(&drm->dev->mode_config.mutex);
if ((nv_encoder = find_encoder(connector, DCB_OUTPUT_DP))) {
if (!plugged)
nv50_mstm_remove(nv_encoder->dp.mstm);
}
drm_helper_hpd_irq_event(connector->dev);
}
......@@ -1188,7 +1312,7 @@ nouveau_connector_create(struct drm_device *dev, int index)
return ERR_PTR(ret);
}
funcs = &nouveau_connector_funcs_dp;
funcs = &nouveau_connector_funcs;
break;
default:
funcs = &nouveau_connector_funcs;
......@@ -1202,38 +1326,10 @@ nouveau_connector_create(struct drm_device *dev, int index)
drm_connector_init(dev, connector, funcs, type);
drm_connector_helper_add(connector, &nouveau_connector_helper_funcs);
/* Init DVI-I specific properties */
if (nv_connector->type == DCB_CONNECTOR_DVI_I)
drm_object_attach_property(&connector->base, dev->mode_config.dvi_i_subconnector_property, 0);
/* Add overscan compensation options to digital outputs */
if (disp->underscan_property &&
(type == DRM_MODE_CONNECTOR_DVID ||
type == DRM_MODE_CONNECTOR_DVII ||
type == DRM_MODE_CONNECTOR_HDMIA ||
type == DRM_MODE_CONNECTOR_DisplayPort)) {
drm_object_attach_property(&connector->base,
disp->underscan_property,
UNDERSCAN_OFF);
drm_object_attach_property(&connector->base,
disp->underscan_hborder_property,
0);
drm_object_attach_property(&connector->base,
disp->underscan_vborder_property,
0);
}
/* Add hue and saturation options */
if (disp->vibrant_hue_property)
drm_object_attach_property(&connector->base,
disp->vibrant_hue_property,
90);
if (disp->color_vibrance_property)
drm_object_attach_property(&connector->base,
disp->color_vibrance_property,
150);
connector->funcs->reset(connector);
nouveau_conn_attach_properties(connector);
/* default scaling mode */
/* Default scaling mode */
switch (nv_connector->type) {
case DCB_CONNECTOR_LVDS:
case DCB_CONNECTOR_LVDS_SPWG:
......@@ -1250,23 +1346,6 @@ nouveau_connector_create(struct drm_device *dev, int index)
break;
}
/* scaling mode property */
switch (nv_connector->type) {
case DCB_CONNECTOR_TV_0:
case DCB_CONNECTOR_TV_1:
case DCB_CONNECTOR_TV_3:
break;
case DCB_CONNECTOR_VGA:
if (disp->disp.oclass < NV50_DISP)
break; /* can only scale on DFPs */
/* fall-through */
default:
drm_object_attach_property(&connector->base, dev->mode_config.
scaling_mode_property,
nv_connector->scaling_mode);
break;
}
/* dithering properties */
switch (nv_connector->type) {
case DCB_CONNECTOR_TV_0:
......@@ -1275,20 +1354,7 @@ nouveau_connector_create(struct drm_device *dev, int index)
case DCB_CONNECTOR_VGA:
break;
default:
if (disp->dithering_mode) {
nv_connector->dithering_mode = DITHERING_MODE_AUTO;
drm_object_attach_property(&connector->base,
disp->dithering_mode,
nv_connector->
dithering_mode);
}
if (disp->dithering_depth) {
nv_connector->dithering_depth = DITHERING_DEPTH_AUTO;
drm_object_attach_property(&connector->base,
disp->dithering_depth,
nv_connector->
dithering_depth);
}
break;
}
......
......@@ -35,30 +35,6 @@
struct nvkm_i2c_port;
enum nouveau_underscan_type {
UNDERSCAN_OFF,
UNDERSCAN_ON,
UNDERSCAN_AUTO,
};
/* the enum values specifically defined here match nv50/nvd0 hw values, and
* the code relies on this
*/
enum nouveau_dithering_mode {
DITHERING_MODE_OFF = 0x00,
DITHERING_MODE_ON = 0x01,
DITHERING_MODE_DYNAMIC2X2 = 0x10 | DITHERING_MODE_ON,
DITHERING_MODE_STATIC2X2 = 0x18 | DITHERING_MODE_ON,
DITHERING_MODE_TEMPORAL = 0x20 | DITHERING_MODE_ON,
DITHERING_MODE_AUTO
};
enum nouveau_dithering_depth {
DITHERING_DEPTH_6BPC = 0x00,
DITHERING_DEPTH_8BPC = 0x02,
DITHERING_DEPTH_AUTO
};
struct nouveau_connector {
struct drm_connector base;
enum dcb_connector_type type;
......@@ -70,12 +46,7 @@ struct nouveau_connector {
struct drm_dp_aux aux;
int dithering_mode;
int dithering_depth;
int scaling_mode;
bool scaling_full;
enum nouveau_underscan_type underscan;
u32 underscan_hborder;
u32 underscan_vborder;
struct nouveau_encoder *detected_encoder;
struct edid *edid;
......@@ -109,5 +80,74 @@ nouveau_connector_create(struct drm_device *, int index);
extern int nouveau_tv_disable;
extern int nouveau_ignorelid;
extern int nouveau_duallink;
extern int nouveau_hdmimhz;
#include <drm/drm_crtc.h>
#define nouveau_conn_atom(p) \
container_of((p), struct nouveau_conn_atom, state)
struct nouveau_conn_atom {
struct drm_connector_state state;
struct {
/* The enum values specifically defined here match nv50/gf119
* hw values, and the code relies on this.
*/
enum {
DITHERING_MODE_OFF = 0x00,
DITHERING_MODE_ON = 0x01,
DITHERING_MODE_DYNAMIC2X2 = 0x10 | DITHERING_MODE_ON,
DITHERING_MODE_STATIC2X2 = 0x18 | DITHERING_MODE_ON,
DITHERING_MODE_TEMPORAL = 0x20 | DITHERING_MODE_ON,
DITHERING_MODE_AUTO
} mode;
enum {
DITHERING_DEPTH_6BPC = 0x00,
DITHERING_DEPTH_8BPC = 0x02,
DITHERING_DEPTH_AUTO
} depth;
} dither;
struct {
int mode; /* DRM_MODE_SCALE_* */
struct {
enum {
UNDERSCAN_OFF,
UNDERSCAN_ON,
UNDERSCAN_AUTO,
} mode;
u32 hborder;
u32 vborder;
} underscan;
bool full;
} scaler;
struct {
int color_vibrance;
int vibrant_hue;
} procamp;
union {
struct {
bool dither:1;
bool scaler:1;
bool procamp:1;
};
u8 mask;
} set;
};
void nouveau_conn_attach_properties(struct drm_connector *);
void nouveau_conn_reset(struct drm_connector *);
struct drm_connector_state *
nouveau_conn_atomic_duplicate_state(struct drm_connector *);
void nouveau_conn_atomic_destroy_state(struct drm_connector *,
struct drm_connector_state *);
int nouveau_conn_atomic_set_property(struct drm_connector *,
struct drm_connector_state *,
struct drm_property *, u64);
int nouveau_conn_atomic_get_property(struct drm_connector *,
const struct drm_connector_state *,
struct drm_property *, u64 *);
struct drm_display_mode *nouveau_conn_native_mode(struct drm_connector *);
#endif /* __NOUVEAU_CONNECTOR_H__ */
......@@ -38,8 +38,6 @@ struct nouveau_crtc {
uint32_t dpms_saved_fp_control;
uint32_t fp_users;
int saturation;
int color_vibrance;
int vibrant_hue;
int sharpness;
int last_dpms;
......@@ -54,7 +52,6 @@ struct nouveau_crtc {
struct {
struct nouveau_bo *nvbo;
bool visible;
uint32_t offset;
void (*set_offset)(struct nouveau_crtc *, uint32_t offset);
void (*set_pos)(struct nouveau_crtc *, int x, int y);
......@@ -70,10 +67,6 @@ struct nouveau_crtc {
int depth;
} lut;
int (*set_dither)(struct nouveau_crtc *crtc, bool update);
int (*set_scale)(struct nouveau_crtc *crtc, bool update);
int (*set_color_vibrance)(struct nouveau_crtc *crtc, bool update);
void (*save)(struct drm_crtc *crtc);
void (*restore)(struct drm_crtc *crtc);
};
......
......@@ -25,6 +25,8 @@
*/
#include <drm/drmP.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc_helper.h>
#include <nvif/class.h>
......@@ -92,7 +94,7 @@ calc(int blanks, int blanke, int total, int line)
return line;
}
int
static int
nouveau_display_scanoutpos_head(struct drm_crtc *crtc, int *vpos, int *hpos,
ktime_t *stime, ktime_t *etime)
{
......@@ -158,9 +160,13 @@ nouveau_display_vblstamp(struct drm_device *dev, unsigned int pipe,
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
if (nouveau_crtc(crtc)->index == pipe) {
struct drm_display_mode *mode;
if (dev->mode_config.funcs->atomic_commit)
mode = &crtc->state->adjusted_mode;
else
mode = &crtc->hwmode;
return drm_calc_vbltimestamp_from_scanoutpos(dev,
pipe, max_error, time, flags,
&crtc->hwmode);
pipe, max_error, time, flags, mode);
}
}
......@@ -217,10 +223,6 @@ static void
nouveau_user_framebuffer_destroy(struct drm_framebuffer *drm_fb)
{
struct nouveau_framebuffer *fb = nouveau_framebuffer(drm_fb);
struct nouveau_display *disp = nouveau_display(drm_fb->dev);
if (disp->fb_dtor)
disp->fb_dtor(drm_fb);
if (fb->nvbo)
drm_gem_object_unreference_unlocked(&fb->nvbo->gem);
......@@ -245,57 +247,45 @@ static const struct drm_framebuffer_funcs nouveau_framebuffer_funcs = {
};
int
nouveau_framebuffer_init(struct drm_device *dev,
struct nouveau_framebuffer *nv_fb,
nouveau_framebuffer_new(struct drm_device *dev,
const struct drm_mode_fb_cmd2 *mode_cmd,
struct nouveau_bo *nvbo)
struct nouveau_bo *nvbo,
struct nouveau_framebuffer **pfb)
{
struct nouveau_display *disp = nouveau_display(dev);
struct drm_framebuffer *fb = &nv_fb->base;
struct nouveau_framebuffer *fb;
int ret;
drm_helper_mode_fill_fb_struct(fb, mode_cmd);
nv_fb->nvbo = nvbo;
if (!(fb = *pfb = kzalloc(sizeof(*fb), GFP_KERNEL)))
return -ENOMEM;
ret = drm_framebuffer_init(dev, fb, &nouveau_framebuffer_funcs);
if (ret)
return ret;
drm_helper_mode_fill_fb_struct(&fb->base, mode_cmd);
fb->nvbo = nvbo;
if (disp->fb_ctor) {
ret = disp->fb_ctor(fb);
ret = drm_framebuffer_init(dev, &fb->base, &nouveau_framebuffer_funcs);
if (ret)
disp->fb_dtor(fb);
}
kfree(fb);
return ret;
}
static struct drm_framebuffer *
struct drm_framebuffer *
nouveau_user_framebuffer_create(struct drm_device *dev,
struct drm_file *file_priv,
const struct drm_mode_fb_cmd2 *mode_cmd)
{
struct nouveau_framebuffer *nouveau_fb;
struct nouveau_framebuffer *fb;
struct nouveau_bo *nvbo;
struct drm_gem_object *gem;
int ret = -ENOMEM;
int ret;
gem = drm_gem_object_lookup(file_priv, mode_cmd->handles[0]);
if (!gem)
return ERR_PTR(-ENOENT);
nvbo = nouveau_gem_object(gem);
nouveau_fb = kzalloc(sizeof(struct nouveau_framebuffer), GFP_KERNEL);
if (!nouveau_fb)
goto err_unref;
ret = nouveau_framebuffer_new(dev, mode_cmd, nvbo, &fb);
if (ret == 0)
return &fb->base;
ret = nouveau_framebuffer_init(dev, nouveau_fb, mode_cmd, nouveau_gem_object(gem));
if (ret)
goto err;
return &nouveau_fb->base;
err:
kfree(nouveau_fb);
err_unref:
drm_gem_object_unreference_unlocked(gem);
return ERR_PTR(ret);
}
......@@ -385,13 +375,16 @@ nouveau_display_init(struct drm_device *dev)
}
void
nouveau_display_fini(struct drm_device *dev)
nouveau_display_fini(struct drm_device *dev, bool suspend)
{
struct nouveau_display *disp = nouveau_display(dev);
struct nouveau_drm *drm = nouveau_drm(dev);
struct drm_connector *connector;
int head;
if (!suspend)
drm_crtc_force_disable_all(dev);
/* Make sure that drm and hw vblank irqs get properly disabled. */
for (head = 0; head < dev->mode_config.num_crtc; head++)
drm_vblank_off(dev, head);
......@@ -530,6 +523,8 @@ nouveau_display_create(struct drm_device *dev)
if (ret)
goto disp_create_err;
drm_mode_config_reset(dev);
if (dev->mode_config.num_crtc) {
ret = nouveau_display_vblank_init(dev);
if (ret)
......@@ -556,7 +551,6 @@ nouveau_display_destroy(struct drm_device *dev)
nouveau_display_vblank_fini(dev);
drm_kms_helper_poll_fini(dev);
drm_crtc_force_disable_all(dev);
drm_mode_config_cleanup(dev);
if (disp->dtor)
......@@ -568,12 +562,138 @@ nouveau_display_destroy(struct drm_device *dev)
kfree(disp);
}
static int
nouveau_atomic_disable_connector(struct drm_atomic_state *state,
struct drm_connector *connector)
{
struct drm_connector_state *connector_state;
struct drm_crtc *crtc;
struct drm_crtc_state *crtc_state;
struct drm_plane_state *plane_state;
struct drm_plane *plane;
int ret;
if (!(crtc = connector->state->crtc))
return 0;
connector_state = drm_atomic_get_connector_state(state, connector);
if (IS_ERR(connector_state))
return PTR_ERR(connector_state);
ret = drm_atomic_set_crtc_for_connector(connector_state, NULL);
if (ret)
return ret;
crtc_state = drm_atomic_get_crtc_state(state, crtc);
if (IS_ERR(crtc_state))
return PTR_ERR(crtc_state);
ret = drm_atomic_set_mode_for_crtc(crtc_state, NULL);
if (ret)
return ret;
crtc_state->active = false;
drm_for_each_plane_mask(plane, connector->dev, crtc_state->plane_mask) {
plane_state = drm_atomic_get_plane_state(state, plane);
if (IS_ERR(plane_state))
return PTR_ERR(plane_state);
ret = drm_atomic_set_crtc_for_plane(plane_state, NULL);
if (ret)
return ret;
drm_atomic_set_fb_for_plane(plane_state, NULL);
}
return 0;
}
static int
nouveau_atomic_disable(struct drm_device *dev,
struct drm_modeset_acquire_ctx *ctx)
{
struct drm_atomic_state *state;
struct drm_connector *connector;
int ret;
state = drm_atomic_state_alloc(dev);
if (!state)
return -ENOMEM;
state->acquire_ctx = ctx;
drm_for_each_connector(connector, dev) {
ret = nouveau_atomic_disable_connector(state, connector);
if (ret)
break;
}
if (ret == 0)
ret = drm_atomic_commit(state);
drm_atomic_state_put(state);
return ret;
}
static struct drm_atomic_state *
nouveau_atomic_suspend(struct drm_device *dev)
{
struct drm_modeset_acquire_ctx ctx;
struct drm_atomic_state *state;
int ret;
drm_modeset_acquire_init(&ctx, 0);
retry:
ret = drm_modeset_lock_all_ctx(dev, &ctx);
if (ret < 0) {
state = ERR_PTR(ret);
goto unlock;
}
state = drm_atomic_helper_duplicate_state(dev, &ctx);
if (IS_ERR(state))
goto unlock;
ret = nouveau_atomic_disable(dev, &ctx);
if (ret < 0) {
drm_atomic_state_put(state);
state = ERR_PTR(ret);
goto unlock;
}
unlock:
if (PTR_ERR(state) == -EDEADLK) {
drm_modeset_backoff(&ctx);
goto retry;
}
drm_modeset_drop_locks(&ctx);
drm_modeset_acquire_fini(&ctx);
return state;
}
int
nouveau_display_suspend(struct drm_device *dev, bool runtime)
{
struct nouveau_display *disp = nouveau_display(dev);
struct drm_crtc *crtc;
nouveau_display_fini(dev);
if (dev->mode_config.funcs->atomic_commit) {
if (!runtime) {
disp->suspend = nouveau_atomic_suspend(dev);
if (IS_ERR(disp->suspend)) {
int ret = PTR_ERR(disp->suspend);
disp->suspend = NULL;
return ret;
}
}
nouveau_display_fini(dev, true);
return 0;
}
nouveau_display_fini(dev, true);
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
struct nouveau_framebuffer *nouveau_fb;
......@@ -600,10 +720,20 @@ nouveau_display_suspend(struct drm_device *dev, bool runtime)
void
nouveau_display_resume(struct drm_device *dev, bool runtime)
{
struct nouveau_display *disp = nouveau_display(dev);
struct nouveau_drm *drm = nouveau_drm(dev);
struct drm_crtc *crtc;
int ret, head;
if (dev->mode_config.funcs->atomic_commit) {
nouveau_display_init(dev);
if (disp->suspend) {
drm_atomic_helper_resume(dev, disp->suspend);
disp->suspend = NULL;
}
return;
}
/* re-pin fb/cursors */
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
struct nouveau_framebuffer *nouveau_fb;
......@@ -692,10 +822,7 @@ nouveau_page_flip_emit(struct nouveau_channel *chan,
if (ret)
goto fail;
if (drm->device.info.family < NV_DEVICE_INFO_V0_FERMI)
BEGIN_NV04(chan, NvSubSw, NV_SW_PAGE_FLIP, 1);
else
BEGIN_NVC0(chan, FermiSw, NV_SW_PAGE_FLIP, 1);
OUT_RING (chan, 0x00000000);
FIRE_RING (chan);
......@@ -724,6 +851,8 @@ nouveau_crtc_page_flip(struct drm_crtc *crtc, struct drm_framebuffer *fb,
struct nouveau_channel *chan;
struct nouveau_cli *cli;
struct nouveau_fence *fence;
struct nv04_display *dispnv04 = nv04_display(dev);
int head = nouveau_crtc(crtc)->index;
int ret;
chan = drm->channel;
......@@ -770,14 +899,6 @@ nouveau_crtc_page_flip(struct drm_crtc *crtc, struct drm_framebuffer *fb,
drm_crtc_vblank_get(crtc);
/* Emit a page flip */
if (drm->device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
ret = nv50_display_flip_next(crtc, fb, chan, swap_interval);
if (ret)
goto fail_unreserve;
} else {
struct nv04_display *dispnv04 = nv04_display(dev);
int head = nouveau_crtc(crtc)->index;
if (swap_interval) {
ret = RING_SPACE(chan, 8);
if (ret)
......@@ -794,7 +915,6 @@ nouveau_crtc_page_flip(struct drm_crtc *crtc, struct drm_framebuffer *fb,
}
nouveau_bo_ref(new_bo, &dispnv04->image[head]);
}
ret = nouveau_page_flip_emit(chan, old_bo, new_bo, s, &fence);
if (ret)
......@@ -843,16 +963,8 @@ nouveau_finish_page_flip(struct nouveau_channel *chan,
s = list_first_entry(&fctx->flip, struct nouveau_page_flip_state, head);
if (s->event) {
if (drm->device.info.family < NV_DEVICE_INFO_V0_TESLA) {
drm_crtc_arm_vblank_event(s->crtc, s->event);
} else {
drm_crtc_send_vblank_event(s->crtc, s->event);
/* Give up ownership of vblank for page-flipped crtc */
drm_crtc_vblank_put(s->crtc);
}
}
else {
/* Give up ownership of vblank for page-flipped crtc */
drm_crtc_vblank_put(s->crtc);
}
......@@ -874,13 +986,11 @@ nouveau_flip_complete(struct nvif_notify *notify)
struct nouveau_page_flip_state state;
if (!nouveau_finish_page_flip(chan, &state)) {
if (drm->device.info.family < NV_DEVICE_INFO_V0_TESLA) {
nv_set_crtc_base(drm->dev, drm_crtc_index(state.crtc),
state.offset + state.crtc->y *
state.pitch + state.crtc->x *
state.bpp / 8);
}
}
return NVIF_NOTIFY_KEEP;
}
......
......@@ -22,8 +22,9 @@ nouveau_framebuffer(struct drm_framebuffer *fb)
return container_of(fb, struct nouveau_framebuffer, base);
}
int nouveau_framebuffer_init(struct drm_device *, struct nouveau_framebuffer *,
const struct drm_mode_fb_cmd2 *, struct nouveau_bo *);
int nouveau_framebuffer_new(struct drm_device *,
const struct drm_mode_fb_cmd2 *,
struct nouveau_bo *, struct nouveau_framebuffer **);
struct nouveau_page_flip_state {
struct list_head head;
......@@ -39,9 +40,6 @@ struct nouveau_display {
int (*init)(struct drm_device *);
void (*fini)(struct drm_device *);
int (*fb_ctor)(struct drm_framebuffer *);
void (*fb_dtor)(struct drm_framebuffer *);
struct nvif_object disp;
struct drm_property *dithering_mode;
......@@ -52,6 +50,8 @@ struct nouveau_display {
/* not really hue and saturation: */
struct drm_property *vibrant_hue_property;
struct drm_property *color_vibrance_property;
struct drm_atomic_state *suspend;
};
static inline struct nouveau_display *
......@@ -63,7 +63,7 @@ nouveau_display(struct drm_device *dev)
int nouveau_display_create(struct drm_device *dev);
void nouveau_display_destroy(struct drm_device *dev);
int nouveau_display_init(struct drm_device *dev);
void nouveau_display_fini(struct drm_device *dev);
void nouveau_display_fini(struct drm_device *dev, bool suspend);
int nouveau_display_suspend(struct drm_device *dev, bool runtime);
void nouveau_display_resume(struct drm_device *dev, bool runtime);
int nouveau_display_vblank_enable(struct drm_device *, unsigned int);
......@@ -103,4 +103,7 @@ nouveau_backlight_exit(struct drm_device *dev) {
}
#endif
struct drm_framebuffer *
nouveau_user_framebuffer_create(struct drm_device *, struct drm_file *,
const struct drm_mode_fb_cmd2 *);
#endif
......@@ -30,6 +30,13 @@
#include "nouveau_encoder.h"
#include "nouveau_crtc.h"
#include <nvif/class.h>
#include <nvif/cl5070.h>
MODULE_PARM_DESC(mst, "Enable DisplayPort multi-stream (default: enabled)");
static int nouveau_mst = 1;
module_param_named(mst, nouveau_mst, int, 0400);
static void
nouveau_dp_probe_oui(struct drm_device *dev, struct nvkm_i2c_aux *aux, u8 *dpcd)
{
......@@ -55,14 +62,14 @@ nouveau_dp_detect(struct nouveau_encoder *nv_encoder)
struct drm_device *dev = nv_encoder->base.base.dev;
struct nouveau_drm *drm = nouveau_drm(dev);
struct nvkm_i2c_aux *aux;
u8 *dpcd = nv_encoder->dp.dpcd;
u8 dpcd[8];
int ret;
aux = nv_encoder->aux;
if (!aux)
return -ENODEV;
ret = nvkm_rdaux(aux, DP_DPCD_REV, dpcd, 8);
ret = nvkm_rdaux(aux, DP_DPCD_REV, dpcd, sizeof(dpcd));
if (ret)
return ret;
......@@ -84,5 +91,11 @@ nouveau_dp_detect(struct nouveau_encoder *nv_encoder)
nv_encoder->dp.link_nr, nv_encoder->dp.link_bw);
nouveau_dp_probe_oui(dev, aux, dpcd);
return 0;
ret = nv50_mstm_detect(nv_encoder->dp.mstm, dpcd, nouveau_mst);
if (ret == 1)
return NOUVEAU_DP_MST;
if (ret == 0)
return NOUVEAU_DP_SST;
return ret;
}
......@@ -519,7 +519,7 @@ nouveau_drm_unload(struct drm_device *dev)
nouveau_debugfs_fini(drm);
if (dev->mode_config.num_crtc)
nouveau_display_fini(dev);
nouveau_display_fini(dev, false);
nouveau_display_destroy(dev);
nouveau_bios_takedown(dev);
......@@ -1037,6 +1037,7 @@ static void nouveau_display_options(void)
DRM_DEBUG_DRIVER("... modeset : %d\n", nouveau_modeset);
DRM_DEBUG_DRIVER("... runpm : %d\n", nouveau_runtime_pm);
DRM_DEBUG_DRIVER("... vram_pushbuf : %d\n", nouveau_vram_pushbuf);
DRM_DEBUG_DRIVER("... hdmimhz : %d\n", nouveau_hdmimhz);
}
static const struct dev_pm_ops nouveau_pm_ops = {
......
......@@ -204,6 +204,10 @@ void nouveau_drm_device_remove(struct drm_device *dev);
if (unlikely(drm_debug & DRM_UT_DRIVER)) \
NV_PRINTK(info, &(drm)->client, f, ##a); \
} while(0)
#define NV_ATOMIC(drm,f,a...) do { \
if (unlikely(drm_debug & DRM_UT_ATOMIC)) \
NV_PRINTK(info, &(drm)->client, f, ##a); \
} while(0)
extern int nouveau_modeset;
......
......@@ -30,6 +30,7 @@
#include <subdev/bios/dcb.h>
#include <drm/drm_encoder_slave.h>
#include <drm/drm_dp_mst_helper.h>
#include "dispnv04/disp.h"
#define NV_DPMS_CLEARED 0x80
......@@ -57,15 +58,16 @@ struct nouveau_encoder {
union {
struct {
u8 dpcd[8];
struct nv50_mstm *mstm;
int link_nr;
int link_bw;
u32 datarate;
} dp;
};
void (*enc_save)(struct drm_encoder *encoder);
void (*enc_restore)(struct drm_encoder *encoder);
void (*update)(struct nouveau_encoder *, u8 head,
struct drm_display_mode *, u8 proto, u8 depth);
};
struct nouveau_encoder *
......@@ -90,9 +92,17 @@ get_slave_funcs(struct drm_encoder *enc)
}
/* nouveau_dp.c */
enum nouveau_dp_status {
NOUVEAU_DP_SST,
NOUVEAU_DP_MST,
};
int nouveau_dp_detect(struct nouveau_encoder *);
struct nouveau_connector *
nouveau_encoder_connector_get(struct nouveau_encoder *encoder);
int nv50_mstm_detect(struct nv50_mstm *, u8 dpcd[8], int allow);
void nv50_mstm_remove(struct nv50_mstm *);
void nv50_mstm_service(struct nv50_mstm *);
#endif /* __NOUVEAU_ENCODER_H__ */
......@@ -58,7 +58,7 @@ static void
nouveau_fbcon_fillrect(struct fb_info *info, const struct fb_fillrect *rect)
{
struct nouveau_fbdev *fbcon = info->par;
struct nouveau_drm *drm = nouveau_drm(fbcon->dev);
struct nouveau_drm *drm = nouveau_drm(fbcon->helper.dev);
struct nvif_device *device = &drm->device;
int ret;
......@@ -90,7 +90,7 @@ static void
nouveau_fbcon_copyarea(struct fb_info *info, const struct fb_copyarea *image)
{
struct nouveau_fbdev *fbcon = info->par;
struct nouveau_drm *drm = nouveau_drm(fbcon->dev);
struct nouveau_drm *drm = nouveau_drm(fbcon->helper.dev);
struct nvif_device *device = &drm->device;
int ret;
......@@ -122,7 +122,7 @@ static void
nouveau_fbcon_imageblit(struct fb_info *info, const struct fb_image *image)
{
struct nouveau_fbdev *fbcon = info->par;
struct nouveau_drm *drm = nouveau_drm(fbcon->dev);
struct nouveau_drm *drm = nouveau_drm(fbcon->helper.dev);
struct nvif_device *device = &drm->device;
int ret;
......@@ -154,7 +154,7 @@ static int
nouveau_fbcon_sync(struct fb_info *info)
{
struct nouveau_fbdev *fbcon = info->par;
struct nouveau_drm *drm = nouveau_drm(fbcon->dev);
struct nouveau_drm *drm = nouveau_drm(fbcon->helper.dev);
struct nouveau_channel *chan = drm->channel;
int ret;
......@@ -181,7 +181,7 @@ static int
nouveau_fbcon_open(struct fb_info *info, int user)
{
struct nouveau_fbdev *fbcon = info->par;
struct nouveau_drm *drm = nouveau_drm(fbcon->dev);
struct nouveau_drm *drm = nouveau_drm(fbcon->helper.dev);
int ret = pm_runtime_get_sync(drm->dev->dev);
if (ret < 0 && ret != -EACCES)
return ret;
......@@ -192,7 +192,7 @@ static int
nouveau_fbcon_release(struct fb_info *info, int user)
{
struct nouveau_fbdev *fbcon = info->par;
struct nouveau_drm *drm = nouveau_drm(fbcon->dev);
struct nouveau_drm *drm = nouveau_drm(fbcon->helper.dev);
pm_runtime_put(drm->dev->dev);
return 0;
}
......@@ -333,16 +333,15 @@ nouveau_fbcon_create(struct drm_fb_helper *helper,
{
struct nouveau_fbdev *fbcon =
container_of(helper, struct nouveau_fbdev, helper);
struct drm_device *dev = fbcon->dev;
struct drm_device *dev = fbcon->helper.dev;
struct nouveau_drm *drm = nouveau_drm(dev);
struct nvif_device *device = &drm->device;
struct fb_info *info;
struct drm_framebuffer *fb;
struct nouveau_framebuffer *nouveau_fb;
struct nouveau_framebuffer *fb;
struct nouveau_channel *chan;
struct nouveau_bo *nvbo;
struct drm_mode_fb_cmd2 mode_cmd;
int size, ret;
int ret;
mode_cmd.width = sizes->surface_width;
mode_cmd.height = sizes->surface_height;
......@@ -353,16 +352,17 @@ nouveau_fbcon_create(struct drm_fb_helper *helper,
mode_cmd.pixel_format = drm_mode_legacy_fb_format(sizes->surface_bpp,
sizes->surface_depth);
size = mode_cmd.pitches[0] * mode_cmd.height;
size = roundup(size, PAGE_SIZE);
ret = nouveau_gem_new(dev, size, 0, NOUVEAU_GEM_DOMAIN_VRAM,
0, 0x0000, &nvbo);
ret = nouveau_gem_new(dev, mode_cmd.pitches[0] * mode_cmd.height,
0, NOUVEAU_GEM_DOMAIN_VRAM, 0, 0x0000, &nvbo);
if (ret) {
NV_ERROR(drm, "failed to allocate framebuffer\n");
goto out;
}
ret = nouveau_framebuffer_new(dev, &mode_cmd, nvbo, &fb);
if (ret)
goto out_unref;
ret = nouveau_bo_pin(nvbo, TTM_PL_FLAG_VRAM, false);
if (ret) {
NV_ERROR(drm, "failed to pin fb: %d\n", ret);
......@@ -377,8 +377,7 @@ nouveau_fbcon_create(struct drm_fb_helper *helper,
chan = nouveau_nofbaccel ? NULL : drm->channel;
if (chan && device->info.family >= NV_DEVICE_INFO_V0_TESLA) {
ret = nouveau_bo_vma_add(nvbo, drm->client.vm,
&fbcon->nouveau_fb.vma);
ret = nouveau_bo_vma_add(nvbo, drm->client.vm, &fb->vma);
if (ret) {
NV_ERROR(drm, "failed to map fb into chan: %d\n", ret);
chan = NULL;
......@@ -394,13 +393,8 @@ nouveau_fbcon_create(struct drm_fb_helper *helper,
info->par = fbcon;
nouveau_framebuffer_init(dev, &fbcon->nouveau_fb, &mode_cmd, nvbo);
nouveau_fb = &fbcon->nouveau_fb;
fb = &nouveau_fb->base;
/* setup helper */
fbcon->helper.fb = fb;
fbcon->helper.fb = &fb->base;
strcpy(info->fix.id, "nouveaufb");
if (!chan)
......@@ -411,14 +405,14 @@ nouveau_fbcon_create(struct drm_fb_helper *helper,
FBINFO_HWACCEL_IMAGEBLIT;
info->flags |= FBINFO_CAN_FORCE_OUTPUT;
info->fbops = &nouveau_fbcon_sw_ops;
info->fix.smem_start = nvbo->bo.mem.bus.base +
nvbo->bo.mem.bus.offset;
info->fix.smem_len = size;
info->fix.smem_start = fb->nvbo->bo.mem.bus.base +
fb->nvbo->bo.mem.bus.offset;
info->fix.smem_len = fb->nvbo->bo.mem.num_pages << PAGE_SHIFT;
info->screen_base = nvbo_kmap_obj_iovirtual(nouveau_fb->nvbo);
info->screen_size = size;
info->screen_base = nvbo_kmap_obj_iovirtual(fb->nvbo);
info->screen_size = fb->nvbo->bo.mem.num_pages << PAGE_SHIFT;
drm_fb_helper_fill_fix(info, fb->pitches[0], fb->depth);
drm_fb_helper_fill_fix(info, fb->base.pitches[0], fb->base.depth);
drm_fb_helper_fill_var(info, &fbcon->helper, sizes->fb_width, sizes->fb_height);
/* Use default scratch pixmap (info->pixmap.flags = FB_PIXMAP_SYSTEM) */
......@@ -429,20 +423,19 @@ nouveau_fbcon_create(struct drm_fb_helper *helper,
/* To allow resizeing without swapping buffers */
NV_INFO(drm, "allocated %dx%d fb: 0x%llx, bo %p\n",
nouveau_fb->base.width, nouveau_fb->base.height,
nvbo->bo.offset, nvbo);
fb->base.width, fb->base.height, fb->nvbo->bo.offset, nvbo);
vga_switcheroo_client_fb_set(dev->pdev, info);
return 0;
out_unlock:
if (chan)
nouveau_bo_vma_del(nvbo, &fbcon->nouveau_fb.vma);
nouveau_bo_unmap(nvbo);
nouveau_bo_vma_del(fb->nvbo, &fb->vma);
nouveau_bo_unmap(fb->nvbo);
out_unpin:
nouveau_bo_unpin(nvbo);
nouveau_bo_unpin(fb->nvbo);
out_unref:
nouveau_bo_ref(NULL, &nvbo);
nouveau_bo_ref(NULL, &fb->nvbo);
out:
return ret;
}
......@@ -458,28 +451,26 @@ nouveau_fbcon_output_poll_changed(struct drm_device *dev)
static int
nouveau_fbcon_destroy(struct drm_device *dev, struct nouveau_fbdev *fbcon)
{
struct nouveau_framebuffer *nouveau_fb = &fbcon->nouveau_fb;
struct nouveau_framebuffer *nouveau_fb = nouveau_framebuffer(fbcon->helper.fb);
drm_fb_helper_unregister_fbi(&fbcon->helper);
drm_fb_helper_release_fbi(&fbcon->helper);
drm_fb_helper_fini(&fbcon->helper);
if (nouveau_fb->nvbo) {
nouveau_bo_unmap(nouveau_fb->nvbo);
nouveau_bo_vma_del(nouveau_fb->nvbo, &nouveau_fb->vma);
nouveau_bo_unmap(nouveau_fb->nvbo);
nouveau_bo_unpin(nouveau_fb->nvbo);
drm_gem_object_unreference_unlocked(&nouveau_fb->nvbo->gem);
nouveau_fb->nvbo = NULL;
drm_framebuffer_unreference(&nouveau_fb->base);
}
drm_fb_helper_fini(&fbcon->helper);
drm_framebuffer_unregister_private(&nouveau_fb->base);
drm_framebuffer_cleanup(&nouveau_fb->base);
return 0;
}
void nouveau_fbcon_gpu_lockup(struct fb_info *info)
{
struct nouveau_fbdev *fbcon = info->par;
struct nouveau_drm *drm = nouveau_drm(fbcon->dev);
struct nouveau_drm *drm = nouveau_drm(fbcon->helper.dev);
NV_ERROR(drm, "GPU lockup - switching to software fbcon\n");
info->flags |= FBINFO_HWACCEL_DISABLED;
......@@ -522,7 +513,6 @@ nouveau_fbcon_init(struct drm_device *dev)
if (!fbcon)
return -ENOMEM;
fbcon->dev = dev;
drm->fbcon = fbcon;
drm_fb_helper_prepare(dev, &fbcon->helper, &nouveau_fbcon_helper_funcs);
......@@ -545,6 +535,7 @@ nouveau_fbcon_init(struct drm_device *dev)
preferred_bpp = 32;
/* disable all the possible outputs/crtcs before entering KMS mode */
if (!dev->mode_config.funcs->atomic_commit)
drm_helper_disable_unused_functions(dev);
ret = drm_fb_helper_initial_config(&fbcon->helper, preferred_bpp);
......
......@@ -33,8 +33,6 @@
struct nouveau_fbdev {
struct drm_fb_helper helper;
struct nouveau_framebuffer nouveau_fb;
struct drm_device *dev;
unsigned int saved_flags;
struct nvif_object surf2d;
struct nvif_object clip;
......
......@@ -586,5 +586,5 @@ static const struct dma_fence_ops nouveau_fence_ops_uevent = {
.enable_signaling = nouveau_fence_enable_signaling,
.signaled = nouveau_fence_is_signaled,
.wait = dma_fence_default_wait,
.release = NULL
.release = nouveau_fence_release
};
......@@ -92,7 +92,6 @@ struct nv84_fence_chan {
struct nouveau_fence_chan base;
struct nvkm_vma vma;
struct nvkm_vma vma_gart;
struct nvkm_vma dispc_vma[4];
};
struct nv84_fence_priv {
......@@ -102,7 +101,6 @@ struct nv84_fence_priv {
u32 *suspend;
};
u64 nv84_fence_crtc(struct nouveau_channel *, int);
int nv84_fence_context_new(struct nouveau_channel *);
#endif
......@@ -369,7 +369,7 @@ validate_init(struct nouveau_channel *chan, struct drm_file *file_priv,
{
struct nouveau_cli *cli = nouveau_cli(file_priv);
int trycnt = 0;
int ret, i;
int ret = -EINVAL, i;
struct nouveau_bo *res_bo = NULL;
LIST_HEAD(gart_list);
LIST_HEAD(vram_list);
......
......@@ -30,7 +30,7 @@ int
nv04_fbcon_copyarea(struct fb_info *info, const struct fb_copyarea *region)
{
struct nouveau_fbdev *nfbdev = info->par;
struct nouveau_drm *drm = nouveau_drm(nfbdev->dev);
struct nouveau_drm *drm = nouveau_drm(nfbdev->helper.dev);
struct nouveau_channel *chan = drm->channel;
int ret;
......@@ -50,7 +50,7 @@ int
nv04_fbcon_fillrect(struct fb_info *info, const struct fb_fillrect *rect)
{
struct nouveau_fbdev *nfbdev = info->par;
struct nouveau_drm *drm = nouveau_drm(nfbdev->dev);
struct nouveau_drm *drm = nouveau_drm(nfbdev->helper.dev);
struct nouveau_channel *chan = drm->channel;
int ret;
......@@ -77,7 +77,7 @@ int
nv04_fbcon_imageblit(struct fb_info *info, const struct fb_image *image)
{
struct nouveau_fbdev *nfbdev = info->par;
struct nouveau_drm *drm = nouveau_drm(nfbdev->dev);
struct nouveau_drm *drm = nouveau_drm(nfbdev->helper.dev);
struct nouveau_channel *chan = drm->channel;
uint32_t fg;
uint32_t bg;
......@@ -133,7 +133,7 @@ int
nv04_fbcon_accel_init(struct fb_info *info)
{
struct nouveau_fbdev *nfbdev = info->par;
struct drm_device *dev = nfbdev->dev;
struct drm_device *dev = nfbdev->helper.dev;
struct nouveau_drm *drm = nouveau_drm(dev);
struct nouveau_channel *chan = drm->channel;
struct nvif_device *device = &drm->device;
......
......@@ -57,16 +57,13 @@ void
nv10_fence_context_del(struct nouveau_channel *chan)
{
struct nv10_fence_chan *fctx = chan->fence;
int i;
nouveau_fence_context_del(&fctx->base);
for (i = 0; i < ARRAY_SIZE(fctx->head); i++)
nvif_object_fini(&fctx->head[i]);
nvif_object_fini(&fctx->sema);
chan->fence = NULL;
nouveau_fence_context_free(&fctx->base);
}
int
static int
nv10_fence_context_new(struct nouveau_channel *chan)
{
struct nv10_fence_chan *fctx;
......
......@@ -7,7 +7,6 @@
struct nv10_fence_chan {
struct nouveau_fence_chan base;
struct nvif_object sema;
struct nvif_object head[4];
};
struct nv10_fence_priv {
......
......@@ -25,10 +25,12 @@
#include <linux/dma-mapping.h>
#include <drm/drmP.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_plane_helper.h>
#include <drm/drm_dp_helper.h>
#include <drm/drm_fb_helper.h>
#include <drm/drm_plane_helper.h>
#include <nvif/class.h>
#include <nvif/cl0002.h>
......@@ -38,6 +40,7 @@
#include <nvif/cl507c.h>
#include <nvif/cl507d.h>
#include <nvif/cl507e.h>
#include <nvif/event.h>
#include "nouveau_drv.h"
#include "nouveau_dma.h"
......@@ -46,6 +49,7 @@
#include "nouveau_encoder.h"
#include "nouveau_crtc.h"
#include "nouveau_fence.h"
#include "nouveau_fbcon.h"
#include "nv50_display.h"
#define EVO_DMA_NR 9
......@@ -61,6 +65,227 @@
#define EVO_MAST_NTFY EVO_SYNC( 0, 0x00)
#define EVO_FLIP_SEM0(c) EVO_SYNC((c) + 1, 0x00)
#define EVO_FLIP_SEM1(c) EVO_SYNC((c) + 1, 0x10)
#define EVO_FLIP_NTFY0(c) EVO_SYNC((c) + 1, 0x20)
#define EVO_FLIP_NTFY1(c) EVO_SYNC((c) + 1, 0x30)
/******************************************************************************
* Atomic state
*****************************************************************************/
#define nv50_atom(p) container_of((p), struct nv50_atom, state)
struct nv50_atom {
struct drm_atomic_state state;
struct list_head outp;
bool lock_core;
bool flush_disable;
};
struct nv50_outp_atom {
struct list_head head;
struct drm_encoder *encoder;
bool flush_disable;
union {
struct {
bool ctrl:1;
};
u8 mask;
} clr;
union {
struct {
bool ctrl:1;
};
u8 mask;
} set;
};
#define nv50_head_atom(p) container_of((p), struct nv50_head_atom, state)
struct nv50_head_atom {
struct drm_crtc_state state;
struct {
u16 iW;
u16 iH;
u16 oW;
u16 oH;
} view;
struct nv50_head_mode {
bool interlace;
u32 clock;
struct {
u16 active;
u16 synce;
u16 blanke;
u16 blanks;
} h;
struct {
u32 active;
u16 synce;
u16 blanke;
u16 blanks;
u16 blank2s;
u16 blank2e;
u16 blankus;
} v;
} mode;
struct {
u32 handle;
u64 offset:40;
} lut;
struct {
bool visible;
u32 handle;
u64 offset:40;
u8 format;
u8 kind:7;
u8 layout:1;
u8 block:4;
u32 pitch:20;
u16 x;
u16 y;
u16 w;
u16 h;
} core;
struct {
bool visible;
u32 handle;
u64 offset:40;
u8 layout:1;
u8 format:1;
} curs;
struct {
u8 depth;
u8 cpp;
u16 x;
u16 y;
u16 w;
u16 h;
} base;
struct {
u8 cpp;
} ovly;
struct {
bool enable:1;
u8 bits:2;
u8 mode:4;
} dither;
struct {
struct {
u16 cos:12;
u16 sin:12;
} sat;
} procamp;
union {
struct {
bool core:1;
bool curs:1;
};
u8 mask;
} clr;
union {
struct {
bool core:1;
bool curs:1;
bool view:1;
bool mode:1;
bool base:1;
bool ovly:1;
bool dither:1;
bool procamp:1;
};
u16 mask;
} set;
};
static inline struct nv50_head_atom *
nv50_head_atom_get(struct drm_atomic_state *state, struct drm_crtc *crtc)
{
struct drm_crtc_state *statec = drm_atomic_get_crtc_state(state, crtc);
if (IS_ERR(statec))
return (void *)statec;
return nv50_head_atom(statec);
}
#define nv50_wndw_atom(p) container_of((p), struct nv50_wndw_atom, state)
struct nv50_wndw_atom {
struct drm_plane_state state;
u8 interval;
struct drm_rect clip;
struct {
u32 handle;
u16 offset:12;
bool awaken:1;
} ntfy;
struct {
u32 handle;
u16 offset:12;
u32 acquire;
u32 release;
} sema;
struct {
u8 enable:2;
} lut;
struct {
u8 mode:2;
u8 interval:4;
u8 format;
u8 kind:7;
u8 layout:1;
u8 block:4;
u32 pitch:20;
u16 w;
u16 h;
u32 handle;
u64 offset;
} image;
struct {
u16 x;
u16 y;
} point;
union {
struct {
bool ntfy:1;
bool sema:1;
bool image:1;
};
u8 mask;
} clr;
union {
struct {
bool ntfy:1;
bool sema:1;
bool image:1;
bool lut:1;
bool point:1;
};
u8 mask;
} set;
};
/******************************************************************************
* EVO channel
......@@ -132,34 +357,6 @@ nv50_pioc_create(struct nvif_device *device, struct nvif_object *disp,
&pioc->base);
}
/******************************************************************************
* Cursor Immediate
*****************************************************************************/
struct nv50_curs {
struct nv50_pioc base;
};
static int
nv50_curs_create(struct nvif_device *device, struct nvif_object *disp,
int head, struct nv50_curs *curs)
{
struct nv50_disp_cursor_v0 args = {
.head = head,
};
static const s32 oclass[] = {
GK104_DISP_CURSOR,
GF110_DISP_CURSOR,
GT214_DISP_CURSOR,
G82_DISP_CURSOR,
NV50_DISP_CURSOR,
0
};
return nv50_pioc_create(device, disp, oclass, head, &args, sizeof(args),
&curs->base);
}
/******************************************************************************
* Overlay Immediate
*****************************************************************************/
......@@ -192,6 +389,11 @@ nv50_oimm_create(struct nvif_device *device, struct nvif_object *disp,
* DMA EVO channel
*****************************************************************************/
struct nv50_dmac_ctxdma {
struct list_head head;
struct nvif_object object;
};
struct nv50_dmac {
struct nv50_chan base;
dma_addr_t handle;
......@@ -199,6 +401,7 @@ struct nv50_dmac {
struct nvif_object sync;
struct nvif_object vram;
struct list_head ctxdma;
/* Protects against concurrent pushbuf access to this channel, lock is
* grabbed by evo_wait (if the pushbuf reservation is successful) and
......@@ -206,10 +409,83 @@ struct nv50_dmac {
struct mutex lock;
};
static void
nv50_dmac_ctxdma_del(struct nv50_dmac_ctxdma *ctxdma)
{
nvif_object_fini(&ctxdma->object);
list_del(&ctxdma->head);
kfree(ctxdma);
}
static struct nv50_dmac_ctxdma *
nv50_dmac_ctxdma_new(struct nv50_dmac *dmac, struct nouveau_framebuffer *fb)
{
struct nouveau_drm *drm = nouveau_drm(fb->base.dev);
struct nv50_dmac_ctxdma *ctxdma;
const u8 kind = (fb->nvbo->tile_flags & 0x0000ff00) >> 8;
const u32 handle = 0xfb000000 | kind;
struct {
struct nv_dma_v0 base;
union {
struct nv50_dma_v0 nv50;
struct gf100_dma_v0 gf100;
struct gf119_dma_v0 gf119;
};
} args = {};
u32 argc = sizeof(args.base);
int ret;
list_for_each_entry(ctxdma, &dmac->ctxdma, head) {
if (ctxdma->object.handle == handle)
return ctxdma;
}
if (!(ctxdma = kzalloc(sizeof(*ctxdma), GFP_KERNEL)))
return ERR_PTR(-ENOMEM);
list_add(&ctxdma->head, &dmac->ctxdma);
args.base.target = NV_DMA_V0_TARGET_VRAM;
args.base.access = NV_DMA_V0_ACCESS_RDWR;
args.base.start = 0;
args.base.limit = drm->device.info.ram_user - 1;
if (drm->device.info.chipset < 0x80) {
args.nv50.part = NV50_DMA_V0_PART_256;
argc += sizeof(args.nv50);
} else
if (drm->device.info.chipset < 0xc0) {
args.nv50.part = NV50_DMA_V0_PART_256;
args.nv50.kind = kind;
argc += sizeof(args.nv50);
} else
if (drm->device.info.chipset < 0xd0) {
args.gf100.kind = kind;
argc += sizeof(args.gf100);
} else {
args.gf119.page = GF119_DMA_V0_PAGE_LP;
args.gf119.kind = kind;
argc += sizeof(args.gf119);
}
ret = nvif_object_init(&dmac->base.user, handle, NV_DMA_IN_MEMORY,
&args, argc, &ctxdma->object);
if (ret) {
nv50_dmac_ctxdma_del(ctxdma);
return ERR_PTR(ret);
}
return ctxdma;
}
static void
nv50_dmac_destroy(struct nv50_dmac *dmac, struct nvif_object *disp)
{
struct nvif_device *device = dmac->base.device;
struct nv50_dmac_ctxdma *ctxdma, *ctxtmp;
list_for_each_entry_safe(ctxdma, ctxtmp, &dmac->ctxdma, head) {
nv50_dmac_ctxdma_del(ctxdma);
}
nvif_object_fini(&dmac->vram);
nvif_object_fini(&dmac->sync);
......@@ -278,6 +554,7 @@ nv50_dmac_create(struct nvif_device *device, struct nvif_object *disp,
if (ret)
return ret;
INIT_LIST_HEAD(&dmac->ctxdma);
return ret;
}
......@@ -381,34 +658,23 @@ nv50_ovly_create(struct nvif_device *device, struct nvif_object *disp,
struct nv50_head {
struct nouveau_crtc base;
struct nouveau_bo *image;
struct nv50_curs curs;
struct nv50_sync sync;
struct nv50_ovly ovly;
struct nv50_oimm oimm;
};
#define nv50_head(c) ((struct nv50_head *)nouveau_crtc(c))
#define nv50_curs(c) (&nv50_head(c)->curs)
#define nv50_sync(c) (&nv50_head(c)->sync)
#define nv50_ovly(c) (&nv50_head(c)->ovly)
#define nv50_oimm(c) (&nv50_head(c)->oimm)
#define nv50_chan(c) (&(c)->base.base)
#define nv50_vers(c) nv50_chan(c)->user.oclass
struct nv50_fbdma {
struct list_head head;
struct nvif_object core;
struct nvif_object base[4];
};
struct nv50_disp {
struct nvif_object *disp;
struct nv50_mast mast;
struct list_head fbdma;
struct nouveau_bo *sync;
struct mutex mutex;
};
static struct nv50_disp *
......@@ -419,12 +685,6 @@ nv50_disp(struct drm_device *dev)
#define nv50_mast(d) (&nv50_disp(d)->mast)
static struct drm_crtc *
nv50_display_crtc_get(struct drm_encoder *encoder)
{
return nouveau_encoder(encoder)->crtc;
}
/******************************************************************************
* EVO channel helpers
*****************************************************************************/
......@@ -463,1384 +723,2707 @@ evo_kick(u32 *push, void *evoc)
mutex_unlock(&dmac->lock);
}
#if 1
#define evo_mthd(p,m,s) *((p)++) = (((s) << 18) | (m))
#define evo_data(p,d) *((p)++) = (d)
#else
#define evo_mthd(p,m,s) do { \
const u32 _m = (m), _s = (s); \
if (drm_debug & DRM_UT_KMS) \
printk(KERN_ERR "%04x %d %s\n", _m, _s, __func__); \
*((p)++) = ((_s << 18) | _m); \
} while(0)
#define evo_data(p,d) do { \
const u32 _d = (d); \
if (drm_debug & DRM_UT_KMS) \
printk(KERN_ERR "\t%08x\n", _d); \
*((p)++) = _d; \
} while(0)
#endif
static bool
evo_sync_wait(void *data)
{
if (nouveau_bo_rd32(data, EVO_MAST_NTFY) != 0x00000000)
return true;
usleep_range(1, 2);
return false;
}
/******************************************************************************
* Plane
*****************************************************************************/
#define nv50_wndw(p) container_of((p), struct nv50_wndw, plane)
struct nv50_wndw {
const struct nv50_wndw_func *func;
struct nv50_dmac *dmac;
struct drm_plane plane;
struct nvif_notify notify;
u16 ntfy;
u16 sema;
u32 data;
};
struct nv50_wndw_func {
void *(*dtor)(struct nv50_wndw *);
int (*acquire)(struct nv50_wndw *, struct nv50_wndw_atom *asyw,
struct nv50_head_atom *asyh);
void (*release)(struct nv50_wndw *, struct nv50_wndw_atom *asyw,
struct nv50_head_atom *asyh);
void (*prepare)(struct nv50_wndw *, struct nv50_head_atom *asyh,
struct nv50_wndw_atom *asyw);
void (*sema_set)(struct nv50_wndw *, struct nv50_wndw_atom *);
void (*sema_clr)(struct nv50_wndw *);
void (*ntfy_set)(struct nv50_wndw *, struct nv50_wndw_atom *);
void (*ntfy_clr)(struct nv50_wndw *);
int (*ntfy_wait_begun)(struct nv50_wndw *, struct nv50_wndw_atom *);
void (*image_set)(struct nv50_wndw *, struct nv50_wndw_atom *);
void (*image_clr)(struct nv50_wndw *);
void (*lut)(struct nv50_wndw *, struct nv50_wndw_atom *);
void (*point)(struct nv50_wndw *, struct nv50_wndw_atom *);
u32 (*update)(struct nv50_wndw *, u32 interlock);
};
static int
evo_sync(struct drm_device *dev)
nv50_wndw_wait_armed(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw)
{
struct nvif_device *device = &nouveau_drm(dev)->device;
struct nv50_disp *disp = nv50_disp(dev);
struct nv50_mast *mast = nv50_mast(dev);
u32 *push = evo_wait(mast, 8);
if (push) {
nouveau_bo_wr32(disp->sync, EVO_MAST_NTFY, 0x00000000);
evo_mthd(push, 0x0084, 1);
evo_data(push, 0x80000000 | EVO_MAST_NTFY);
evo_mthd(push, 0x0080, 2);
evo_data(push, 0x00000000);
evo_data(push, 0x00000000);
evo_kick(push, mast);
if (nvif_msec(device, 2000,
if (evo_sync_wait(disp->sync))
break;
) >= 0)
if (asyw->set.ntfy)
return wndw->func->ntfy_wait_begun(wndw, asyw);
return 0;
}
return -EBUSY;
}
/******************************************************************************
* Page flipping channel
*****************************************************************************/
struct nouveau_bo *
nv50_display_crtc_sema(struct drm_device *dev, int crtc)
static u32
nv50_wndw_flush_clr(struct nv50_wndw *wndw, u32 interlock, bool flush,
struct nv50_wndw_atom *asyw)
{
return nv50_disp(dev)->sync;
if (asyw->clr.sema && (!asyw->set.sema || flush))
wndw->func->sema_clr(wndw);
if (asyw->clr.ntfy && (!asyw->set.ntfy || flush))
wndw->func->ntfy_clr(wndw);
if (asyw->clr.image && (!asyw->set.image || flush))
wndw->func->image_clr(wndw);
return flush ? wndw->func->update(wndw, interlock) : 0;
}
struct nv50_display_flip {
struct nv50_disp *disp;
struct nv50_sync *chan;
};
static u32
nv50_wndw_flush_set(struct nv50_wndw *wndw, u32 interlock,
struct nv50_wndw_atom *asyw)
{
if (interlock) {
asyw->image.mode = 0;
asyw->image.interval = 1;
}
if (asyw->set.sema ) wndw->func->sema_set (wndw, asyw);
if (asyw->set.ntfy ) wndw->func->ntfy_set (wndw, asyw);
if (asyw->set.image) wndw->func->image_set(wndw, asyw);
if (asyw->set.lut ) wndw->func->lut (wndw, asyw);
if (asyw->set.point) wndw->func->point (wndw, asyw);
static bool
nv50_display_flip_wait(void *data)
return wndw->func->update(wndw, interlock);
}
static void
nv50_wndw_atomic_check_release(struct nv50_wndw *wndw,
struct nv50_wndw_atom *asyw,
struct nv50_head_atom *asyh)
{
struct nv50_display_flip *flip = data;
if (nouveau_bo_rd32(flip->disp->sync, flip->chan->addr / 4) ==
flip->chan->data)
return true;
usleep_range(1, 2);
return false;
struct nouveau_drm *drm = nouveau_drm(wndw->plane.dev);
NV_ATOMIC(drm, "%s release\n", wndw->plane.name);
wndw->func->release(wndw, asyw, asyh);
asyw->ntfy.handle = 0;
asyw->sema.handle = 0;
}
void
nv50_display_flip_stop(struct drm_crtc *crtc)
static int
nv50_wndw_atomic_check_acquire(struct nv50_wndw *wndw,
struct nv50_wndw_atom *asyw,
struct nv50_head_atom *asyh)
{
struct nvif_device *device = &nouveau_drm(crtc->dev)->device;
struct nv50_display_flip flip = {
.disp = nv50_disp(crtc->dev),
.chan = nv50_sync(crtc),
};
u32 *push;
struct nouveau_framebuffer *fb = nouveau_framebuffer(asyw->state.fb);
struct nouveau_drm *drm = nouveau_drm(wndw->plane.dev);
int ret;
push = evo_wait(flip.chan, 8);
if (push) {
evo_mthd(push, 0x0084, 1);
evo_data(push, 0x00000000);
evo_mthd(push, 0x0094, 1);
evo_data(push, 0x00000000);
evo_mthd(push, 0x00c0, 1);
evo_data(push, 0x00000000);
evo_mthd(push, 0x0080, 1);
evo_data(push, 0x00000000);
evo_kick(push, flip.chan);
NV_ATOMIC(drm, "%s acquire\n", wndw->plane.name);
asyw->clip.x1 = 0;
asyw->clip.y1 = 0;
asyw->clip.x2 = asyh->state.mode.hdisplay;
asyw->clip.y2 = asyh->state.mode.vdisplay;
asyw->image.w = fb->base.width;
asyw->image.h = fb->base.height;
asyw->image.kind = (fb->nvbo->tile_flags & 0x0000ff00) >> 8;
if (asyw->image.kind) {
asyw->image.layout = 0;
if (drm->device.info.chipset >= 0xc0)
asyw->image.block = fb->nvbo->tile_mode >> 4;
else
asyw->image.block = fb->nvbo->tile_mode;
asyw->image.pitch = (fb->base.pitches[0] / 4) << 4;
} else {
asyw->image.layout = 1;
asyw->image.block = 0;
asyw->image.pitch = fb->base.pitches[0];
}
nvif_msec(device, 2000,
if (nv50_display_flip_wait(&flip))
break;
);
ret = wndw->func->acquire(wndw, asyw, asyh);
if (ret)
return ret;
if (asyw->set.image) {
if (!(asyw->image.mode = asyw->interval ? 0 : 1))
asyw->image.interval = asyw->interval;
else
asyw->image.interval = 0;
}
return 0;
}
int
nv50_display_flip_next(struct drm_crtc *crtc, struct drm_framebuffer *fb,
struct nouveau_channel *chan, u32 swap_interval)
static int
nv50_wndw_atomic_check(struct drm_plane *plane, struct drm_plane_state *state)
{
struct nouveau_framebuffer *nv_fb = nouveau_framebuffer(fb);
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
struct nv50_head *head = nv50_head(crtc);
struct nv50_sync *sync = nv50_sync(crtc);
u32 *push;
struct nouveau_drm *drm = nouveau_drm(plane->dev);
struct nv50_wndw *wndw = nv50_wndw(plane);
struct nv50_wndw_atom *armw = nv50_wndw_atom(wndw->plane.state);
struct nv50_wndw_atom *asyw = nv50_wndw_atom(state);
struct nv50_head_atom *harm = NULL, *asyh = NULL;
bool varm = false, asyv = false, asym = false;
int ret;
if (crtc->primary->fb->width != fb->width ||
crtc->primary->fb->height != fb->height)
return -EINVAL;
swap_interval <<= 4;
if (swap_interval == 0)
swap_interval |= 0x100;
if (chan == NULL)
evo_sync(crtc->dev);
push = evo_wait(sync, 128);
if (unlikely(push == NULL))
return -EBUSY;
NV_ATOMIC(drm, "%s atomic_check\n", plane->name);
if (asyw->state.crtc) {
asyh = nv50_head_atom_get(asyw->state.state, asyw->state.crtc);
if (IS_ERR(asyh))
return PTR_ERR(asyh);
asym = drm_atomic_crtc_needs_modeset(&asyh->state);
asyv = asyh->state.active;
}
if (chan && chan->user.oclass < G82_CHANNEL_GPFIFO) {
ret = RING_SPACE(chan, 8);
if (ret)
return ret;
if (armw->state.crtc) {
harm = nv50_head_atom_get(asyw->state.state, armw->state.crtc);
if (IS_ERR(harm))
return PTR_ERR(harm);
varm = harm->state.crtc->state->active;
}
BEGIN_NV04(chan, 0, NV11_SUBCHAN_DMA_SEMAPHORE, 2);
OUT_RING (chan, NvEvoSema0 + nv_crtc->index);
OUT_RING (chan, sync->addr ^ 0x10);
BEGIN_NV04(chan, 0, NV11_SUBCHAN_SEMAPHORE_RELEASE, 1);
OUT_RING (chan, sync->data + 1);
BEGIN_NV04(chan, 0, NV11_SUBCHAN_SEMAPHORE_OFFSET, 2);
OUT_RING (chan, sync->addr);
OUT_RING (chan, sync->data);
} else
if (chan && chan->user.oclass < FERMI_CHANNEL_GPFIFO) {
u64 addr = nv84_fence_crtc(chan, nv_crtc->index) + sync->addr;
ret = RING_SPACE(chan, 12);
if (ret)
return ret;
if (asyv) {
asyw->point.x = asyw->state.crtc_x;
asyw->point.y = asyw->state.crtc_y;
if (memcmp(&armw->point, &asyw->point, sizeof(asyw->point)))
asyw->set.point = true;
BEGIN_NV04(chan, 0, NV11_SUBCHAN_DMA_SEMAPHORE, 1);
OUT_RING (chan, chan->vram.handle);
BEGIN_NV04(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
OUT_RING (chan, upper_32_bits(addr ^ 0x10));
OUT_RING (chan, lower_32_bits(addr ^ 0x10));
OUT_RING (chan, sync->data + 1);
OUT_RING (chan, NV84_SUBCHAN_SEMAPHORE_TRIGGER_WRITE_LONG);
BEGIN_NV04(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
OUT_RING (chan, upper_32_bits(addr));
OUT_RING (chan, lower_32_bits(addr));
OUT_RING (chan, sync->data);
OUT_RING (chan, NV84_SUBCHAN_SEMAPHORE_TRIGGER_ACQUIRE_EQUAL);
} else
if (chan) {
u64 addr = nv84_fence_crtc(chan, nv_crtc->index) + sync->addr;
ret = RING_SPACE(chan, 10);
if (!varm || asym || armw->state.fb != asyw->state.fb) {
ret = nv50_wndw_atomic_check_acquire(wndw, asyw, asyh);
if (ret)
return ret;
BEGIN_NVC0(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
OUT_RING (chan, upper_32_bits(addr ^ 0x10));
OUT_RING (chan, lower_32_bits(addr ^ 0x10));
OUT_RING (chan, sync->data + 1);
OUT_RING (chan, NV84_SUBCHAN_SEMAPHORE_TRIGGER_WRITE_LONG |
NVC0_SUBCHAN_SEMAPHORE_TRIGGER_YIELD);
BEGIN_NVC0(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
OUT_RING (chan, upper_32_bits(addr));
OUT_RING (chan, lower_32_bits(addr));
OUT_RING (chan, sync->data);
OUT_RING (chan, NV84_SUBCHAN_SEMAPHORE_TRIGGER_ACQUIRE_EQUAL |
NVC0_SUBCHAN_SEMAPHORE_TRIGGER_YIELD);
}
if (chan) {
sync->addr ^= 0x10;
sync->data++;
FIRE_RING (chan);
}
/* queue the flip */
evo_mthd(push, 0x0100, 1);
evo_data(push, 0xfffe0000);
evo_mthd(push, 0x0084, 1);
evo_data(push, swap_interval);
if (!(swap_interval & 0x00000100)) {
evo_mthd(push, 0x00e0, 1);
evo_data(push, 0x40000000);
}
evo_mthd(push, 0x0088, 4);
evo_data(push, sync->addr);
evo_data(push, sync->data++);
evo_data(push, sync->data);
evo_data(push, sync->base.sync.handle);
evo_mthd(push, 0x00a0, 2);
evo_data(push, 0x00000000);
evo_data(push, 0x00000000);
evo_mthd(push, 0x00c0, 1);
evo_data(push, nv_fb->r_handle);
evo_mthd(push, 0x0110, 2);
evo_data(push, 0x00000000);
evo_data(push, 0x00000000);
if (nv50_vers(sync) < GF110_DISP_BASE_CHANNEL_DMA) {
evo_mthd(push, 0x0800, 5);
evo_data(push, nv_fb->nvbo->bo.offset >> 8);
evo_data(push, 0);
evo_data(push, (fb->height << 16) | fb->width);
evo_data(push, nv_fb->r_pitch);
evo_data(push, nv_fb->r_format);
} else
if (varm) {
nv50_wndw_atomic_check_release(wndw, asyw, harm);
} else {
evo_mthd(push, 0x0400, 5);
evo_data(push, nv_fb->nvbo->bo.offset >> 8);
evo_data(push, 0);
evo_data(push, (fb->height << 16) | fb->width);
evo_data(push, nv_fb->r_pitch);
evo_data(push, nv_fb->r_format);
return 0;
}
if (!asyv || asym) {
asyw->clr.ntfy = armw->ntfy.handle != 0;
asyw->clr.sema = armw->sema.handle != 0;
if (wndw->func->image_clr)
asyw->clr.image = armw->image.handle != 0;
asyw->set.lut = wndw->func->lut && asyv;
}
evo_mthd(push, 0x0080, 1);
evo_data(push, 0x00000000);
evo_kick(push, sync);
nouveau_bo_ref(nv_fb->nvbo, &head->image);
return 0;
}
/******************************************************************************
* CRTC
*****************************************************************************/
static int
nv50_crtc_set_dither(struct nouveau_crtc *nv_crtc, bool update)
static void
nv50_wndw_cleanup_fb(struct drm_plane *plane, struct drm_plane_state *old_state)
{
struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
struct nouveau_connector *nv_connector;
struct drm_connector *connector;
u32 *push, mode = 0x00;
struct nouveau_framebuffer *fb = nouveau_framebuffer(old_state->fb);
struct nouveau_drm *drm = nouveau_drm(plane->dev);
nv_connector = nouveau_crtc_connector_get(nv_crtc);
connector = &nv_connector->base;
if (nv_connector->dithering_mode == DITHERING_MODE_AUTO) {
if (nv_crtc->base.primary->fb->depth > connector->display_info.bpc * 3)
mode = DITHERING_MODE_DYNAMIC2X2;
} else {
mode = nv_connector->dithering_mode;
}
NV_ATOMIC(drm, "%s cleanup: %p\n", plane->name, old_state->fb);
if (!old_state->fb)
return;
if (nv_connector->dithering_depth == DITHERING_DEPTH_AUTO) {
if (connector->display_info.bpc >= 8)
mode |= DITHERING_DEPTH_8BPC;
} else {
mode |= nv_connector->dithering_depth;
}
nouveau_bo_unpin(fb->nvbo);
}
push = evo_wait(mast, 4);
if (push) {
if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x08a0 + (nv_crtc->index * 0x0400), 1);
evo_data(push, mode);
} else
if (nv50_vers(mast) < GK104_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0490 + (nv_crtc->index * 0x0300), 1);
evo_data(push, mode);
} else {
evo_mthd(push, 0x04a0 + (nv_crtc->index * 0x0300), 1);
evo_data(push, mode);
}
static int
nv50_wndw_prepare_fb(struct drm_plane *plane, struct drm_plane_state *state)
{
struct nouveau_framebuffer *fb = nouveau_framebuffer(state->fb);
struct nouveau_drm *drm = nouveau_drm(plane->dev);
struct nv50_wndw *wndw = nv50_wndw(plane);
struct nv50_wndw_atom *asyw = nv50_wndw_atom(state);
struct nv50_head_atom *asyh;
struct nv50_dmac_ctxdma *ctxdma;
int ret;
if (update) {
evo_mthd(push, 0x0080, 1);
evo_data(push, 0x00000000);
NV_ATOMIC(drm, "%s prepare: %p\n", plane->name, state->fb);
if (!asyw->state.fb)
return 0;
ret = nouveau_bo_pin(fb->nvbo, TTM_PL_FLAG_VRAM, true);
if (ret)
return ret;
ctxdma = nv50_dmac_ctxdma_new(wndw->dmac, fb);
if (IS_ERR(ctxdma)) {
nouveau_bo_unpin(fb->nvbo);
return PTR_ERR(ctxdma);
}
evo_kick(push, mast);
asyw->state.fence = reservation_object_get_excl_rcu(fb->nvbo->bo.resv);
asyw->image.handle = ctxdma->object.handle;
asyw->image.offset = fb->nvbo->bo.offset;
if (wndw->func->prepare) {
asyh = nv50_head_atom_get(asyw->state.state, asyw->state.crtc);
if (IS_ERR(asyh))
return PTR_ERR(asyh);
wndw->func->prepare(wndw, asyh, asyw);
}
return 0;
}
static int
nv50_crtc_set_scale(struct nouveau_crtc *nv_crtc, bool update)
static const struct drm_plane_helper_funcs
nv50_wndw_helper = {
.prepare_fb = nv50_wndw_prepare_fb,
.cleanup_fb = nv50_wndw_cleanup_fb,
.atomic_check = nv50_wndw_atomic_check,
};
static void
nv50_wndw_atomic_destroy_state(struct drm_plane *plane,
struct drm_plane_state *state)
{
struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
struct drm_display_mode *omode, *umode = &nv_crtc->base.mode;
struct drm_crtc *crtc = &nv_crtc->base;
struct nouveau_connector *nv_connector;
int mode = DRM_MODE_SCALE_NONE;
u32 oX, oY, *push;
struct nv50_wndw_atom *asyw = nv50_wndw_atom(state);
__drm_atomic_helper_plane_destroy_state(&asyw->state);
dma_fence_put(asyw->state.fence);
kfree(asyw);
}
/* start off at the resolution we programmed the crtc for, this
* effectively handles NONE/FULL scaling
*/
nv_connector = nouveau_crtc_connector_get(nv_crtc);
if (nv_connector && nv_connector->native_mode) {
mode = nv_connector->scaling_mode;
if (nv_connector->scaling_full) /* non-EDID LVDS/eDP mode */
mode = DRM_MODE_SCALE_FULLSCREEN;
}
static struct drm_plane_state *
nv50_wndw_atomic_duplicate_state(struct drm_plane *plane)
{
struct nv50_wndw_atom *armw = nv50_wndw_atom(plane->state);
struct nv50_wndw_atom *asyw;
if (!(asyw = kmalloc(sizeof(*asyw), GFP_KERNEL)))
return NULL;
__drm_atomic_helper_plane_duplicate_state(plane, &asyw->state);
asyw->state.fence = NULL;
asyw->interval = 1;
asyw->sema = armw->sema;
asyw->ntfy = armw->ntfy;
asyw->image = armw->image;
asyw->point = armw->point;
asyw->lut = armw->lut;
asyw->clr.mask = 0;
asyw->set.mask = 0;
return &asyw->state;
}
if (mode != DRM_MODE_SCALE_NONE)
omode = nv_connector->native_mode;
else
omode = umode;
static void
nv50_wndw_reset(struct drm_plane *plane)
{
struct nv50_wndw_atom *asyw;
oX = omode->hdisplay;
oY = omode->vdisplay;
if (omode->flags & DRM_MODE_FLAG_DBLSCAN)
oY *= 2;
if (WARN_ON(!(asyw = kzalloc(sizeof(*asyw), GFP_KERNEL))))
return;
/* add overscan compensation if necessary, will keep the aspect
* ratio the same as the backend mode unless overridden by the
* user setting both hborder and vborder properties.
*/
if (nv_connector && ( nv_connector->underscan == UNDERSCAN_ON ||
(nv_connector->underscan == UNDERSCAN_AUTO &&
drm_detect_hdmi_monitor(nv_connector->edid)))) {
u32 bX = nv_connector->underscan_hborder;
u32 bY = nv_connector->underscan_vborder;
u32 aspect = (oY << 19) / oX;
if (plane->state)
plane->funcs->atomic_destroy_state(plane, plane->state);
plane->state = &asyw->state;
plane->state->plane = plane;
plane->state->rotation = DRM_ROTATE_0;
}
if (bX) {
oX -= (bX * 2);
if (bY) oY -= (bY * 2);
else oY = ((oX * aspect) + (aspect / 2)) >> 19;
} else {
oX -= (oX >> 4) + 32;
if (bY) oY -= (bY * 2);
else oY = ((oX * aspect) + (aspect / 2)) >> 19;
}
}
static void
nv50_wndw_destroy(struct drm_plane *plane)
{
struct nv50_wndw *wndw = nv50_wndw(plane);
void *data;
nvif_notify_fini(&wndw->notify);
data = wndw->func->dtor(wndw);
drm_plane_cleanup(&wndw->plane);
kfree(data);
}
/* handle CENTER/ASPECT scaling, taking into account the areas
* removed already for overscan compensation
*/
switch (mode) {
case DRM_MODE_SCALE_CENTER:
oX = min((u32)umode->hdisplay, oX);
oY = min((u32)umode->vdisplay, oY);
/* fall-through */
case DRM_MODE_SCALE_ASPECT:
if (oY < oX) {
u32 aspect = (umode->hdisplay << 19) / umode->vdisplay;
oX = ((oY * aspect) + (aspect / 2)) >> 19;
} else {
u32 aspect = (umode->vdisplay << 19) / umode->hdisplay;
oY = ((oX * aspect) + (aspect / 2)) >> 19;
}
break;
default:
break;
}
static const struct drm_plane_funcs
nv50_wndw = {
.update_plane = drm_atomic_helper_update_plane,
.disable_plane = drm_atomic_helper_disable_plane,
.destroy = nv50_wndw_destroy,
.reset = nv50_wndw_reset,
.set_property = drm_atomic_helper_plane_set_property,
.atomic_duplicate_state = nv50_wndw_atomic_duplicate_state,
.atomic_destroy_state = nv50_wndw_atomic_destroy_state,
};
push = evo_wait(mast, 8);
if (push) {
if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
/*XXX: SCALE_CTRL_ACTIVE??? */
evo_mthd(push, 0x08d8 + (nv_crtc->index * 0x400), 2);
evo_data(push, (oY << 16) | oX);
evo_data(push, (oY << 16) | oX);
evo_mthd(push, 0x08a4 + (nv_crtc->index * 0x400), 1);
evo_data(push, 0x00000000);
evo_mthd(push, 0x08c8 + (nv_crtc->index * 0x400), 1);
evo_data(push, umode->vdisplay << 16 | umode->hdisplay);
} else {
evo_mthd(push, 0x04c0 + (nv_crtc->index * 0x300), 3);
evo_data(push, (oY << 16) | oX);
evo_data(push, (oY << 16) | oX);
evo_data(push, (oY << 16) | oX);
evo_mthd(push, 0x0494 + (nv_crtc->index * 0x300), 1);
evo_data(push, 0x00000000);
evo_mthd(push, 0x04b8 + (nv_crtc->index * 0x300), 1);
evo_data(push, umode->vdisplay << 16 | umode->hdisplay);
}
static void
nv50_wndw_fini(struct nv50_wndw *wndw)
{
nvif_notify_put(&wndw->notify);
}
evo_kick(push, mast);
static void
nv50_wndw_init(struct nv50_wndw *wndw)
{
nvif_notify_get(&wndw->notify);
}
if (update) {
nv50_display_flip_stop(crtc);
nv50_display_flip_next(crtc, crtc->primary->fb,
NULL, 1);
}
}
static int
nv50_wndw_ctor(const struct nv50_wndw_func *func, struct drm_device *dev,
enum drm_plane_type type, const char *name, int index,
struct nv50_dmac *dmac, const u32 *format, int nformat,
struct nv50_wndw *wndw)
{
int ret;
wndw->func = func;
wndw->dmac = dmac;
ret = drm_universal_plane_init(dev, &wndw->plane, 0, &nv50_wndw, format,
nformat, type, "%s-%d", name, index);
if (ret)
return ret;
drm_plane_helper_add(&wndw->plane, &nv50_wndw_helper);
return 0;
}
static int
nv50_crtc_set_raster_vblank_dmi(struct nouveau_crtc *nv_crtc, u32 usec)
{
struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
u32 *push;
/******************************************************************************
* Cursor plane
*****************************************************************************/
#define nv50_curs(p) container_of((p), struct nv50_curs, wndw)
push = evo_wait(mast, 8);
if (!push)
return -ENOMEM;
struct nv50_curs {
struct nv50_wndw wndw;
struct nvif_object chan;
};
evo_mthd(push, 0x0828 + (nv_crtc->index * 0x400), 1);
evo_data(push, usec);
evo_kick(push, mast);
static u32
nv50_curs_update(struct nv50_wndw *wndw, u32 interlock)
{
struct nv50_curs *curs = nv50_curs(wndw);
nvif_wr32(&curs->chan, 0x0080, 0x00000000);
return 0;
}
static void
nv50_curs_point(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw)
{
struct nv50_curs *curs = nv50_curs(wndw);
nvif_wr32(&curs->chan, 0x0084, (asyw->point.y << 16) | asyw->point.x);
}
static void
nv50_curs_prepare(struct nv50_wndw *wndw, struct nv50_head_atom *asyh,
struct nv50_wndw_atom *asyw)
{
asyh->curs.handle = nv50_disp(wndw->plane.dev)->mast.base.vram.handle;
asyh->curs.offset = asyw->image.offset;
asyh->set.curs = asyh->curs.visible;
}
static void
nv50_curs_release(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw,
struct nv50_head_atom *asyh)
{
asyh->curs.visible = false;
}
static int
nv50_crtc_set_color_vibrance(struct nouveau_crtc *nv_crtc, bool update)
nv50_curs_acquire(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw,
struct nv50_head_atom *asyh)
{
struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
u32 *push, hue, vib;
int adj;
int ret;
adj = (nv_crtc->color_vibrance > 0) ? 50 : 0;
vib = ((nv_crtc->color_vibrance * 2047 + adj) / 100) & 0xfff;
hue = ((nv_crtc->vibrant_hue * 2047) / 100) & 0xfff;
ret = drm_plane_helper_check_state(&asyw->state, &asyw->clip,
DRM_PLANE_HELPER_NO_SCALING,
DRM_PLANE_HELPER_NO_SCALING,
true, true);
asyh->curs.visible = asyw->state.visible;
if (ret || !asyh->curs.visible)
return ret;
push = evo_wait(mast, 16);
if (push) {
if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x08a8 + (nv_crtc->index * 0x400), 1);
evo_data(push, (hue << 20) | (vib << 8));
} else {
evo_mthd(push, 0x0498 + (nv_crtc->index * 0x300), 1);
evo_data(push, (hue << 20) | (vib << 8));
switch (asyw->state.fb->width) {
case 32: asyh->curs.layout = 0; break;
case 64: asyh->curs.layout = 1; break;
default:
return -EINVAL;
}
if (update) {
evo_mthd(push, 0x0080, 1);
evo_data(push, 0x00000000);
}
evo_kick(push, mast);
if (asyw->state.fb->width != asyw->state.fb->height)
return -EINVAL;
switch (asyw->state.fb->pixel_format) {
case DRM_FORMAT_ARGB8888: asyh->curs.format = 1; break;
default:
WARN_ON(1);
return -EINVAL;
}
return 0;
}
static int
nv50_crtc_set_image(struct nouveau_crtc *nv_crtc, struct drm_framebuffer *fb,
int x, int y, bool update)
static void *
nv50_curs_dtor(struct nv50_wndw *wndw)
{
struct nouveau_framebuffer *nvfb = nouveau_framebuffer(fb);
struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
u32 *push;
struct nv50_curs *curs = nv50_curs(wndw);
nvif_object_fini(&curs->chan);
return curs;
}
push = evo_wait(mast, 16);
if (push) {
if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0860 + (nv_crtc->index * 0x400), 1);
evo_data(push, nvfb->nvbo->bo.offset >> 8);
evo_mthd(push, 0x0868 + (nv_crtc->index * 0x400), 3);
evo_data(push, (fb->height << 16) | fb->width);
evo_data(push, nvfb->r_pitch);
evo_data(push, nvfb->r_format);
evo_mthd(push, 0x08c0 + (nv_crtc->index * 0x400), 1);
evo_data(push, (y << 16) | x);
if (nv50_vers(mast) > NV50_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
evo_data(push, nvfb->r_handle);
static const u32
nv50_curs_format[] = {
DRM_FORMAT_ARGB8888,
};
static const struct nv50_wndw_func
nv50_curs = {
.dtor = nv50_curs_dtor,
.acquire = nv50_curs_acquire,
.release = nv50_curs_release,
.prepare = nv50_curs_prepare,
.point = nv50_curs_point,
.update = nv50_curs_update,
};
static int
nv50_curs_new(struct nouveau_drm *drm, struct nv50_head *head,
struct nv50_curs **pcurs)
{
static const struct nvif_mclass curses[] = {
{ GK104_DISP_CURSOR, 0 },
{ GF110_DISP_CURSOR, 0 },
{ GT214_DISP_CURSOR, 0 },
{ G82_DISP_CURSOR, 0 },
{ NV50_DISP_CURSOR, 0 },
{}
};
struct nv50_disp_cursor_v0 args = {
.head = head->base.index,
};
struct nv50_disp *disp = nv50_disp(drm->dev);
struct nv50_curs *curs;
int cid, ret;
cid = nvif_mclass(disp->disp, curses);
if (cid < 0) {
NV_ERROR(drm, "No supported cursor immediate class\n");
return cid;
}
} else {
evo_mthd(push, 0x0460 + (nv_crtc->index * 0x300), 1);
evo_data(push, nvfb->nvbo->bo.offset >> 8);
evo_mthd(push, 0x0468 + (nv_crtc->index * 0x300), 4);
evo_data(push, (fb->height << 16) | fb->width);
evo_data(push, nvfb->r_pitch);
evo_data(push, nvfb->r_format);
evo_data(push, nvfb->r_handle);
evo_mthd(push, 0x04b0 + (nv_crtc->index * 0x300), 1);
evo_data(push, (y << 16) | x);
}
if (update) {
evo_mthd(push, 0x0080, 1);
evo_data(push, 0x00000000);
if (!(curs = *pcurs = kzalloc(sizeof(*curs), GFP_KERNEL)))
return -ENOMEM;
ret = nv50_wndw_ctor(&nv50_curs, drm->dev, DRM_PLANE_TYPE_CURSOR,
"curs", head->base.index, &disp->mast.base,
nv50_curs_format, ARRAY_SIZE(nv50_curs_format),
&curs->wndw);
if (ret) {
kfree(curs);
return ret;
}
evo_kick(push, mast);
ret = nvif_object_init(disp->disp, 0, curses[cid].oclass, &args,
sizeof(args), &curs->chan);
if (ret) {
NV_ERROR(drm, "curs%04x allocation failed: %d\n",
curses[cid].oclass, ret);
return ret;
}
nv_crtc->fb.handle = nvfb->r_handle;
return 0;
}
/******************************************************************************
* Primary plane
*****************************************************************************/
#define nv50_base(p) container_of((p), struct nv50_base, wndw)
struct nv50_base {
struct nv50_wndw wndw;
struct nv50_sync chan;
int id;
};
static int
nv50_base_notify(struct nvif_notify *notify)
{
return NVIF_NOTIFY_KEEP;
}
static void
nv50_crtc_cursor_show(struct nouveau_crtc *nv_crtc)
nv50_base_lut(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw)
{
struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
u32 *push = evo_wait(mast, 16);
if (push) {
if (nv50_vers(mast) < G82_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 2);
evo_data(push, 0x85000000);
evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8);
} else
if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 2);
evo_data(push, 0x85000000);
evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8);
evo_mthd(push, 0x089c + (nv_crtc->index * 0x400), 1);
evo_data(push, mast->base.vram.handle);
} else {
evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 2);
evo_data(push, 0x85000000);
evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8);
evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1);
evo_data(push, mast->base.vram.handle);
struct nv50_base *base = nv50_base(wndw);
u32 *push;
if ((push = evo_wait(&base->chan, 2))) {
evo_mthd(push, 0x00e0, 1);
evo_data(push, asyw->lut.enable << 30);
evo_kick(push, &base->chan);
}
evo_kick(push, mast);
}
static void
nv50_base_image_clr(struct nv50_wndw *wndw)
{
struct nv50_base *base = nv50_base(wndw);
u32 *push;
if ((push = evo_wait(&base->chan, 4))) {
evo_mthd(push, 0x0084, 1);
evo_data(push, 0x00000000);
evo_mthd(push, 0x00c0, 1);
evo_data(push, 0x00000000);
evo_kick(push, &base->chan);
}
nv_crtc->cursor.visible = true;
}
static void
nv50_crtc_cursor_hide(struct nouveau_crtc *nv_crtc)
nv50_base_image_set(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw)
{
struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
u32 *push = evo_wait(mast, 16);
if (push) {
if (nv50_vers(mast) < G82_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 1);
evo_data(push, 0x05000000);
struct nv50_base *base = nv50_base(wndw);
const s32 oclass = base->chan.base.base.user.oclass;
u32 *push;
if ((push = evo_wait(&base->chan, 10))) {
evo_mthd(push, 0x0084, 1);
evo_data(push, (asyw->image.mode << 8) |
(asyw->image.interval << 4));
evo_mthd(push, 0x00c0, 1);
evo_data(push, asyw->image.handle);
if (oclass < G82_DISP_BASE_CHANNEL_DMA) {
evo_mthd(push, 0x0800, 5);
evo_data(push, asyw->image.offset >> 8);
evo_data(push, 0x00000000);
evo_data(push, (asyw->image.h << 16) | asyw->image.w);
evo_data(push, (asyw->image.layout << 20) |
asyw->image.pitch |
asyw->image.block);
evo_data(push, (asyw->image.kind << 16) |
(asyw->image.format << 8));
} else
if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 1);
evo_data(push, 0x05000000);
evo_mthd(push, 0x089c + (nv_crtc->index * 0x400), 1);
if (oclass < GF110_DISP_BASE_CHANNEL_DMA) {
evo_mthd(push, 0x0800, 5);
evo_data(push, asyw->image.offset >> 8);
evo_data(push, 0x00000000);
evo_data(push, (asyw->image.h << 16) | asyw->image.w);
evo_data(push, (asyw->image.layout << 20) |
asyw->image.pitch |
asyw->image.block);
evo_data(push, asyw->image.format << 8);
} else {
evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 1);
evo_data(push, 0x05000000);
evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1);
evo_mthd(push, 0x0400, 5);
evo_data(push, asyw->image.offset >> 8);
evo_data(push, 0x00000000);
evo_data(push, (asyw->image.h << 16) | asyw->image.w);
evo_data(push, (asyw->image.layout << 24) |
asyw->image.pitch |
asyw->image.block);
evo_data(push, asyw->image.format << 8);
}
evo_kick(push, mast);
evo_kick(push, &base->chan);
}
nv_crtc->cursor.visible = false;
}
static void
nv50_crtc_cursor_show_hide(struct nouveau_crtc *nv_crtc, bool show, bool update)
nv50_base_ntfy_clr(struct nv50_wndw *wndw)
{
struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
if (show && nv_crtc->cursor.nvbo && nv_crtc->base.enabled)
nv50_crtc_cursor_show(nv_crtc);
else
nv50_crtc_cursor_hide(nv_crtc);
if (update) {
u32 *push = evo_wait(mast, 2);
if (push) {
evo_mthd(push, 0x0080, 1);
struct nv50_base *base = nv50_base(wndw);
u32 *push;
if ((push = evo_wait(&base->chan, 2))) {
evo_mthd(push, 0x00a4, 1);
evo_data(push, 0x00000000);
evo_kick(push, mast);
}
evo_kick(push, &base->chan);
}
}
static void
nv50_crtc_dpms(struct drm_crtc *crtc, int mode)
nv50_base_ntfy_set(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw)
{
struct nv50_base *base = nv50_base(wndw);
u32 *push;
if ((push = evo_wait(&base->chan, 3))) {
evo_mthd(push, 0x00a0, 2);
evo_data(push, (asyw->ntfy.awaken << 30) | asyw->ntfy.offset);
evo_data(push, asyw->ntfy.handle);
evo_kick(push, &base->chan);
}
}
static void
nv50_crtc_prepare(struct drm_crtc *crtc)
nv50_base_sema_clr(struct nv50_wndw *wndw)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
struct nv50_mast *mast = nv50_mast(crtc->dev);
struct nv50_base *base = nv50_base(wndw);
u32 *push;
nv50_display_flip_stop(crtc);
push = evo_wait(mast, 6);
if (push) {
if (nv50_vers(mast) < G82_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
evo_data(push, 0x00000000);
evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 1);
evo_data(push, 0x40000000);
} else
if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
evo_data(push, 0x00000000);
evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 1);
evo_data(push, 0x40000000);
evo_mthd(push, 0x085c + (nv_crtc->index * 0x400), 1);
evo_data(push, 0x00000000);
} else {
evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1);
evo_data(push, 0x00000000);
evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 1);
evo_data(push, 0x03000000);
evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1);
if ((push = evo_wait(&base->chan, 2))) {
evo_mthd(push, 0x0094, 1);
evo_data(push, 0x00000000);
evo_kick(push, &base->chan);
}
}
evo_kick(push, mast);
static void
nv50_base_sema_set(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw)
{
struct nv50_base *base = nv50_base(wndw);
u32 *push;
if ((push = evo_wait(&base->chan, 5))) {
evo_mthd(push, 0x0088, 4);
evo_data(push, asyw->sema.offset);
evo_data(push, asyw->sema.acquire);
evo_data(push, asyw->sema.release);
evo_data(push, asyw->sema.handle);
evo_kick(push, &base->chan);
}
nv50_crtc_cursor_show_hide(nv_crtc, false, false);
}
static void
nv50_crtc_commit(struct drm_crtc *crtc)
static u32
nv50_base_update(struct nv50_wndw *wndw, u32 interlock)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
struct nv50_mast *mast = nv50_mast(crtc->dev);
struct nv50_base *base = nv50_base(wndw);
u32 *push;
push = evo_wait(mast, 32);
if (push) {
if (nv50_vers(mast) < G82_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
evo_data(push, nv_crtc->fb.handle);
evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 2);
evo_data(push, 0xc0000000);
evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8);
} else
if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
evo_data(push, nv_crtc->fb.handle);
evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 2);
evo_data(push, 0xc0000000);
evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8);
evo_mthd(push, 0x085c + (nv_crtc->index * 0x400), 1);
evo_data(push, mast->base.vram.handle);
} else {
evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1);
evo_data(push, nv_crtc->fb.handle);
evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 4);
evo_data(push, 0x83000000);
evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8);
evo_data(push, 0x00000000);
evo_data(push, 0x00000000);
evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1);
evo_data(push, mast->base.vram.handle);
evo_mthd(push, 0x0430 + (nv_crtc->index * 0x300), 1);
evo_data(push, 0xffffff00);
}
if (!(push = evo_wait(&base->chan, 2)))
return 0;
evo_mthd(push, 0x0080, 1);
evo_data(push, interlock);
evo_kick(push, &base->chan);
evo_kick(push, mast);
}
if (base->chan.base.base.user.oclass < GF110_DISP_BASE_CHANNEL_DMA)
return interlock ? 2 << (base->id * 8) : 0;
return interlock ? 2 << (base->id * 4) : 0;
}
nv50_crtc_cursor_show_hide(nv_crtc, true, true);
nv50_display_flip_next(crtc, crtc->primary->fb, NULL, 1);
static int
nv50_base_ntfy_wait_begun(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw)
{
struct nouveau_drm *drm = nouveau_drm(wndw->plane.dev);
struct nv50_disp *disp = nv50_disp(wndw->plane.dev);
if (nvif_msec(&drm->device, 2000ULL,
u32 data = nouveau_bo_rd32(disp->sync, asyw->ntfy.offset / 4);
if ((data & 0xc0000000) == 0x40000000)
break;
usleep_range(1, 2);
) < 0)
return -ETIMEDOUT;
return 0;
}
static bool
nv50_crtc_mode_fixup(struct drm_crtc *crtc, const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
static void
nv50_base_release(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw,
struct nv50_head_atom *asyh)
{
drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V);
return true;
asyh->base.cpp = 0;
}
static int
nv50_crtc_swap_fbs(struct drm_crtc *crtc, struct drm_framebuffer *old_fb)
nv50_base_acquire(struct nv50_wndw *wndw, struct nv50_wndw_atom *asyw,
struct nv50_head_atom *asyh)
{
struct nouveau_framebuffer *nvfb = nouveau_framebuffer(crtc->primary->fb);
struct nv50_head *head = nv50_head(crtc);
const u32 format = asyw->state.fb->pixel_format;
const struct drm_format_info *info;
int ret;
ret = nouveau_bo_pin(nvfb->nvbo, TTM_PL_FLAG_VRAM, true);
if (ret == 0) {
if (head->image)
nouveau_bo_unpin(head->image);
nouveau_bo_ref(nvfb->nvbo, &head->image);
}
info = drm_format_info(format);
if (!info || !info->depth)
return -EINVAL;
ret = drm_plane_helper_check_state(&asyw->state, &asyw->clip,
DRM_PLANE_HELPER_NO_SCALING,
DRM_PLANE_HELPER_NO_SCALING,
false, true);
if (ret)
return ret;
asyh->base.depth = info->depth;
asyh->base.cpp = info->cpp[0];
asyh->base.x = asyw->state.src.x1 >> 16;
asyh->base.y = asyw->state.src.y1 >> 16;
asyh->base.w = asyw->state.fb->width;
asyh->base.h = asyw->state.fb->height;
switch (format) {
case DRM_FORMAT_C8 : asyw->image.format = 0x1e; break;
case DRM_FORMAT_RGB565 : asyw->image.format = 0xe8; break;
case DRM_FORMAT_XRGB1555 :
case DRM_FORMAT_ARGB1555 : asyw->image.format = 0xe9; break;
case DRM_FORMAT_XRGB8888 :
case DRM_FORMAT_ARGB8888 : asyw->image.format = 0xcf; break;
case DRM_FORMAT_XBGR2101010:
case DRM_FORMAT_ABGR2101010: asyw->image.format = 0xd1; break;
case DRM_FORMAT_XBGR8888 :
case DRM_FORMAT_ABGR8888 : asyw->image.format = 0xd5; break;
default:
WARN_ON(1);
return -EINVAL;
}
asyw->lut.enable = 1;
asyw->set.image = true;
return 0;
}
static void *
nv50_base_dtor(struct nv50_wndw *wndw)
{
struct nv50_disp *disp = nv50_disp(wndw->plane.dev);
struct nv50_base *base = nv50_base(wndw);
nv50_dmac_destroy(&base->chan.base, disp->disp);
return base;
}
static const u32
nv50_base_format[] = {
DRM_FORMAT_C8,
DRM_FORMAT_RGB565,
DRM_FORMAT_XRGB1555,
DRM_FORMAT_ARGB1555,
DRM_FORMAT_XRGB8888,
DRM_FORMAT_ARGB8888,
DRM_FORMAT_XBGR2101010,
DRM_FORMAT_ABGR2101010,
DRM_FORMAT_XBGR8888,
DRM_FORMAT_ABGR8888,
};
static const struct nv50_wndw_func
nv50_base = {
.dtor = nv50_base_dtor,
.acquire = nv50_base_acquire,
.release = nv50_base_release,
.sema_set = nv50_base_sema_set,
.sema_clr = nv50_base_sema_clr,
.ntfy_set = nv50_base_ntfy_set,
.ntfy_clr = nv50_base_ntfy_clr,
.ntfy_wait_begun = nv50_base_ntfy_wait_begun,
.image_set = nv50_base_image_set,
.image_clr = nv50_base_image_clr,
.lut = nv50_base_lut,
.update = nv50_base_update,
};
static int
nv50_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *umode,
struct drm_display_mode *mode, int x, int y,
struct drm_framebuffer *old_fb)
nv50_base_new(struct nouveau_drm *drm, struct nv50_head *head,
struct nv50_base **pbase)
{
struct nv50_mast *mast = nv50_mast(crtc->dev);
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
struct nouveau_connector *nv_connector;
u32 ilace = (mode->flags & DRM_MODE_FLAG_INTERLACE) ? 2 : 1;
u32 vscan = (mode->flags & DRM_MODE_FLAG_DBLSCAN) ? 2 : 1;
u32 hactive, hsynce, hbackp, hfrontp, hblanke, hblanks;
u32 vactive, vsynce, vbackp, vfrontp, vblanke, vblanks;
u32 vblan2e = 0, vblan2s = 1, vblankus = 0;
u32 *push;
struct nv50_disp *disp = nv50_disp(drm->dev);
struct nv50_base *base;
int ret;
hactive = mode->htotal;
hsynce = mode->hsync_end - mode->hsync_start - 1;
hbackp = mode->htotal - mode->hsync_end;
hblanke = hsynce + hbackp;
hfrontp = mode->hsync_start - mode->hdisplay;
hblanks = mode->htotal - hfrontp - 1;
vactive = mode->vtotal * vscan / ilace;
vsynce = ((mode->vsync_end - mode->vsync_start) * vscan / ilace) - 1;
vbackp = (mode->vtotal - mode->vsync_end) * vscan / ilace;
vblanke = vsynce + vbackp;
vfrontp = (mode->vsync_start - mode->vdisplay) * vscan / ilace;
vblanks = vactive - vfrontp - 1;
/* XXX: Safe underestimate, even "0" works */
vblankus = (vactive - mode->vdisplay - 2) * hactive;
vblankus *= 1000;
vblankus /= mode->clock;
if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
vblan2e = vactive + vsynce + vbackp;
vblan2s = vblan2e + (mode->vdisplay * vscan / ilace);
vactive = (vactive * 2) + 1;
if (!(base = *pbase = kzalloc(sizeof(*base), GFP_KERNEL)))
return -ENOMEM;
base->id = head->base.index;
base->wndw.ntfy = EVO_FLIP_NTFY0(base->id);
base->wndw.sema = EVO_FLIP_SEM0(base->id);
base->wndw.data = 0x00000000;
ret = nv50_wndw_ctor(&nv50_base, drm->dev, DRM_PLANE_TYPE_PRIMARY,
"base", base->id, &base->chan.base,
nv50_base_format, ARRAY_SIZE(nv50_base_format),
&base->wndw);
if (ret) {
kfree(base);
return ret;
}
ret = nv50_crtc_swap_fbs(crtc, old_fb);
ret = nv50_base_create(&drm->device, disp->disp, base->id,
disp->sync->bo.offset, &base->chan);
if (ret)
return ret;
push = evo_wait(mast, 64);
if (push) {
if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0804 + (nv_crtc->index * 0x400), 2);
evo_data(push, 0x00800000 | mode->clock);
evo_data(push, (ilace == 2) ? 2 : 0);
evo_mthd(push, 0x0810 + (nv_crtc->index * 0x400), 6);
evo_data(push, 0x00000000);
evo_data(push, (vactive << 16) | hactive);
evo_data(push, ( vsynce << 16) | hsynce);
evo_data(push, (vblanke << 16) | hblanke);
evo_data(push, (vblanks << 16) | hblanks);
evo_data(push, (vblan2e << 16) | vblan2s);
evo_mthd(push, 0x082c + (nv_crtc->index * 0x400), 1);
evo_data(push, 0x00000000);
evo_mthd(push, 0x0900 + (nv_crtc->index * 0x400), 2);
evo_data(push, 0x00000311);
evo_data(push, 0x00000100);
} else {
evo_mthd(push, 0x0410 + (nv_crtc->index * 0x300), 6);
evo_data(push, 0x00000000);
evo_data(push, (vactive << 16) | hactive);
evo_data(push, ( vsynce << 16) | hsynce);
evo_data(push, (vblanke << 16) | hblanke);
evo_data(push, (vblanks << 16) | hblanks);
evo_data(push, (vblan2e << 16) | vblan2s);
evo_mthd(push, 0x042c + (nv_crtc->index * 0x300), 1);
evo_data(push, 0x00000000); /* ??? */
evo_mthd(push, 0x0450 + (nv_crtc->index * 0x300), 3);
evo_data(push, mode->clock * 1000);
evo_data(push, 0x00200000); /* ??? */
evo_data(push, mode->clock * 1000);
evo_mthd(push, 0x04d0 + (nv_crtc->index * 0x300), 2);
evo_data(push, 0x00000311);
evo_data(push, 0x00000100);
return nvif_notify_init(&base->chan.base.base.user, nv50_base_notify,
false,
NV50_DISP_BASE_CHANNEL_DMA_V0_NTFY_UEVENT,
&(struct nvif_notify_uevent_req) {},
sizeof(struct nvif_notify_uevent_req),
sizeof(struct nvif_notify_uevent_rep),
&base->wndw.notify);
}
/******************************************************************************
* Head
*****************************************************************************/
static void
nv50_head_procamp(struct nv50_head *head, struct nv50_head_atom *asyh)
{
struct nv50_dmac *core = &nv50_disp(head->base.base.dev)->mast.base;
u32 *push;
if ((push = evo_wait(core, 2))) {
if (core->base.user.oclass < GF110_DISP_CORE_CHANNEL_DMA)
evo_mthd(push, 0x08a8 + (head->base.index * 0x400), 1);
else
evo_mthd(push, 0x0498 + (head->base.index * 0x300), 1);
evo_data(push, (asyh->procamp.sat.sin << 20) |
(asyh->procamp.sat.cos << 8));
evo_kick(push, core);
}
}
evo_kick(push, mast);
static void
nv50_head_dither(struct nv50_head *head, struct nv50_head_atom *asyh)
{
struct nv50_dmac *core = &nv50_disp(head->base.base.dev)->mast.base;
u32 *push;
if ((push = evo_wait(core, 2))) {
if (core->base.user.oclass < GF110_DISP_CORE_CHANNEL_DMA)
evo_mthd(push, 0x08a0 + (head->base.index * 0x0400), 1);
else
if (core->base.user.oclass < GK104_DISP_CORE_CHANNEL_DMA)
evo_mthd(push, 0x0490 + (head->base.index * 0x0300), 1);
else
evo_mthd(push, 0x04a0 + (head->base.index * 0x0300), 1);
evo_data(push, (asyh->dither.mode << 3) |
(asyh->dither.bits << 1) |
asyh->dither.enable);
evo_kick(push, core);
}
}
nv_connector = nouveau_crtc_connector_get(nv_crtc);
nv50_crtc_set_dither(nv_crtc, false);
nv50_crtc_set_scale(nv_crtc, false);
static void
nv50_head_ovly(struct nv50_head *head, struct nv50_head_atom *asyh)
{
struct nv50_dmac *core = &nv50_disp(head->base.base.dev)->mast.base;
u32 bounds = 0;
u32 *push;
/* G94 only accepts this after setting scale */
if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA)
nv50_crtc_set_raster_vblank_dmi(nv_crtc, vblankus);
if (asyh->base.cpp) {
switch (asyh->base.cpp) {
case 8: bounds |= 0x00000500; break;
case 4: bounds |= 0x00000300; break;
case 2: bounds |= 0x00000100; break;
default:
WARN_ON(1);
break;
}
bounds |= 0x00000001;
}
nv50_crtc_set_color_vibrance(nv_crtc, false);
nv50_crtc_set_image(nv_crtc, crtc->primary->fb, x, y, false);
return 0;
if ((push = evo_wait(core, 2))) {
if (core->base.user.oclass < GF110_DISP_CORE_CHANNEL_DMA)
evo_mthd(push, 0x0904 + head->base.index * 0x400, 1);
else
evo_mthd(push, 0x04d4 + head->base.index * 0x300, 1);
evo_data(push, bounds);
evo_kick(push, core);
}
}
static int
nv50_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
struct drm_framebuffer *old_fb)
static void
nv50_head_base(struct nv50_head *head, struct nv50_head_atom *asyh)
{
struct nouveau_drm *drm = nouveau_drm(crtc->dev);
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
int ret;
struct nv50_dmac *core = &nv50_disp(head->base.base.dev)->mast.base;
u32 bounds = 0;
u32 *push;
if (!crtc->primary->fb) {
NV_DEBUG(drm, "No FB bound\n");
return 0;
if (asyh->base.cpp) {
switch (asyh->base.cpp) {
case 8: bounds |= 0x00000500; break;
case 4: bounds |= 0x00000300; break;
case 2: bounds |= 0x00000100; break;
case 1: bounds |= 0x00000000; break;
default:
WARN_ON(1);
break;
}
bounds |= 0x00000001;
}
ret = nv50_crtc_swap_fbs(crtc, old_fb);
if (ret)
return ret;
nv50_display_flip_stop(crtc);
nv50_crtc_set_image(nv_crtc, crtc->primary->fb, x, y, true);
nv50_display_flip_next(crtc, crtc->primary->fb, NULL, 1);
return 0;
if ((push = evo_wait(core, 2))) {
if (core->base.user.oclass < GF110_DISP_CORE_CHANNEL_DMA)
evo_mthd(push, 0x0900 + head->base.index * 0x400, 1);
else
evo_mthd(push, 0x04d0 + head->base.index * 0x300, 1);
evo_data(push, bounds);
evo_kick(push, core);
}
}
static int
nv50_crtc_mode_set_base_atomic(struct drm_crtc *crtc,
struct drm_framebuffer *fb, int x, int y,
enum mode_set_atomic state)
static void
nv50_head_curs_clr(struct nv50_head *head)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
nv50_display_flip_stop(crtc);
nv50_crtc_set_image(nv_crtc, fb, x, y, true);
return 0;
struct nv50_dmac *core = &nv50_disp(head->base.base.dev)->mast.base;
u32 *push;
if ((push = evo_wait(core, 4))) {
if (core->base.user.oclass < G82_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0880 + head->base.index * 0x400, 1);
evo_data(push, 0x05000000);
} else
if (core->base.user.oclass < GF110_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0880 + head->base.index * 0x400, 1);
evo_data(push, 0x05000000);
evo_mthd(push, 0x089c + head->base.index * 0x400, 1);
evo_data(push, 0x00000000);
} else {
evo_mthd(push, 0x0480 + head->base.index * 0x300, 1);
evo_data(push, 0x05000000);
evo_mthd(push, 0x048c + head->base.index * 0x300, 1);
evo_data(push, 0x00000000);
}
evo_kick(push, core);
}
}
static void
nv50_crtc_lut_load(struct drm_crtc *crtc)
nv50_head_curs_set(struct nv50_head *head, struct nv50_head_atom *asyh)
{
struct nv50_disp *disp = nv50_disp(crtc->dev);
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
void __iomem *lut = nvbo_kmap_obj_iovirtual(nv_crtc->lut.nvbo);
int i;
for (i = 0; i < 256; i++) {
u16 r = nv_crtc->lut.r[i] >> 2;
u16 g = nv_crtc->lut.g[i] >> 2;
u16 b = nv_crtc->lut.b[i] >> 2;
if (disp->disp->oclass < GF110_DISP) {
writew(r + 0x0000, lut + (i * 0x08) + 0);
writew(g + 0x0000, lut + (i * 0x08) + 2);
writew(b + 0x0000, lut + (i * 0x08) + 4);
struct nv50_dmac *core = &nv50_disp(head->base.base.dev)->mast.base;
u32 *push;
if ((push = evo_wait(core, 5))) {
if (core->base.user.oclass < G82_DISP_BASE_CHANNEL_DMA) {
evo_mthd(push, 0x0880 + head->base.index * 0x400, 2);
evo_data(push, 0x80000000 | (asyh->curs.layout << 26) |
(asyh->curs.format << 24));
evo_data(push, asyh->curs.offset >> 8);
} else
if (core->base.user.oclass < GF110_DISP_BASE_CHANNEL_DMA) {
evo_mthd(push, 0x0880 + head->base.index * 0x400, 2);
evo_data(push, 0x80000000 | (asyh->curs.layout << 26) |
(asyh->curs.format << 24));
evo_data(push, asyh->curs.offset >> 8);
evo_mthd(push, 0x089c + head->base.index * 0x400, 1);
evo_data(push, asyh->curs.handle);
} else {
writew(r + 0x6000, lut + (i * 0x20) + 0);
writew(g + 0x6000, lut + (i * 0x20) + 2);
writew(b + 0x6000, lut + (i * 0x20) + 4);
evo_mthd(push, 0x0480 + head->base.index * 0x300, 2);
evo_data(push, 0x80000000 | (asyh->curs.layout << 26) |
(asyh->curs.format << 24));
evo_data(push, asyh->curs.offset >> 8);
evo_mthd(push, 0x048c + head->base.index * 0x300, 1);
evo_data(push, asyh->curs.handle);
}
evo_kick(push, core);
}
}
static void
nv50_crtc_disable(struct drm_crtc *crtc)
nv50_head_core_clr(struct nv50_head *head)
{
struct nv50_head *head = nv50_head(crtc);
evo_sync(crtc->dev);
if (head->image)
nouveau_bo_unpin(head->image);
nouveau_bo_ref(NULL, &head->image);
struct nv50_dmac *core = &nv50_disp(head->base.base.dev)->mast.base;
u32 *push;
if ((push = evo_wait(core, 2))) {
if (core->base.user.oclass < GF110_DISP_CORE_CHANNEL_DMA)
evo_mthd(push, 0x0874 + head->base.index * 0x400, 1);
else
evo_mthd(push, 0x0474 + head->base.index * 0x300, 1);
evo_data(push, 0x00000000);
evo_kick(push, core);
}
}
static int
nv50_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv,
uint32_t handle, uint32_t width, uint32_t height)
static void
nv50_head_core_set(struct nv50_head *head, struct nv50_head_atom *asyh)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
struct drm_gem_object *gem = NULL;
struct nouveau_bo *nvbo = NULL;
int ret = 0;
struct nv50_dmac *core = &nv50_disp(head->base.base.dev)->mast.base;
u32 *push;
if ((push = evo_wait(core, 9))) {
if (core->base.user.oclass < G82_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0860 + head->base.index * 0x400, 1);
evo_data(push, asyh->core.offset >> 8);
evo_mthd(push, 0x0868 + head->base.index * 0x400, 4);
evo_data(push, (asyh->core.h << 16) | asyh->core.w);
evo_data(push, asyh->core.layout << 20 |
(asyh->core.pitch >> 8) << 8 |
asyh->core.block);
evo_data(push, asyh->core.kind << 16 |
asyh->core.format << 8);
evo_data(push, asyh->core.handle);
evo_mthd(push, 0x08c0 + head->base.index * 0x400, 1);
evo_data(push, (asyh->core.y << 16) | asyh->core.x);
} else
if (core->base.user.oclass < GF110_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0860 + head->base.index * 0x400, 1);
evo_data(push, asyh->core.offset >> 8);
evo_mthd(push, 0x0868 + head->base.index * 0x400, 4);
evo_data(push, (asyh->core.h << 16) | asyh->core.w);
evo_data(push, asyh->core.layout << 20 |
(asyh->core.pitch >> 8) << 8 |
asyh->core.block);
evo_data(push, asyh->core.format << 8);
evo_data(push, asyh->core.handle);
evo_mthd(push, 0x08c0 + head->base.index * 0x400, 1);
evo_data(push, (asyh->core.y << 16) | asyh->core.x);
} else {
evo_mthd(push, 0x0460 + head->base.index * 0x300, 1);
evo_data(push, asyh->core.offset >> 8);
evo_mthd(push, 0x0468 + head->base.index * 0x300, 4);
evo_data(push, (asyh->core.h << 16) | asyh->core.w);
evo_data(push, asyh->core.layout << 24 |
(asyh->core.pitch >> 8) << 8 |
asyh->core.block);
evo_data(push, asyh->core.format << 8);
evo_data(push, asyh->core.handle);
evo_mthd(push, 0x04b0 + head->base.index * 0x300, 1);
evo_data(push, (asyh->core.y << 16) | asyh->core.x);
}
evo_kick(push, core);
}
}
if (handle) {
if (width != 64 || height != 64)
return -EINVAL;
static void
nv50_head_lut_clr(struct nv50_head *head)
{
struct nv50_dmac *core = &nv50_disp(head->base.base.dev)->mast.base;
u32 *push;
if ((push = evo_wait(core, 4))) {
if (core->base.user.oclass < G82_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0840 + (head->base.index * 0x400), 1);
evo_data(push, 0x40000000);
} else
if (core->base.user.oclass < GF110_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0840 + (head->base.index * 0x400), 1);
evo_data(push, 0x40000000);
evo_mthd(push, 0x085c + (head->base.index * 0x400), 1);
evo_data(push, 0x00000000);
} else {
evo_mthd(push, 0x0440 + (head->base.index * 0x300), 1);
evo_data(push, 0x03000000);
evo_mthd(push, 0x045c + (head->base.index * 0x300), 1);
evo_data(push, 0x00000000);
}
evo_kick(push, core);
}
}
gem = drm_gem_object_lookup(file_priv, handle);
if (unlikely(!gem))
return -ENOENT;
nvbo = nouveau_gem_object(gem);
static void
nv50_head_lut_set(struct nv50_head *head, struct nv50_head_atom *asyh)
{
struct nv50_dmac *core = &nv50_disp(head->base.base.dev)->mast.base;
u32 *push;
if ((push = evo_wait(core, 7))) {
if (core->base.user.oclass < G82_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0840 + (head->base.index * 0x400), 2);
evo_data(push, 0xc0000000);
evo_data(push, asyh->lut.offset >> 8);
} else
if (core->base.user.oclass < GF110_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0840 + (head->base.index * 0x400), 2);
evo_data(push, 0xc0000000);
evo_data(push, asyh->lut.offset >> 8);
evo_mthd(push, 0x085c + (head->base.index * 0x400), 1);
evo_data(push, asyh->lut.handle);
} else {
evo_mthd(push, 0x0440 + (head->base.index * 0x300), 4);
evo_data(push, 0x83000000);
evo_data(push, asyh->lut.offset >> 8);
evo_data(push, 0x00000000);
evo_data(push, 0x00000000);
evo_mthd(push, 0x045c + (head->base.index * 0x300), 1);
evo_data(push, asyh->lut.handle);
}
evo_kick(push, core);
}
}
ret = nouveau_bo_pin(nvbo, TTM_PL_FLAG_VRAM, true);
static void
nv50_head_mode(struct nv50_head *head, struct nv50_head_atom *asyh)
{
struct nv50_dmac *core = &nv50_disp(head->base.base.dev)->mast.base;
struct nv50_head_mode *m = &asyh->mode;
u32 *push;
if ((push = evo_wait(core, 14))) {
if (core->base.user.oclass < GF110_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0804 + (head->base.index * 0x400), 2);
evo_data(push, 0x00800000 | m->clock);
evo_data(push, m->interlace ? 0x00000002 : 0x00000000);
evo_mthd(push, 0x0810 + (head->base.index * 0x400), 7);
evo_data(push, 0x00000000);
evo_data(push, (m->v.active << 16) | m->h.active );
evo_data(push, (m->v.synce << 16) | m->h.synce );
evo_data(push, (m->v.blanke << 16) | m->h.blanke );
evo_data(push, (m->v.blanks << 16) | m->h.blanks );
evo_data(push, (m->v.blank2e << 16) | m->v.blank2s);
evo_data(push, asyh->mode.v.blankus);
evo_mthd(push, 0x082c + (head->base.index * 0x400), 1);
evo_data(push, 0x00000000);
} else {
evo_mthd(push, 0x0410 + (head->base.index * 0x300), 6);
evo_data(push, 0x00000000);
evo_data(push, (m->v.active << 16) | m->h.active );
evo_data(push, (m->v.synce << 16) | m->h.synce );
evo_data(push, (m->v.blanke << 16) | m->h.blanke );
evo_data(push, (m->v.blanks << 16) | m->h.blanks );
evo_data(push, (m->v.blank2e << 16) | m->v.blank2s);
evo_mthd(push, 0x042c + (head->base.index * 0x300), 2);
evo_data(push, 0x00000000); /* ??? */
evo_data(push, 0xffffff00);
evo_mthd(push, 0x0450 + (head->base.index * 0x300), 3);
evo_data(push, m->clock * 1000);
evo_data(push, 0x00200000); /* ??? */
evo_data(push, m->clock * 1000);
}
evo_kick(push, core);
}
}
if (ret == 0) {
if (nv_crtc->cursor.nvbo)
nouveau_bo_unpin(nv_crtc->cursor.nvbo);
nouveau_bo_ref(nvbo, &nv_crtc->cursor.nvbo);
static void
nv50_head_view(struct nv50_head *head, struct nv50_head_atom *asyh)
{
struct nv50_dmac *core = &nv50_disp(head->base.base.dev)->mast.base;
u32 *push;
if ((push = evo_wait(core, 10))) {
if (core->base.user.oclass < GF110_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x08a4 + (head->base.index * 0x400), 1);
evo_data(push, 0x00000000);
evo_mthd(push, 0x08c8 + (head->base.index * 0x400), 1);
evo_data(push, (asyh->view.iH << 16) | asyh->view.iW);
evo_mthd(push, 0x08d8 + (head->base.index * 0x400), 2);
evo_data(push, (asyh->view.oH << 16) | asyh->view.oW);
evo_data(push, (asyh->view.oH << 16) | asyh->view.oW);
} else {
evo_mthd(push, 0x0494 + (head->base.index * 0x300), 1);
evo_data(push, 0x00000000);
evo_mthd(push, 0x04b8 + (head->base.index * 0x300), 1);
evo_data(push, (asyh->view.iH << 16) | asyh->view.iW);
evo_mthd(push, 0x04c0 + (head->base.index * 0x300), 3);
evo_data(push, (asyh->view.oH << 16) | asyh->view.oW);
evo_data(push, (asyh->view.oH << 16) | asyh->view.oW);
evo_data(push, (asyh->view.oH << 16) | asyh->view.oW);
}
drm_gem_object_unreference_unlocked(gem);
evo_kick(push, core);
}
}
nv50_crtc_cursor_show_hide(nv_crtc, true, true);
return ret;
static void
nv50_head_flush_clr(struct nv50_head *head, struct nv50_head_atom *asyh, bool y)
{
if (asyh->clr.core && (!asyh->set.core || y))
nv50_head_lut_clr(head);
if (asyh->clr.core && (!asyh->set.core || y))
nv50_head_core_clr(head);
if (asyh->clr.curs && (!asyh->set.curs || y))
nv50_head_curs_clr(head);
}
static int
nv50_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
static void
nv50_head_flush_set(struct nv50_head *head, struct nv50_head_atom *asyh)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
struct nv50_curs *curs = nv50_curs(crtc);
struct nv50_chan *chan = nv50_chan(curs);
nvif_wr32(&chan->user, 0x0084, (y << 16) | (x & 0xffff));
nvif_wr32(&chan->user, 0x0080, 0x00000000);
if (asyh->set.view ) nv50_head_view (head, asyh);
if (asyh->set.mode ) nv50_head_mode (head, asyh);
if (asyh->set.core ) nv50_head_lut_set (head, asyh);
if (asyh->set.core ) nv50_head_core_set(head, asyh);
if (asyh->set.curs ) nv50_head_curs_set(head, asyh);
if (asyh->set.base ) nv50_head_base (head, asyh);
if (asyh->set.ovly ) nv50_head_ovly (head, asyh);
if (asyh->set.dither ) nv50_head_dither (head, asyh);
if (asyh->set.procamp) nv50_head_procamp (head, asyh);
}
nv_crtc->cursor_saved_x = x;
nv_crtc->cursor_saved_y = y;
return 0;
static void
nv50_head_atomic_check_procamp(struct nv50_head_atom *armh,
struct nv50_head_atom *asyh,
struct nouveau_conn_atom *asyc)
{
const int vib = asyc->procamp.color_vibrance - 100;
const int hue = asyc->procamp.vibrant_hue - 90;
const int adj = (vib > 0) ? 50 : 0;
asyh->procamp.sat.cos = ((vib * 2047 + adj) / 100) & 0xfff;
asyh->procamp.sat.sin = ((hue * 2047) / 100) & 0xfff;
asyh->set.procamp = true;
}
static int
nv50_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
uint32_t size)
static void
nv50_head_atomic_check_dither(struct nv50_head_atom *armh,
struct nv50_head_atom *asyh,
struct nouveau_conn_atom *asyc)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
u32 i;
struct drm_connector *connector = asyc->state.connector;
u32 mode = 0x00;
for (i = 0; i < size; i++) {
nv_crtc->lut.r[i] = r[i];
nv_crtc->lut.g[i] = g[i];
nv_crtc->lut.b[i] = b[i];
if (asyc->dither.mode == DITHERING_MODE_AUTO) {
if (asyh->base.depth > connector->display_info.bpc * 3)
mode = DITHERING_MODE_DYNAMIC2X2;
} else {
mode = asyc->dither.mode;
}
nv50_crtc_lut_load(crtc);
if (asyc->dither.depth == DITHERING_DEPTH_AUTO) {
if (connector->display_info.bpc >= 8)
mode |= DITHERING_DEPTH_8BPC;
} else {
mode |= asyc->dither.depth;
}
return 0;
asyh->dither.enable = mode;
asyh->dither.bits = mode >> 1;
asyh->dither.mode = mode >> 3;
asyh->set.dither = true;
}
static void
nv50_crtc_cursor_restore(struct nouveau_crtc *nv_crtc, int x, int y)
nv50_head_atomic_check_view(struct nv50_head_atom *armh,
struct nv50_head_atom *asyh,
struct nouveau_conn_atom *asyc)
{
nv50_crtc_cursor_move(&nv_crtc->base, x, y);
struct drm_connector *connector = asyc->state.connector;
struct drm_display_mode *omode = &asyh->state.adjusted_mode;
struct drm_display_mode *umode = &asyh->state.mode;
int mode = asyc->scaler.mode;
struct edid *edid;
if (connector->edid_blob_ptr)
edid = (struct edid *)connector->edid_blob_ptr->data;
else
edid = NULL;
if (!asyc->scaler.full) {
if (mode == DRM_MODE_SCALE_NONE)
omode = umode;
} else {
/* Non-EDID LVDS/eDP mode. */
mode = DRM_MODE_SCALE_FULLSCREEN;
}
asyh->view.iW = umode->hdisplay;
asyh->view.iH = umode->vdisplay;
asyh->view.oW = omode->hdisplay;
asyh->view.oH = omode->vdisplay;
if (omode->flags & DRM_MODE_FLAG_DBLSCAN)
asyh->view.oH *= 2;
/* Add overscan compensation if necessary, will keep the aspect
* ratio the same as the backend mode unless overridden by the
* user setting both hborder and vborder properties.
*/
if ((asyc->scaler.underscan.mode == UNDERSCAN_ON ||
(asyc->scaler.underscan.mode == UNDERSCAN_AUTO &&
drm_detect_hdmi_monitor(edid)))) {
u32 bX = asyc->scaler.underscan.hborder;
u32 bY = asyc->scaler.underscan.vborder;
u32 r = (asyh->view.oH << 19) / asyh->view.oW;
if (bX) {
asyh->view.oW -= (bX * 2);
if (bY) asyh->view.oH -= (bY * 2);
else asyh->view.oH = ((asyh->view.oW * r) + (r / 2)) >> 19;
} else {
asyh->view.oW -= (asyh->view.oW >> 4) + 32;
if (bY) asyh->view.oH -= (bY * 2);
else asyh->view.oH = ((asyh->view.oW * r) + (r / 2)) >> 19;
}
}
/* Handle CENTER/ASPECT scaling, taking into account the areas
* removed already for overscan compensation.
*/
switch (mode) {
case DRM_MODE_SCALE_CENTER:
asyh->view.oW = min((u16)umode->hdisplay, asyh->view.oW);
asyh->view.oH = min((u16)umode->vdisplay, asyh->view.oH);
/* fall-through */
case DRM_MODE_SCALE_ASPECT:
if (asyh->view.oH < asyh->view.oW) {
u32 r = (asyh->view.iW << 19) / asyh->view.iH;
asyh->view.oW = ((asyh->view.oH * r) + (r / 2)) >> 19;
} else {
u32 r = (asyh->view.iH << 19) / asyh->view.iW;
asyh->view.oH = ((asyh->view.oW * r) + (r / 2)) >> 19;
}
break;
default:
break;
}
nv50_crtc_cursor_show_hide(nv_crtc, true, true);
asyh->set.view = true;
}
static void
nv50_crtc_destroy(struct drm_crtc *crtc)
nv50_head_atomic_check_mode(struct nv50_head *head, struct nv50_head_atom *asyh)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
struct drm_display_mode *mode = &asyh->state.adjusted_mode;
u32 ilace = (mode->flags & DRM_MODE_FLAG_INTERLACE) ? 2 : 1;
u32 vscan = (mode->flags & DRM_MODE_FLAG_DBLSCAN) ? 2 : 1;
u32 hbackp = mode->htotal - mode->hsync_end;
u32 vbackp = (mode->vtotal - mode->vsync_end) * vscan / ilace;
u32 hfrontp = mode->hsync_start - mode->hdisplay;
u32 vfrontp = (mode->vsync_start - mode->vdisplay) * vscan / ilace;
struct nv50_head_mode *m = &asyh->mode;
m->h.active = mode->htotal;
m->h.synce = mode->hsync_end - mode->hsync_start - 1;
m->h.blanke = m->h.synce + hbackp;
m->h.blanks = mode->htotal - hfrontp - 1;
m->v.active = mode->vtotal * vscan / ilace;
m->v.synce = ((mode->vsync_end - mode->vsync_start) * vscan / ilace) - 1;
m->v.blanke = m->v.synce + vbackp;
m->v.blanks = m->v.active - vfrontp - 1;
/*XXX: Safe underestimate, even "0" works */
m->v.blankus = (m->v.active - mode->vdisplay - 2) * m->h.active;
m->v.blankus *= 1000;
m->v.blankus /= mode->clock;
if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
m->v.blank2e = m->v.active + m->v.synce + vbackp;
m->v.blank2s = m->v.blank2e + (mode->vdisplay * vscan / ilace);
m->v.active = (m->v.active * 2) + 1;
m->interlace = true;
} else {
m->v.blank2e = 0;
m->v.blank2s = 1;
m->interlace = false;
}
m->clock = mode->clock;
drm_mode_set_crtcinfo(mode, CRTC_INTERLACE_HALVE_V);
asyh->set.mode = true;
}
static int
nv50_head_atomic_check(struct drm_crtc *crtc, struct drm_crtc_state *state)
{
struct nouveau_drm *drm = nouveau_drm(crtc->dev);
struct nv50_disp *disp = nv50_disp(crtc->dev);
struct nv50_head *head = nv50_head(crtc);
struct nv50_fbdma *fbdma;
struct nv50_head_atom *armh = nv50_head_atom(crtc->state);
struct nv50_head_atom *asyh = nv50_head_atom(state);
struct nouveau_conn_atom *asyc = NULL;
struct drm_connector_state *conns;
struct drm_connector *conn;
int i;
NV_ATOMIC(drm, "%s atomic_check %d\n", crtc->name, asyh->state.active);
if (asyh->state.active) {
for_each_connector_in_state(asyh->state.state, conn, conns, i) {
if (conns->crtc == crtc) {
asyc = nouveau_conn_atom(conns);
break;
}
}
if (armh->state.active) {
if (asyc) {
if (asyh->state.mode_changed)
asyc->set.scaler = true;
if (armh->base.depth != asyh->base.depth)
asyc->set.dither = true;
}
} else {
asyc->set.mask = ~0;
asyh->set.mask = ~0;
}
if (asyh->state.mode_changed)
nv50_head_atomic_check_mode(head, asyh);
if (asyc) {
if (asyc->set.scaler)
nv50_head_atomic_check_view(armh, asyh, asyc);
if (asyc->set.dither)
nv50_head_atomic_check_dither(armh, asyh, asyc);
if (asyc->set.procamp)
nv50_head_atomic_check_procamp(armh, asyh, asyc);
}
list_for_each_entry(fbdma, &disp->fbdma, head) {
nvif_object_fini(&fbdma->base[nv_crtc->index]);
if ((asyh->core.visible = (asyh->base.cpp != 0))) {
asyh->core.x = asyh->base.x;
asyh->core.y = asyh->base.y;
asyh->core.w = asyh->base.w;
asyh->core.h = asyh->base.h;
} else
if ((asyh->core.visible = asyh->curs.visible)) {
/*XXX: We need to either find some way of having the
* primary base layer appear black, while still
* being able to display the other layers, or we
* need to allocate a dummy black surface here.
*/
asyh->core.x = 0;
asyh->core.y = 0;
asyh->core.w = asyh->state.mode.hdisplay;
asyh->core.h = asyh->state.mode.vdisplay;
}
asyh->core.handle = disp->mast.base.vram.handle;
asyh->core.offset = 0;
asyh->core.format = 0xcf;
asyh->core.kind = 0;
asyh->core.layout = 1;
asyh->core.block = 0;
asyh->core.pitch = ALIGN(asyh->core.w, 64) * 4;
asyh->lut.handle = disp->mast.base.vram.handle;
asyh->lut.offset = head->base.lut.nvbo->bo.offset;
asyh->set.base = armh->base.cpp != asyh->base.cpp;
asyh->set.ovly = armh->ovly.cpp != asyh->ovly.cpp;
} else {
asyh->core.visible = false;
asyh->curs.visible = false;
asyh->base.cpp = 0;
asyh->ovly.cpp = 0;
}
if (!drm_atomic_crtc_needs_modeset(&asyh->state)) {
if (asyh->core.visible) {
if (memcmp(&armh->core, &asyh->core, sizeof(asyh->core)))
asyh->set.core = true;
} else
if (armh->core.visible) {
asyh->clr.core = true;
}
if (asyh->curs.visible) {
if (memcmp(&armh->curs, &asyh->curs, sizeof(asyh->curs)))
asyh->set.curs = true;
} else
if (armh->curs.visible) {
asyh->clr.curs = true;
}
} else {
asyh->clr.core = armh->core.visible;
asyh->clr.curs = armh->curs.visible;
asyh->set.core = asyh->core.visible;
asyh->set.curs = asyh->curs.visible;
}
if (asyh->clr.mask || asyh->set.mask)
nv50_atom(asyh->state.state)->lock_core = true;
return 0;
}
static void
nv50_head_lut_load(struct drm_crtc *crtc)
{
struct nv50_disp *disp = nv50_disp(crtc->dev);
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
void __iomem *lut = nvbo_kmap_obj_iovirtual(nv_crtc->lut.nvbo);
int i;
for (i = 0; i < 256; i++) {
u16 r = nv_crtc->lut.r[i] >> 2;
u16 g = nv_crtc->lut.g[i] >> 2;
u16 b = nv_crtc->lut.b[i] >> 2;
if (disp->disp->oclass < GF110_DISP) {
writew(r + 0x0000, lut + (i * 0x08) + 0);
writew(g + 0x0000, lut + (i * 0x08) + 2);
writew(b + 0x0000, lut + (i * 0x08) + 4);
} else {
writew(r + 0x6000, lut + (i * 0x20) + 0);
writew(g + 0x6000, lut + (i * 0x20) + 2);
writew(b + 0x6000, lut + (i * 0x20) + 4);
}
}
}
static int
nv50_head_mode_set_base_atomic(struct drm_crtc *crtc,
struct drm_framebuffer *fb, int x, int y,
enum mode_set_atomic state)
{
WARN_ON(1);
return 0;
}
static const struct drm_crtc_helper_funcs
nv50_head_help = {
.mode_set_base_atomic = nv50_head_mode_set_base_atomic,
.load_lut = nv50_head_lut_load,
.atomic_check = nv50_head_atomic_check,
};
/* This is identical to the version in the atomic helpers, except that
* it supports non-vblanked ("async") page flips.
*/
static int
nv50_head_page_flip(struct drm_crtc *crtc, struct drm_framebuffer *fb,
struct drm_pending_vblank_event *event, u32 flags)
{
struct drm_plane *plane = crtc->primary;
struct drm_atomic_state *state;
struct drm_plane_state *plane_state;
struct drm_crtc_state *crtc_state;
int ret = 0;
state = drm_atomic_state_alloc(plane->dev);
if (!state)
return -ENOMEM;
state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
retry:
crtc_state = drm_atomic_get_crtc_state(state, crtc);
if (IS_ERR(crtc_state)) {
ret = PTR_ERR(crtc_state);
goto fail;
}
crtc_state->event = event;
plane_state = drm_atomic_get_plane_state(state, plane);
if (IS_ERR(plane_state)) {
ret = PTR_ERR(plane_state);
goto fail;
}
ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
if (ret != 0)
goto fail;
drm_atomic_set_fb_for_plane(plane_state, fb);
/* Make sure we don't accidentally do a full modeset. */
state->allow_modeset = false;
if (!crtc_state->active) {
DRM_DEBUG_ATOMIC("[CRTC:%d] disabled, rejecting legacy flip\n",
crtc->base.id);
ret = -EINVAL;
goto fail;
}
if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
nv50_wndw_atom(plane_state)->interval = 0;
ret = drm_atomic_nonblocking_commit(state);
fail:
if (ret == -EDEADLK)
goto backoff;
drm_atomic_state_put(state);
return ret;
backoff:
drm_atomic_state_clear(state);
drm_atomic_legacy_backoff(state);
/*
* Someone might have exchanged the framebuffer while we dropped locks
* in the backoff code. We need to fix up the fb refcount tracking the
* core does for us.
*/
plane->old_fb = plane->fb;
goto retry;
}
static int
nv50_head_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
uint32_t size)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
u32 i;
for (i = 0; i < size; i++) {
nv_crtc->lut.r[i] = r[i];
nv_crtc->lut.g[i] = g[i];
nv_crtc->lut.b[i] = b[i];
}
nv50_head_lut_load(crtc);
return 0;
}
static void
nv50_head_atomic_destroy_state(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
struct nv50_head_atom *asyh = nv50_head_atom(state);
__drm_atomic_helper_crtc_destroy_state(&asyh->state);
kfree(asyh);
}
static struct drm_crtc_state *
nv50_head_atomic_duplicate_state(struct drm_crtc *crtc)
{
struct nv50_head_atom *armh = nv50_head_atom(crtc->state);
struct nv50_head_atom *asyh;
if (!(asyh = kmalloc(sizeof(*asyh), GFP_KERNEL)))
return NULL;
__drm_atomic_helper_crtc_duplicate_state(crtc, &asyh->state);
asyh->view = armh->view;
asyh->mode = armh->mode;
asyh->lut = armh->lut;
asyh->core = armh->core;
asyh->curs = armh->curs;
asyh->base = armh->base;
asyh->ovly = armh->ovly;
asyh->dither = armh->dither;
asyh->procamp = armh->procamp;
asyh->clr.mask = 0;
asyh->set.mask = 0;
return &asyh->state;
}
static void
__drm_atomic_helper_crtc_reset(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
if (crtc->state)
crtc->funcs->atomic_destroy_state(crtc, crtc->state);
crtc->state = state;
crtc->state->crtc = crtc;
}
static void
nv50_head_reset(struct drm_crtc *crtc)
{
struct nv50_head_atom *asyh;
if (WARN_ON(!(asyh = kzalloc(sizeof(*asyh), GFP_KERNEL))))
return;
__drm_atomic_helper_crtc_reset(crtc, &asyh->state);
}
static void
nv50_head_destroy(struct drm_crtc *crtc)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
struct nv50_disp *disp = nv50_disp(crtc->dev);
struct nv50_head *head = nv50_head(crtc);
nv50_dmac_destroy(&head->ovly.base, disp->disp);
nv50_pioc_destroy(&head->oimm.base);
nouveau_bo_unmap(nv_crtc->lut.nvbo);
if (nv_crtc->lut.nvbo)
nouveau_bo_unpin(nv_crtc->lut.nvbo);
nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
drm_crtc_cleanup(crtc);
kfree(crtc);
}
static const struct drm_crtc_funcs
nv50_head_func = {
.reset = nv50_head_reset,
.gamma_set = nv50_head_gamma_set,
.destroy = nv50_head_destroy,
.set_config = drm_atomic_helper_set_config,
.page_flip = nv50_head_page_flip,
.set_property = drm_atomic_helper_crtc_set_property,
.atomic_duplicate_state = nv50_head_atomic_duplicate_state,
.atomic_destroy_state = nv50_head_atomic_destroy_state,
};
static int
nv50_head_create(struct drm_device *dev, int index)
{
struct nouveau_drm *drm = nouveau_drm(dev);
struct nvif_device *device = &drm->device;
struct nv50_disp *disp = nv50_disp(dev);
struct nv50_head *head;
struct nv50_base *base;
struct nv50_curs *curs;
struct drm_crtc *crtc;
int ret, i;
head = kzalloc(sizeof(*head), GFP_KERNEL);
if (!head)
return -ENOMEM;
head->base.index = index;
for (i = 0; i < 256; i++) {
head->base.lut.r[i] = i << 8;
head->base.lut.g[i] = i << 8;
head->base.lut.b[i] = i << 8;
}
ret = nv50_base_new(drm, head, &base);
if (ret == 0)
ret = nv50_curs_new(drm, head, &curs);
if (ret) {
kfree(head);
return ret;
}
crtc = &head->base.base;
drm_crtc_init_with_planes(dev, crtc, &base->wndw.plane,
&curs->wndw.plane, &nv50_head_func,
"head-%d", head->base.index);
drm_crtc_helper_add(crtc, &nv50_head_help);
drm_mode_crtc_set_gamma_size(crtc, 256);
ret = nouveau_bo_new(dev, 8192, 0x100, TTM_PL_FLAG_VRAM,
0, 0x0000, NULL, NULL, &head->base.lut.nvbo);
if (!ret) {
ret = nouveau_bo_pin(head->base.lut.nvbo, TTM_PL_FLAG_VRAM, true);
if (!ret) {
ret = nouveau_bo_map(head->base.lut.nvbo);
if (ret)
nouveau_bo_unpin(head->base.lut.nvbo);
}
if (ret)
nouveau_bo_ref(NULL, &head->base.lut.nvbo);
}
if (ret)
goto out;
/* allocate overlay resources */
ret = nv50_oimm_create(device, disp->disp, index, &head->oimm);
if (ret)
goto out;
ret = nv50_ovly_create(device, disp->disp, index, disp->sync->bo.offset,
&head->ovly);
if (ret)
goto out;
out:
if (ret)
nv50_head_destroy(crtc);
return ret;
}
/******************************************************************************
* Output path helpers
*****************************************************************************/
static int
nv50_outp_atomic_check_view(struct drm_encoder *encoder,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
struct drm_display_mode *native_mode)
{
struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode;
struct drm_display_mode *mode = &crtc_state->mode;
struct drm_connector *connector = conn_state->connector;
struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state);
struct nouveau_drm *drm = nouveau_drm(encoder->dev);
NV_ATOMIC(drm, "%s atomic_check\n", encoder->name);
asyc->scaler.full = false;
if (!native_mode)
return 0;
if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) {
switch (connector->connector_type) {
case DRM_MODE_CONNECTOR_LVDS:
case DRM_MODE_CONNECTOR_eDP:
/* Force use of scaler for non-EDID modes. */
if (adjusted_mode->type & DRM_MODE_TYPE_DRIVER)
break;
mode = native_mode;
asyc->scaler.full = true;
break;
default:
break;
}
} else {
mode = native_mode;
}
if (!drm_mode_equal(adjusted_mode, mode)) {
drm_mode_copy(adjusted_mode, mode);
crtc_state->mode_changed = true;
}
return 0;
}
static int
nv50_outp_atomic_check(struct drm_encoder *encoder,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct nouveau_connector *nv_connector =
nouveau_connector(conn_state->connector);
return nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
nv_connector->native_mode);
}
/******************************************************************************
* DAC
*****************************************************************************/
static void
nv50_dac_dpms(struct drm_encoder *encoder, int mode)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nv50_disp *disp = nv50_disp(encoder->dev);
struct {
struct nv50_disp_mthd_v1 base;
struct nv50_disp_dac_pwr_v0 pwr;
} args = {
.base.version = 1,
.base.method = NV50_DISP_MTHD_V1_DAC_PWR,
.base.hasht = nv_encoder->dcb->hasht,
.base.hashm = nv_encoder->dcb->hashm,
.pwr.state = 1,
.pwr.data = 1,
.pwr.vsync = (mode != DRM_MODE_DPMS_SUSPEND &&
mode != DRM_MODE_DPMS_OFF),
.pwr.hsync = (mode != DRM_MODE_DPMS_STANDBY &&
mode != DRM_MODE_DPMS_OFF),
};
nvif_mthd(disp->disp, 0, &args, sizeof(args));
}
static void
nv50_dac_disable(struct drm_encoder *encoder)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nv50_mast *mast = nv50_mast(encoder->dev);
const int or = nv_encoder->or;
u32 *push;
if (nv_encoder->crtc) {
push = evo_wait(mast, 4);
if (push) {
if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0400 + (or * 0x080), 1);
evo_data(push, 0x00000000);
} else {
evo_mthd(push, 0x0180 + (or * 0x020), 1);
evo_data(push, 0x00000000);
}
evo_kick(push, mast);
}
}
nv_encoder->crtc = NULL;
}
static void
nv50_dac_enable(struct drm_encoder *encoder)
{
struct nv50_mast *mast = nv50_mast(encoder->dev);
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
struct drm_display_mode *mode = &nv_crtc->base.state->adjusted_mode;
u32 *push;
push = evo_wait(mast, 8);
if (push) {
if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
u32 syncs = 0x00000000;
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
syncs |= 0x00000001;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
syncs |= 0x00000002;
evo_mthd(push, 0x0400 + (nv_encoder->or * 0x080), 2);
evo_data(push, 1 << nv_crtc->index);
evo_data(push, syncs);
} else {
u32 magic = 0x31ec6000 | (nv_crtc->index << 25);
u32 syncs = 0x00000001;
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
syncs |= 0x00000008;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
syncs |= 0x00000010;
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
magic |= 0x00000001;
evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2);
evo_data(push, syncs);
evo_data(push, magic);
evo_mthd(push, 0x0180 + (nv_encoder->or * 0x020), 1);
evo_data(push, 1 << nv_crtc->index);
}
evo_kick(push, mast);
}
nv_encoder->crtc = encoder->crtc;
}
static enum drm_connector_status
nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nv50_disp *disp = nv50_disp(encoder->dev);
struct {
struct nv50_disp_mthd_v1 base;
struct nv50_disp_dac_load_v0 load;
} args = {
.base.version = 1,
.base.method = NV50_DISP_MTHD_V1_DAC_LOAD,
.base.hasht = nv_encoder->dcb->hasht,
.base.hashm = nv_encoder->dcb->hashm,
};
int ret;
args.load.data = nouveau_drm(encoder->dev)->vbios.dactestval;
if (args.load.data == 0)
args.load.data = 340;
ret = nvif_mthd(disp->disp, 0, &args, sizeof(args));
if (ret || !args.load.load)
return connector_status_disconnected;
return connector_status_connected;
}
static const struct drm_encoder_helper_funcs
nv50_dac_help = {
.dpms = nv50_dac_dpms,
.atomic_check = nv50_outp_atomic_check,
.enable = nv50_dac_enable,
.disable = nv50_dac_disable,
.detect = nv50_dac_detect
};
static void
nv50_dac_destroy(struct drm_encoder *encoder)
{
drm_encoder_cleanup(encoder);
kfree(encoder);
}
static const struct drm_encoder_funcs
nv50_dac_func = {
.destroy = nv50_dac_destroy,
};
static int
nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe)
{
struct nouveau_drm *drm = nouveau_drm(connector->dev);
struct nvkm_i2c *i2c = nvxx_i2c(&drm->device);
struct nvkm_i2c_bus *bus;
struct nouveau_encoder *nv_encoder;
struct drm_encoder *encoder;
int type = DRM_MODE_ENCODER_DAC;
nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
if (!nv_encoder)
return -ENOMEM;
nv_encoder->dcb = dcbe;
nv_encoder->or = ffs(dcbe->or) - 1;
bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
if (bus)
nv_encoder->i2c = &bus->i2c;
encoder = to_drm_encoder(nv_encoder);
encoder->possible_crtcs = dcbe->heads;
encoder->possible_clones = 0;
drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type,
"dac-%04x-%04x", dcbe->hasht, dcbe->hashm);
drm_encoder_helper_add(encoder, &nv50_dac_help);
drm_mode_connector_attach_encoder(connector, encoder);
return 0;
}
/******************************************************************************
* Audio
*****************************************************************************/
static void
nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nv50_disp *disp = nv50_disp(encoder->dev);
struct {
struct nv50_disp_mthd_v1 base;
struct nv50_disp_sor_hda_eld_v0 eld;
} args = {
.base.version = 1,
.base.method = NV50_DISP_MTHD_V1_SOR_HDA_ELD,
.base.hasht = nv_encoder->dcb->hasht,
.base.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
(0x0100 << nv_crtc->index),
};
nvif_mthd(disp->disp, 0, &args, sizeof(args));
}
static void
nv50_audio_enable(struct drm_encoder *encoder, struct drm_display_mode *mode)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
struct nouveau_connector *nv_connector;
struct nv50_disp *disp = nv50_disp(encoder->dev);
struct __packed {
struct {
struct nv50_disp_mthd_v1 mthd;
struct nv50_disp_sor_hda_eld_v0 eld;
} base;
u8 data[sizeof(nv_connector->base.eld)];
} args = {
.base.mthd.version = 1,
.base.mthd.method = NV50_DISP_MTHD_V1_SOR_HDA_ELD,
.base.mthd.hasht = nv_encoder->dcb->hasht,
.base.mthd.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
(0x0100 << nv_crtc->index),
};
nv_connector = nouveau_encoder_connector_get(nv_encoder);
if (!drm_detect_monitor_audio(nv_connector->edid))
return;
drm_edid_to_eld(&nv_connector->base, nv_connector->edid);
memcpy(args.data, nv_connector->base.eld, sizeof(args.data));
nvif_mthd(disp->disp, 0, &args,
sizeof(args.base) + drm_eld_size(args.data));
}
/******************************************************************************
* HDMI
*****************************************************************************/
static void
nv50_hdmi_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nv50_disp *disp = nv50_disp(encoder->dev);
struct {
struct nv50_disp_mthd_v1 base;
struct nv50_disp_sor_hdmi_pwr_v0 pwr;
} args = {
.base.version = 1,
.base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR,
.base.hasht = nv_encoder->dcb->hasht,
.base.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
(0x0100 << nv_crtc->index),
};
nvif_mthd(disp->disp, 0, &args, sizeof(args));
}
static void
nv50_hdmi_enable(struct drm_encoder *encoder, struct drm_display_mode *mode)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
struct nv50_disp *disp = nv50_disp(encoder->dev);
struct {
struct nv50_disp_mthd_v1 base;
struct nv50_disp_sor_hdmi_pwr_v0 pwr;
} args = {
.base.version = 1,
.base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR,
.base.hasht = nv_encoder->dcb->hasht,
.base.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
(0x0100 << nv_crtc->index),
.pwr.state = 1,
.pwr.rekey = 56, /* binary driver, and tegra, constant */
};
struct nouveau_connector *nv_connector;
u32 max_ac_packet;
nv_connector = nouveau_encoder_connector_get(nv_encoder);
if (!drm_detect_hdmi_monitor(nv_connector->edid))
return;
max_ac_packet = mode->htotal - mode->hdisplay;
max_ac_packet -= args.pwr.rekey;
max_ac_packet -= 18; /* constant from tegra */
args.pwr.max_ac_packet = max_ac_packet / 32;
nvif_mthd(disp->disp, 0, &args, sizeof(args));
nv50_audio_enable(encoder, mode);
}
/******************************************************************************
* MST
*****************************************************************************/
#define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr)
#define nv50_mstc(p) container_of((p), struct nv50_mstc, connector)
#define nv50_msto(p) container_of((p), struct nv50_msto, encoder)
struct nv50_mstm {
struct nouveau_encoder *outp;
struct drm_dp_mst_topology_mgr mgr;
struct nv50_msto *msto[4];
bool modified;
};
struct nv50_mstc {
struct nv50_mstm *mstm;
struct drm_dp_mst_port *port;
struct drm_connector connector;
struct drm_display_mode *native;
struct edid *edid;
int pbn;
};
struct nv50_msto {
struct drm_encoder encoder;
struct nv50_head *head;
struct nv50_mstc *mstc;
bool disabled;
};
static struct drm_dp_payload *
nv50_msto_payload(struct nv50_msto *msto)
{
struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
struct nv50_mstc *mstc = msto->mstc;
struct nv50_mstm *mstm = mstc->mstm;
int vcpi = mstc->port->vcpi.vcpi, i;
NV_ATOMIC(drm, "%s: vcpi %d\n", msto->encoder.name, vcpi);
for (i = 0; i < mstm->mgr.max_payloads; i++) {
struct drm_dp_payload *payload = &mstm->mgr.payloads[i];
NV_ATOMIC(drm, "%s: %d: vcpi %d start 0x%02x slots 0x%02x\n",
mstm->outp->base.base.name, i, payload->vcpi,
payload->start_slot, payload->num_slots);
}
for (i = 0; i < mstm->mgr.max_payloads; i++) {
struct drm_dp_payload *payload = &mstm->mgr.payloads[i];
if (payload->vcpi == vcpi)
return payload;
}
return NULL;
}
static void
nv50_msto_cleanup(struct nv50_msto *msto)
{
struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
struct nv50_mstc *mstc = msto->mstc;
struct nv50_mstm *mstm = mstc->mstm;
NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name);
if (mstc->port && mstc->port->vcpi.vcpi > 0 && !nv50_msto_payload(msto))
drm_dp_mst_deallocate_vcpi(&mstm->mgr, mstc->port);
if (msto->disabled) {
msto->mstc = NULL;
msto->head = NULL;
msto->disabled = false;
}
}
static void
nv50_msto_prepare(struct nv50_msto *msto)
{
struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
struct nv50_mstc *mstc = msto->mstc;
struct nv50_mstm *mstm = mstc->mstm;
struct {
struct nv50_disp_mthd_v1 base;
struct nv50_disp_sor_dp_mst_vcpi_v0 vcpi;
} args = {
.base.version = 1,
.base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_VCPI,
.base.hasht = mstm->outp->dcb->hasht,
.base.hashm = (0xf0ff & mstm->outp->dcb->hashm) |
(0x0100 << msto->head->base.index),
};
NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name);
if (mstc->port && mstc->port->vcpi.vcpi > 0) {
struct drm_dp_payload *payload = nv50_msto_payload(msto);
if (payload) {
args.vcpi.start_slot = payload->start_slot;
args.vcpi.num_slots = payload->num_slots;
args.vcpi.pbn = mstc->port->vcpi.pbn;
args.vcpi.aligned_pbn = mstc->port->vcpi.aligned_pbn;
}
}
NV_ATOMIC(drm, "%s: %s: %02x %02x %04x %04x\n",
msto->encoder.name, msto->head->base.base.name,
args.vcpi.start_slot, args.vcpi.num_slots,
args.vcpi.pbn, args.vcpi.aligned_pbn);
nvif_mthd(&drm->display->disp, 0, &args, sizeof(args));
}
static int
nv50_msto_atomic_check(struct drm_encoder *encoder,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct nv50_mstc *mstc = nv50_mstc(conn_state->connector);
struct nv50_mstm *mstm = mstc->mstm;
int bpp = conn_state->connector->display_info.bpc * 3;
int slots;
mstc->pbn = drm_dp_calc_pbn_mode(crtc_state->adjusted_mode.clock, bpp);
slots = drm_dp_find_vcpi_slots(&mstm->mgr, mstc->pbn);
if (slots < 0)
return slots;
return nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
mstc->native);
}
static void
nv50_msto_enable(struct drm_encoder *encoder)
{
struct nv50_head *head = nv50_head(encoder->crtc);
struct nv50_msto *msto = nv50_msto(encoder);
struct nv50_mstc *mstc = NULL;
struct nv50_mstm *mstm = NULL;
struct drm_connector *connector;
u8 proto, depth;
int slots;
bool r;
drm_for_each_connector(connector, encoder->dev) {
if (connector->state->best_encoder == &msto->encoder) {
mstc = nv50_mstc(connector);
mstm = mstc->mstm;
break;
}
}
if (WARN_ON(!mstc))
return;
r = drm_dp_mst_allocate_vcpi(&mstm->mgr, mstc->port, mstc->pbn, &slots);
WARN_ON(!r);
if (mstm->outp->dcb->sorconf.link & 1)
proto = 0x8;
else
proto = 0x9;
switch (mstc->connector.display_info.bpc) {
case 6: depth = 0x2; break;
case 8: depth = 0x5; break;
case 10:
default: depth = 0x6; break;
}
nv50_dmac_destroy(&head->ovly.base, disp->disp);
nv50_pioc_destroy(&head->oimm.base);
nv50_dmac_destroy(&head->sync.base, disp->disp);
nv50_pioc_destroy(&head->curs.base);
mstm->outp->update(mstm->outp, head->base.index,
&head->base.base.state->adjusted_mode, proto, depth);
/*XXX: this shouldn't be necessary, but the core doesn't call
* disconnect() during the cleanup paths
*/
if (head->image)
nouveau_bo_unpin(head->image);
nouveau_bo_ref(NULL, &head->image);
msto->head = head;
msto->mstc = mstc;
mstm->modified = true;
}
/*XXX: ditto */
if (nv_crtc->cursor.nvbo)
nouveau_bo_unpin(nv_crtc->cursor.nvbo);
nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
static void
nv50_msto_disable(struct drm_encoder *encoder)
{
struct nv50_msto *msto = nv50_msto(encoder);
struct nv50_mstc *mstc = msto->mstc;
struct nv50_mstm *mstm = mstc->mstm;
nouveau_bo_unmap(nv_crtc->lut.nvbo);
if (nv_crtc->lut.nvbo)
nouveau_bo_unpin(nv_crtc->lut.nvbo);
nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
if (mstc->port)
drm_dp_mst_reset_vcpi_slots(&mstm->mgr, mstc->port);
drm_crtc_cleanup(crtc);
kfree(crtc);
mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0);
mstm->modified = true;
msto->disabled = true;
}
static const struct drm_crtc_helper_funcs nv50_crtc_hfunc = {
.dpms = nv50_crtc_dpms,
.prepare = nv50_crtc_prepare,
.commit = nv50_crtc_commit,
.mode_fixup = nv50_crtc_mode_fixup,
.mode_set = nv50_crtc_mode_set,
.mode_set_base = nv50_crtc_mode_set_base,
.mode_set_base_atomic = nv50_crtc_mode_set_base_atomic,
.load_lut = nv50_crtc_lut_load,
.disable = nv50_crtc_disable,
static const struct drm_encoder_helper_funcs
nv50_msto_help = {
.disable = nv50_msto_disable,
.enable = nv50_msto_enable,
.atomic_check = nv50_msto_atomic_check,
};
static const struct drm_crtc_funcs nv50_crtc_func = {
.cursor_set = nv50_crtc_cursor_set,
.cursor_move = nv50_crtc_cursor_move,
.gamma_set = nv50_crtc_gamma_set,
.set_config = nouveau_crtc_set_config,
.destroy = nv50_crtc_destroy,
.page_flip = nouveau_crtc_page_flip,
static void
nv50_msto_destroy(struct drm_encoder *encoder)
{
struct nv50_msto *msto = nv50_msto(encoder);
drm_encoder_cleanup(&msto->encoder);
kfree(msto);
}
static const struct drm_encoder_funcs
nv50_msto = {
.destroy = nv50_msto_destroy,
};
static int
nv50_crtc_create(struct drm_device *dev, int index)
nv50_msto_new(struct drm_device *dev, u32 heads, const char *name, int id,
struct nv50_msto **pmsto)
{
struct nouveau_drm *drm = nouveau_drm(dev);
struct nvif_device *device = &drm->device;
struct nv50_disp *disp = nv50_disp(dev);
struct nv50_head *head;
struct drm_crtc *crtc;
int ret, i;
struct nv50_msto *msto;
int ret;
head = kzalloc(sizeof(*head), GFP_KERNEL);
if (!head)
if (!(msto = *pmsto = kzalloc(sizeof(*msto), GFP_KERNEL)))
return -ENOMEM;
head->base.index = index;
head->base.set_dither = nv50_crtc_set_dither;
head->base.set_scale = nv50_crtc_set_scale;
head->base.set_color_vibrance = nv50_crtc_set_color_vibrance;
head->base.color_vibrance = 50;
head->base.vibrant_hue = 0;
head->base.cursor.set_pos = nv50_crtc_cursor_restore;
for (i = 0; i < 256; i++) {
head->base.lut.r[i] = i << 8;
head->base.lut.g[i] = i << 8;
head->base.lut.b[i] = i << 8;
ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto,
DRM_MODE_ENCODER_DPMST, "%s-mst-%d", name, id);
if (ret) {
kfree(*pmsto);
*pmsto = NULL;
return ret;
}
crtc = &head->base.base;
drm_crtc_init(dev, crtc, &nv50_crtc_func);
drm_crtc_helper_add(crtc, &nv50_crtc_hfunc);
drm_mode_crtc_set_gamma_size(crtc, 256);
drm_encoder_helper_add(&msto->encoder, &nv50_msto_help);
msto->encoder.possible_crtcs = heads;
return 0;
}
ret = nouveau_bo_new(dev, 8192, 0x100, TTM_PL_FLAG_VRAM,
0, 0x0000, NULL, NULL, &head->base.lut.nvbo);
if (!ret) {
ret = nouveau_bo_pin(head->base.lut.nvbo, TTM_PL_FLAG_VRAM, true);
if (!ret) {
ret = nouveau_bo_map(head->base.lut.nvbo);
if (ret)
nouveau_bo_unpin(head->base.lut.nvbo);
}
if (ret)
nouveau_bo_ref(NULL, &head->base.lut.nvbo);
static struct drm_encoder *
nv50_mstc_atomic_best_encoder(struct drm_connector *connector,
struct drm_connector_state *connector_state)
{
struct nv50_head *head = nv50_head(connector_state->crtc);
struct nv50_mstc *mstc = nv50_mstc(connector);
if (mstc->port) {
struct nv50_mstm *mstm = mstc->mstm;
return &mstm->msto[head->base.index]->encoder;
}
return NULL;
}
if (ret)
goto out;
/* allocate cursor resources */
ret = nv50_curs_create(device, disp->disp, index, &head->curs);
if (ret)
goto out;
/* allocate page flip / sync resources */
ret = nv50_base_create(device, disp->disp, index, disp->sync->bo.offset,
&head->sync);
if (ret)
goto out;
head->sync.addr = EVO_FLIP_SEM0(index);
head->sync.data = 0x00000000;
/* allocate overlay resources */
ret = nv50_oimm_create(device, disp->disp, index, &head->oimm);
if (ret)
goto out;
ret = nv50_ovly_create(device, disp->disp, index, disp->sync->bo.offset,
&head->ovly);
if (ret)
goto out;
static struct drm_encoder *
nv50_mstc_best_encoder(struct drm_connector *connector)
{
struct nv50_mstc *mstc = nv50_mstc(connector);
if (mstc->port) {
struct nv50_mstm *mstm = mstc->mstm;
return &mstm->msto[0]->encoder;
}
return NULL;
}
out:
if (ret)
nv50_crtc_destroy(crtc);
return ret;
static enum drm_mode_status
nv50_mstc_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
return MODE_OK;
}
/******************************************************************************
* Encoder helpers
*****************************************************************************/
static bool
nv50_encoder_mode_fixup(struct drm_encoder *encoder,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
static int
nv50_mstc_get_modes(struct drm_connector *connector)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_connector *nv_connector;
struct nv50_mstc *mstc = nv50_mstc(connector);
int ret = 0;
nv_connector = nouveau_encoder_connector_get(nv_encoder);
if (nv_connector && nv_connector->native_mode) {
nv_connector->scaling_full = false;
if (nv_connector->scaling_mode == DRM_MODE_SCALE_NONE) {
switch (nv_connector->type) {
case DCB_CONNECTOR_LVDS:
case DCB_CONNECTOR_LVDS_SPWG:
case DCB_CONNECTOR_eDP:
/* force use of scaler for non-edid modes */
if (adjusted_mode->type & DRM_MODE_TYPE_DRIVER)
return true;
nv_connector->scaling_full = true;
break;
default:
return true;
}
mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port);
drm_mode_connector_update_edid_property(&mstc->connector, mstc->edid);
if (mstc->edid) {
ret = drm_add_edid_modes(&mstc->connector, mstc->edid);
drm_edid_to_eld(&mstc->connector, mstc->edid);
}
drm_mode_copy(adjusted_mode, nv_connector->native_mode);
}
if (!mstc->connector.display_info.bpc)
mstc->connector.display_info.bpc = 8;
return true;
if (mstc->native)
drm_mode_destroy(mstc->connector.dev, mstc->native);
mstc->native = nouveau_conn_native_mode(&mstc->connector);
return ret;
}
/******************************************************************************
* DAC
*****************************************************************************/
static void
nv50_dac_dpms(struct drm_encoder *encoder, int mode)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nv50_disp *disp = nv50_disp(encoder->dev);
struct {
struct nv50_disp_mthd_v1 base;
struct nv50_disp_dac_pwr_v0 pwr;
} args = {
.base.version = 1,
.base.method = NV50_DISP_MTHD_V1_DAC_PWR,
.base.hasht = nv_encoder->dcb->hasht,
.base.hashm = nv_encoder->dcb->hashm,
.pwr.state = 1,
.pwr.data = 1,
.pwr.vsync = (mode != DRM_MODE_DPMS_SUSPEND &&
mode != DRM_MODE_DPMS_OFF),
.pwr.hsync = (mode != DRM_MODE_DPMS_STANDBY &&
mode != DRM_MODE_DPMS_OFF),
};
nvif_mthd(disp->disp, 0, &args, sizeof(args));
}
static const struct drm_connector_helper_funcs
nv50_mstc_help = {
.get_modes = nv50_mstc_get_modes,
.mode_valid = nv50_mstc_mode_valid,
.best_encoder = nv50_mstc_best_encoder,
.atomic_best_encoder = nv50_mstc_atomic_best_encoder,
};
static void
nv50_dac_commit(struct drm_encoder *encoder)
static enum drm_connector_status
nv50_mstc_detect(struct drm_connector *connector, bool force)
{
struct nv50_mstc *mstc = nv50_mstc(connector);
if (!mstc->port)
return connector_status_disconnected;
return drm_dp_mst_detect_port(connector, mstc->port->mgr, mstc->port);
}
static void
nv50_dac_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
nv50_mstc_destroy(struct drm_connector *connector)
{
struct nv50_mast *mast = nv50_mast(encoder->dev);
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
u32 *push;
nv50_dac_dpms(encoder, DRM_MODE_DPMS_ON);
struct nv50_mstc *mstc = nv50_mstc(connector);
drm_connector_cleanup(&mstc->connector);
kfree(mstc);
}
push = evo_wait(mast, 8);
if (push) {
if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
u32 syncs = 0x00000000;
static const struct drm_connector_funcs
nv50_mstc = {
.dpms = drm_atomic_helper_connector_dpms,
.reset = nouveau_conn_reset,
.detect = nv50_mstc_detect,
.fill_modes = drm_helper_probe_single_connector_modes,
.set_property = drm_atomic_helper_connector_set_property,
.destroy = nv50_mstc_destroy,
.atomic_duplicate_state = nouveau_conn_atomic_duplicate_state,
.atomic_destroy_state = nouveau_conn_atomic_destroy_state,
.atomic_set_property = nouveau_conn_atomic_set_property,
.atomic_get_property = nouveau_conn_atomic_get_property,
};
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
syncs |= 0x00000001;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
syncs |= 0x00000002;
static int
nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port,
const char *path, struct nv50_mstc **pmstc)
{
struct drm_device *dev = mstm->outp->base.base.dev;
struct nv50_mstc *mstc;
int ret, i;
evo_mthd(push, 0x0400 + (nv_encoder->or * 0x080), 2);
evo_data(push, 1 << nv_crtc->index);
evo_data(push, syncs);
} else {
u32 magic = 0x31ec6000 | (nv_crtc->index << 25);
u32 syncs = 0x00000001;
if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL)))
return -ENOMEM;
mstc->mstm = mstm;
mstc->port = port;
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
syncs |= 0x00000008;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
syncs |= 0x00000010;
ret = drm_connector_init(dev, &mstc->connector, &nv50_mstc,
DRM_MODE_CONNECTOR_DisplayPort);
if (ret) {
kfree(*pmstc);
*pmstc = NULL;
return ret;
}
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
magic |= 0x00000001;
drm_connector_helper_add(&mstc->connector, &nv50_mstc_help);
evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2);
evo_data(push, syncs);
evo_data(push, magic);
evo_mthd(push, 0x0180 + (nv_encoder->or * 0x020), 1);
evo_data(push, 1 << nv_crtc->index);
}
mstc->connector.funcs->reset(&mstc->connector);
nouveau_conn_attach_properties(&mstc->connector);
evo_kick(push, mast);
}
for (i = 0; i < ARRAY_SIZE(mstm->msto) && mstm->msto; i++)
drm_mode_connector_attach_encoder(&mstc->connector, &mstm->msto[i]->encoder);
nv_encoder->crtc = encoder->crtc;
drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0);
drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0);
drm_mode_connector_set_path_property(&mstc->connector, path);
return 0;
}
static void
nv50_dac_disconnect(struct drm_encoder *encoder)
nv50_mstm_cleanup(struct nv50_mstm *mstm)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nv50_mast *mast = nv50_mast(encoder->dev);
const int or = nv_encoder->or;
u32 *push;
struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
struct drm_encoder *encoder;
int ret;
if (nv_encoder->crtc) {
nv50_crtc_prepare(nv_encoder->crtc);
NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name);
ret = drm_dp_check_act_status(&mstm->mgr);
push = evo_wait(mast, 4);
if (push) {
if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0400 + (or * 0x080), 1);
evo_data(push, 0x00000000);
} else {
evo_mthd(push, 0x0180 + (or * 0x020), 1);
evo_data(push, 0x00000000);
}
evo_kick(push, mast);
ret = drm_dp_update_payload_part2(&mstm->mgr);
drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
struct nv50_msto *msto = nv50_msto(encoder);
struct nv50_mstc *mstc = msto->mstc;
if (mstc && mstc->mstm == mstm)
nv50_msto_cleanup(msto);
}
}
nv_encoder->crtc = NULL;
mstm->modified = false;
}
static enum drm_connector_status
nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
static void
nv50_mstm_prepare(struct nv50_mstm *mstm)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nv50_disp *disp = nv50_disp(encoder->dev);
struct {
struct nv50_disp_mthd_v1 base;
struct nv50_disp_dac_load_v0 load;
} args = {
.base.version = 1,
.base.method = NV50_DISP_MTHD_V1_DAC_LOAD,
.base.hasht = nv_encoder->dcb->hasht,
.base.hashm = nv_encoder->dcb->hashm,
};
struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
struct drm_encoder *encoder;
int ret;
args.load.data = nouveau_drm(encoder->dev)->vbios.dactestval;
if (args.load.data == 0)
args.load.data = 340;
ret = nvif_mthd(disp->disp, 0, &args, sizeof(args));
if (ret || !args.load.load)
return connector_status_disconnected;
NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name);
ret = drm_dp_update_payload_part1(&mstm->mgr);
return connector_status_connected;
drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
struct nv50_msto *msto = nv50_msto(encoder);
struct nv50_mstc *mstc = msto->mstc;
if (mstc && mstc->mstm == mstm)
nv50_msto_prepare(msto);
}
}
}
static void
nv50_dac_destroy(struct drm_encoder *encoder)
nv50_mstm_hotplug(struct drm_dp_mst_topology_mgr *mgr)
{
drm_encoder_cleanup(encoder);
kfree(encoder);
struct nv50_mstm *mstm = nv50_mstm(mgr);
drm_kms_helper_hotplug_event(mstm->outp->base.base.dev);
}
static const struct drm_encoder_helper_funcs nv50_dac_hfunc = {
.dpms = nv50_dac_dpms,
.mode_fixup = nv50_encoder_mode_fixup,
.prepare = nv50_dac_disconnect,
.commit = nv50_dac_commit,
.mode_set = nv50_dac_mode_set,
.disable = nv50_dac_disconnect,
.get_crtc = nv50_display_crtc_get,
.detect = nv50_dac_detect
};
static void
nv50_mstm_destroy_connector(struct drm_dp_mst_topology_mgr *mgr,
struct drm_connector *connector)
{
struct nouveau_drm *drm = nouveau_drm(connector->dev);
struct nv50_mstc *mstc = nv50_mstc(connector);
static const struct drm_encoder_funcs nv50_dac_func = {
.destroy = nv50_dac_destroy,
};
drm_connector_unregister(&mstc->connector);
static int
nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe)
drm_modeset_lock_all(drm->dev);
drm_fb_helper_remove_one_connector(&drm->fbcon->helper, &mstc->connector);
mstc->port = NULL;
drm_modeset_unlock_all(drm->dev);
drm_connector_unreference(&mstc->connector);
}
static void
nv50_mstm_register_connector(struct drm_connector *connector)
{
struct nouveau_drm *drm = nouveau_drm(connector->dev);
struct nvkm_i2c *i2c = nvxx_i2c(&drm->device);
struct nvkm_i2c_bus *bus;
struct nouveau_encoder *nv_encoder;
struct drm_encoder *encoder;
int type = DRM_MODE_ENCODER_DAC;
nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
if (!nv_encoder)
return -ENOMEM;
nv_encoder->dcb = dcbe;
nv_encoder->or = ffs(dcbe->or) - 1;
drm_modeset_lock_all(drm->dev);
drm_fb_helper_add_one_connector(&drm->fbcon->helper, connector);
drm_modeset_unlock_all(drm->dev);
bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
if (bus)
nv_encoder->i2c = &bus->i2c;
drm_connector_register(connector);
}
encoder = to_drm_encoder(nv_encoder);
encoder->possible_crtcs = dcbe->heads;
encoder->possible_clones = 0;
drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type, NULL);
drm_encoder_helper_add(encoder, &nv50_dac_hfunc);
static struct drm_connector *
nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr,
struct drm_dp_mst_port *port, const char *path)
{
struct nv50_mstm *mstm = nv50_mstm(mgr);
struct nv50_mstc *mstc;
int ret;
drm_mode_connector_attach_encoder(connector, encoder);
return 0;
ret = nv50_mstc_new(mstm, port, path, &mstc);
if (ret) {
if (mstc)
mstc->connector.funcs->destroy(&mstc->connector);
return NULL;
}
return &mstc->connector;
}
/******************************************************************************
* Audio
*****************************************************************************/
static void
nv50_audio_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode)
static const struct drm_dp_mst_topology_cbs
nv50_mstm = {
.add_connector = nv50_mstm_add_connector,
.register_connector = nv50_mstm_register_connector,
.destroy_connector = nv50_mstm_destroy_connector,
.hotplug = nv50_mstm_hotplug,
};
void
nv50_mstm_service(struct nv50_mstm *mstm)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
struct nouveau_connector *nv_connector;
struct nv50_disp *disp = nv50_disp(encoder->dev);
struct __packed {
struct {
struct nv50_disp_mthd_v1 mthd;
struct nv50_disp_sor_hda_eld_v0 eld;
} base;
u8 data[sizeof(nv_connector->base.eld)];
} args = {
.base.mthd.version = 1,
.base.mthd.method = NV50_DISP_MTHD_V1_SOR_HDA_ELD,
.base.mthd.hasht = nv_encoder->dcb->hasht,
.base.mthd.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
(0x0100 << nv_crtc->index),
};
struct drm_dp_aux *aux = mstm->mgr.aux;
bool handled = true;
int ret;
u8 esi[8] = {};
nv_connector = nouveau_encoder_connector_get(nv_encoder);
if (!drm_detect_monitor_audio(nv_connector->edid))
while (handled) {
ret = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8);
if (ret != 8) {
drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false);
return;
}
drm_edid_to_eld(&nv_connector->base, nv_connector->edid);
memcpy(args.data, nv_connector->base.eld, sizeof(args.data));
drm_dp_mst_hpd_irq(&mstm->mgr, esi, &handled);
if (!handled)
break;
nvif_mthd(disp->disp, 0, &args,
sizeof(args.base) + drm_eld_size(args.data));
drm_dp_dpcd_write(aux, DP_SINK_COUNT_ESI + 1, &esi[1], 3);
}
}
static void
nv50_audio_disconnect(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
void
nv50_mstm_remove(struct nv50_mstm *mstm)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nv50_disp *disp = nv50_disp(encoder->dev);
if (mstm)
drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false);
}
static int
nv50_mstm_enable(struct nv50_mstm *mstm, u8 dpcd, int state)
{
struct nouveau_encoder *outp = mstm->outp;
struct {
struct nv50_disp_mthd_v1 base;
struct nv50_disp_sor_hda_eld_v0 eld;
struct nv50_disp_sor_dp_mst_link_v0 mst;
} args = {
.base.version = 1,
.base.method = NV50_DISP_MTHD_V1_SOR_HDA_ELD,
.base.hasht = nv_encoder->dcb->hasht,
.base.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
(0x0100 << nv_crtc->index),
.base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_LINK,
.base.hasht = outp->dcb->hasht,
.base.hashm = outp->dcb->hashm,
.mst.state = state,
};
struct nouveau_drm *drm = nouveau_drm(outp->base.base.dev);
struct nvif_object *disp = &drm->display->disp;
int ret;
nvif_mthd(disp->disp, 0, &args, sizeof(args));
if (dpcd >= 0x12) {
ret = drm_dp_dpcd_readb(mstm->mgr.aux, DP_MSTM_CTRL, &dpcd);
if (ret < 0)
return ret;
dpcd &= ~DP_MST_EN;
if (state)
dpcd |= DP_MST_EN;
ret = drm_dp_dpcd_writeb(mstm->mgr.aux, DP_MSTM_CTRL, dpcd);
if (ret < 0)
return ret;
}
return nvif_mthd(disp, 0, &args, sizeof(args));
}
/******************************************************************************
* HDMI
*****************************************************************************/
static void
nv50_hdmi_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode)
int
nv50_mstm_detect(struct nv50_mstm *mstm, u8 dpcd[8], int allow)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
struct nv50_disp *disp = nv50_disp(encoder->dev);
struct {
struct nv50_disp_mthd_v1 base;
struct nv50_disp_sor_hdmi_pwr_v0 pwr;
} args = {
.base.version = 1,
.base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR,
.base.hasht = nv_encoder->dcb->hasht,
.base.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
(0x0100 << nv_crtc->index),
.pwr.state = 1,
.pwr.rekey = 56, /* binary driver, and tegra, constant */
};
struct nouveau_connector *nv_connector;
u32 max_ac_packet;
int ret, state = 0;
nv_connector = nouveau_encoder_connector_get(nv_encoder);
if (!drm_detect_hdmi_monitor(nv_connector->edid))
return;
if (!mstm)
return 0;
max_ac_packet = mode->htotal - mode->hdisplay;
max_ac_packet -= args.pwr.rekey;
max_ac_packet -= 18; /* constant from tegra */
args.pwr.max_ac_packet = max_ac_packet / 32;
if (dpcd[0] >= 0x12 && allow) {
ret = drm_dp_dpcd_readb(mstm->mgr.aux, DP_MSTM_CAP, &dpcd[1]);
if (ret < 0)
return ret;
nvif_mthd(disp->disp, 0, &args, sizeof(args));
nv50_audio_mode_set(encoder, mode);
state = dpcd[1] & DP_MST_CAP;
}
ret = nv50_mstm_enable(mstm, dpcd[0], state);
if (ret)
return ret;
ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, state);
if (ret)
return nv50_mstm_enable(mstm, dpcd[0], 0);
return mstm->mgr.mst_state;
}
static void
nv50_hdmi_disconnect(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
nv50_mstm_fini(struct nv50_mstm *mstm)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nv50_disp *disp = nv50_disp(encoder->dev);
struct {
struct nv50_disp_mthd_v1 base;
struct nv50_disp_sor_hdmi_pwr_v0 pwr;
} args = {
.base.version = 1,
.base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR,
.base.hasht = nv_encoder->dcb->hasht,
.base.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
(0x0100 << nv_crtc->index),
};
if (mstm && mstm->mgr.mst_state)
drm_dp_mst_topology_mgr_suspend(&mstm->mgr);
}
nvif_mthd(disp->disp, 0, &args, sizeof(args));
static void
nv50_mstm_init(struct nv50_mstm *mstm)
{
if (mstm && mstm->mgr.mst_state)
drm_dp_mst_topology_mgr_resume(&mstm->mgr);
}
static void
nv50_mstm_del(struct nv50_mstm **pmstm)
{
struct nv50_mstm *mstm = *pmstm;
if (mstm) {
kfree(*pmstm);
*pmstm = NULL;
}
}
static int
nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max,
int conn_base_id, struct nv50_mstm **pmstm)
{
const int max_payloads = hweight8(outp->dcb->heads);
struct drm_device *dev = outp->base.base.dev;
struct nv50_mstm *mstm;
int ret, i;
u8 dpcd;
/* This is a workaround for some monitors not functioning
* correctly in MST mode on initial module load. I think
* some bad interaction with the VBIOS may be responsible.
*
* A good ol' off and on again seems to work here ;)
*/
ret = drm_dp_dpcd_readb(aux, DP_DPCD_REV, &dpcd);
if (ret >= 0 && dpcd >= 0x12)
drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0);
if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL)))
return -ENOMEM;
mstm->outp = outp;
mstm->mgr.cbs = &nv50_mstm;
ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev->dev, aux, aux_max,
max_payloads, conn_base_id);
if (ret)
return ret;
for (i = 0; i < max_payloads; i++) {
ret = nv50_msto_new(dev, outp->dcb->heads, outp->base.base.name,
i, &mstm->msto[i]);
if (ret)
return ret;
}
return 0;
}
/******************************************************************************
......@@ -1861,89 +3444,91 @@ nv50_sor_dpms(struct drm_encoder *encoder, int mode)
.base.hashm = nv_encoder->dcb->hashm,
.pwr.state = mode == DRM_MODE_DPMS_ON,
};
struct {
struct nv50_disp_mthd_v1 base;
struct nv50_disp_sor_dp_pwr_v0 pwr;
} link = {
.base.version = 1,
.base.method = NV50_DISP_MTHD_V1_SOR_DP_PWR,
.base.hasht = nv_encoder->dcb->hasht,
.base.hashm = nv_encoder->dcb->hashm,
.pwr.state = mode == DRM_MODE_DPMS_ON,
};
struct drm_device *dev = encoder->dev;
struct drm_encoder *partner;
nv_encoder->last_dpms = mode;
list_for_each_entry(partner, &dev->mode_config.encoder_list, head) {
struct nouveau_encoder *nv_partner = nouveau_encoder(partner);
if (partner->encoder_type != DRM_MODE_ENCODER_TMDS)
continue;
if (nv_partner != nv_encoder &&
nv_partner->dcb->or == nv_encoder->dcb->or) {
if (nv_partner->last_dpms == DRM_MODE_DPMS_ON)
return;
break;
}
}
if (nv_encoder->dcb->type == DCB_OUTPUT_DP) {
args.pwr.state = 1;
nvif_mthd(disp->disp, 0, &args, sizeof(args));
nvif_mthd(disp->disp, 0, &link, sizeof(link));
} else {
nvif_mthd(disp->disp, 0, &args, sizeof(args));
}
}
static void
nv50_sor_ctrl(struct nouveau_encoder *nv_encoder, u32 mask, u32 data)
nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head,
struct drm_display_mode *mode, u8 proto, u8 depth)
{
struct nv50_mast *mast = nv50_mast(nv_encoder->base.base.dev);
u32 temp = (nv_encoder->ctrl & ~mask) | (data & mask), *push;
if (temp != nv_encoder->ctrl && (push = evo_wait(mast, 2))) {
if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
struct nv50_dmac *core = &nv50_mast(nv_encoder->base.base.dev)->base;
u32 *push;
if (!mode) {
nv_encoder->ctrl &= ~BIT(head);
if (!(nv_encoder->ctrl & 0x0000000f))
nv_encoder->ctrl = 0;
} else {
nv_encoder->ctrl |= proto << 8;
nv_encoder->ctrl |= BIT(head);
}
if ((push = evo_wait(core, 6))) {
if (core->base.user.oclass < GF110_DISP_CORE_CHANNEL_DMA) {
if (mode) {
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
nv_encoder->ctrl |= 0x00001000;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
nv_encoder->ctrl |= 0x00002000;
nv_encoder->ctrl |= depth << 16;
}
evo_mthd(push, 0x0600 + (nv_encoder->or * 0x40), 1);
evo_data(push, (nv_encoder->ctrl = temp));
} else {
if (mode) {
u32 magic = 0x31ec6000 | (head << 25);
u32 syncs = 0x00000001;
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
syncs |= 0x00000008;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
syncs |= 0x00000010;
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
magic |= 0x00000001;
evo_mthd(push, 0x0404 + (head * 0x300), 2);
evo_data(push, syncs | (depth << 6));
evo_data(push, magic);
}
evo_mthd(push, 0x0200 + (nv_encoder->or * 0x20), 1);
evo_data(push, (nv_encoder->ctrl = temp));
}
evo_kick(push, mast);
evo_data(push, nv_encoder->ctrl);
evo_kick(push, core);
}
}
static void
nv50_sor_disconnect(struct drm_encoder *encoder)
nv50_sor_disable(struct drm_encoder *encoder)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc);
nv_encoder->last_dpms = DRM_MODE_DPMS_OFF;
nv_encoder->crtc = NULL;
if (nv_crtc) {
nv50_crtc_prepare(&nv_crtc->base);
nv50_sor_ctrl(nv_encoder, 1 << nv_crtc->index, 0);
nv50_audio_disconnect(encoder, nv_crtc);
nv50_hdmi_disconnect(&nv_encoder->base.base, nv_crtc);
struct nvkm_i2c_aux *aux = nv_encoder->aux;
u8 pwr;
if (aux) {
int ret = nvkm_rdaux(aux, DP_SET_POWER, &pwr, 1);
if (ret == 0) {
pwr &= ~DP_SET_POWER_MASK;
pwr |= DP_SET_POWER_D3;
nvkm_wraux(aux, DP_SET_POWER, &pwr, 1);
}
}
}
static void
nv50_sor_commit(struct drm_encoder *encoder)
{
nv_encoder->update(nv_encoder, nv_crtc->index, NULL, 0, 0);
nv50_audio_disable(encoder, nv_crtc);
nv50_hdmi_disable(&nv_encoder->base.base, nv_crtc);
}
}
static void
nv50_sor_mode_set(struct drm_encoder *encoder, struct drm_display_mode *umode,
struct drm_display_mode *mode)
nv50_sor_enable(struct drm_encoder *encoder)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
struct drm_display_mode *mode = &nv_crtc->base.state->adjusted_mode;
struct {
struct nv50_disp_mthd_v1 base;
struct nv50_disp_sor_lvds_script_v0 lvds;
......@@ -1954,13 +3539,10 @@ nv50_sor_mode_set(struct drm_encoder *encoder, struct drm_display_mode *umode,
.base.hashm = nv_encoder->dcb->hashm,
};
struct nv50_disp *disp = nv50_disp(encoder->dev);
struct nv50_mast *mast = nv50_mast(encoder->dev);
struct drm_device *dev = encoder->dev;
struct nouveau_drm *drm = nouveau_drm(dev);
struct nouveau_connector *nv_connector;
struct nvbios *bios = &drm->vbios;
u32 mask, ctrl;
u8 owner = 1 << nv_crtc->index;
u8 proto = 0xf;
u8 depth = 0x0;
......@@ -1985,7 +3567,7 @@ nv50_sor_mode_set(struct drm_encoder *encoder, struct drm_display_mode *umode,
proto = 0x2;
}
nv50_hdmi_mode_set(&nv_encoder->base.base, mode);
nv50_hdmi_enable(&nv_encoder->base.base, mode);
break;
case DCB_OUTPUT_LVDS:
proto = 0x0;
......@@ -2019,94 +3601,60 @@ nv50_sor_mode_set(struct drm_encoder *encoder, struct drm_display_mode *umode,
nvif_mthd(disp->disp, 0, &lvds, sizeof(lvds));
break;
case DCB_OUTPUT_DP:
if (nv_connector->base.display_info.bpc == 6) {
nv_encoder->dp.datarate = mode->clock * 18 / 8;
if (nv_connector->base.display_info.bpc == 6)
depth = 0x2;
} else
if (nv_connector->base.display_info.bpc == 8) {
nv_encoder->dp.datarate = mode->clock * 24 / 8;
else
if (nv_connector->base.display_info.bpc == 8)
depth = 0x5;
} else {
nv_encoder->dp.datarate = mode->clock * 30 / 8;
else
depth = 0x6;
}
if (nv_encoder->dcb->sorconf.link & 1)
proto = 0x8;
else
proto = 0x9;
nv50_audio_mode_set(encoder, mode);
nv50_audio_enable(encoder, mode);
break;
default:
BUG_ON(1);
break;
}
nv50_sor_dpms(&nv_encoder->base.base, DRM_MODE_DPMS_ON);
if (nv50_vers(mast) >= GF110_DISP) {
u32 *push = evo_wait(mast, 3);
if (push) {
u32 magic = 0x31ec6000 | (nv_crtc->index << 25);
u32 syncs = 0x00000001;
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
syncs |= 0x00000008;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
syncs |= 0x00000010;
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
magic |= 0x00000001;
evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2);
evo_data(push, syncs | (depth << 6));
evo_data(push, magic);
evo_kick(push, mast);
}
ctrl = proto << 8;
mask = 0x00000f00;
} else {
ctrl = (depth << 16) | (proto << 8);
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
ctrl |= 0x00001000;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
ctrl |= 0x00002000;
mask = 0x000f3f00;
}
nv50_sor_ctrl(nv_encoder, mask | owner, ctrl | owner);
nv_encoder->update(nv_encoder, nv_crtc->index, mode, proto, depth);
}
static const struct drm_encoder_helper_funcs
nv50_sor_help = {
.dpms = nv50_sor_dpms,
.atomic_check = nv50_outp_atomic_check,
.enable = nv50_sor_enable,
.disable = nv50_sor_disable,
};
static void
nv50_sor_destroy(struct drm_encoder *encoder)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
nv50_mstm_del(&nv_encoder->dp.mstm);
drm_encoder_cleanup(encoder);
kfree(encoder);
}
static const struct drm_encoder_helper_funcs nv50_sor_hfunc = {
.dpms = nv50_sor_dpms,
.mode_fixup = nv50_encoder_mode_fixup,
.prepare = nv50_sor_disconnect,
.commit = nv50_sor_commit,
.mode_set = nv50_sor_mode_set,
.disable = nv50_sor_disconnect,
.get_crtc = nv50_display_crtc_get,
};
static const struct drm_encoder_funcs nv50_sor_func = {
static const struct drm_encoder_funcs
nv50_sor_func = {
.destroy = nv50_sor_destroy,
};
static int
nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe)
{
struct nouveau_connector *nv_connector = nouveau_connector(connector);
struct nouveau_drm *drm = nouveau_drm(connector->dev);
struct nvkm_i2c *i2c = nvxx_i2c(&drm->device);
struct nouveau_encoder *nv_encoder;
struct drm_encoder *encoder;
int type;
int type, ret;
switch (dcbe->type) {
case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break;
......@@ -2122,7 +3670,16 @@ nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe)
return -ENOMEM;
nv_encoder->dcb = dcbe;
nv_encoder->or = ffs(dcbe->or) - 1;
nv_encoder->last_dpms = DRM_MODE_DPMS_OFF;
nv_encoder->update = nv50_sor_update;
encoder = to_drm_encoder(nv_encoder);
encoder->possible_crtcs = dcbe->heads;
encoder->possible_clones = 0;
drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type,
"sor-%04x-%04x", dcbe->hasht, dcbe->hashm);
drm_encoder_helper_add(encoder, &nv50_sor_help);
drm_mode_connector_attach_encoder(connector, encoder);
if (dcbe->type == DCB_OUTPUT_DP) {
struct nvkm_i2c_aux *aux =
......@@ -2131,6 +3688,15 @@ nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe)
nv_encoder->i2c = &aux->i2c;
nv_encoder->aux = aux;
}
/*TODO: Use DP Info Table to check for support. */
if (nv50_disp(encoder->dev)->disp->oclass >= GF110_DISP) {
ret = nv50_mstm_new(nv_encoder, &nv_connector->aux, 16,
nv_connector->base.base.id,
&nv_encoder->dp.mstm);
if (ret)
return ret;
}
} else {
struct nvkm_i2c_bus *bus =
nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
......@@ -2138,20 +3704,12 @@ nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe)
nv_encoder->i2c = &bus->i2c;
}
encoder = to_drm_encoder(nv_encoder);
encoder->possible_crtcs = dcbe->heads;
encoder->possible_clones = 0;
drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type, NULL);
drm_encoder_helper_add(encoder, &nv50_sor_hfunc);
drm_mode_connector_attach_encoder(connector, encoder);
return 0;
}
/******************************************************************************
* PIOR
*****************************************************************************/
static void
nv50_pior_dpms(struct drm_encoder *encoder, int mode)
{
......@@ -2172,30 +3730,48 @@ nv50_pior_dpms(struct drm_encoder *encoder, int mode)
nvif_mthd(disp->disp, 0, &args, sizeof(args));
}
static bool
nv50_pior_mode_fixup(struct drm_encoder *encoder,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
static int
nv50_pior_atomic_check(struct drm_encoder *encoder,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
if (!nv50_encoder_mode_fixup(encoder, mode, adjusted_mode))
return false;
adjusted_mode->clock *= 2;
return true;
int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state);
if (ret)
return ret;
crtc_state->adjusted_mode.clock *= 2;
return 0;
}
static void
nv50_pior_commit(struct drm_encoder *encoder)
{
static void
nv50_pior_disable(struct drm_encoder *encoder)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nv50_mast *mast = nv50_mast(encoder->dev);
const int or = nv_encoder->or;
u32 *push;
if (nv_encoder->crtc) {
push = evo_wait(mast, 4);
if (push) {
if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0700 + (or * 0x040), 1);
evo_data(push, 0x00000000);
}
evo_kick(push, mast);
}
}
nv_encoder->crtc = NULL;
}
static void
nv50_pior_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
nv50_pior_enable(struct drm_encoder *encoder)
{
struct nv50_mast *mast = nv50_mast(encoder->dev);
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
struct nouveau_connector *nv_connector;
struct drm_display_mode *mode = &nv_crtc->base.state->adjusted_mode;
u8 owner = 1 << nv_crtc->index;
u8 proto, depth;
u32 *push;
......@@ -2218,8 +3794,6 @@ nv50_pior_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
break;
}
nv50_pior_dpms(encoder, DRM_MODE_DPMS_ON);
push = evo_wait(mast, 8);
if (push) {
if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
......@@ -2238,29 +3812,13 @@ nv50_pior_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
nv_encoder->crtc = encoder->crtc;
}
static void
nv50_pior_disconnect(struct drm_encoder *encoder)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nv50_mast *mast = nv50_mast(encoder->dev);
const int or = nv_encoder->or;
u32 *push;
if (nv_encoder->crtc) {
nv50_crtc_prepare(nv_encoder->crtc);
push = evo_wait(mast, 4);
if (push) {
if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0700 + (or * 0x040), 1);
evo_data(push, 0x00000000);
}
evo_kick(push, mast);
}
}
nv_encoder->crtc = NULL;
}
static const struct drm_encoder_helper_funcs
nv50_pior_help = {
.dpms = nv50_pior_dpms,
.atomic_check = nv50_pior_atomic_check,
.enable = nv50_pior_enable,
.disable = nv50_pior_disable,
};
static void
nv50_pior_destroy(struct drm_encoder *encoder)
......@@ -2269,17 +3827,8 @@ nv50_pior_destroy(struct drm_encoder *encoder)
kfree(encoder);
}
static const struct drm_encoder_helper_funcs nv50_pior_hfunc = {
.dpms = nv50_pior_dpms,
.mode_fixup = nv50_pior_mode_fixup,
.prepare = nv50_pior_disconnect,
.commit = nv50_pior_commit,
.mode_set = nv50_pior_mode_set,
.disable = nv50_pior_disconnect,
.get_crtc = nv50_display_crtc_get,
};
static const struct drm_encoder_funcs nv50_pior_func = {
static const struct drm_encoder_funcs
nv50_pior_func = {
.destroy = nv50_pior_destroy,
};
......@@ -2321,149 +3870,462 @@ nv50_pior_create(struct drm_connector *connector, struct dcb_output *dcbe)
encoder = to_drm_encoder(nv_encoder);
encoder->possible_crtcs = dcbe->heads;
encoder->possible_clones = 0;
drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type, NULL);
drm_encoder_helper_add(encoder, &nv50_pior_hfunc);
drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type,
"pior-%04x-%04x", dcbe->hasht, dcbe->hashm);
drm_encoder_helper_add(encoder, &nv50_pior_help);
drm_mode_connector_attach_encoder(connector, encoder);
return 0;
}
/******************************************************************************
* Framebuffer
* Atomic
*****************************************************************************/
static void
nv50_fbdma_fini(struct nv50_fbdma *fbdma)
nv50_disp_atomic_commit_core(struct nouveau_drm *drm, u32 interlock)
{
struct nv50_disp *disp = nv50_disp(drm->dev);
struct nv50_dmac *core = &disp->mast.base;
struct nv50_mstm *mstm;
struct drm_encoder *encoder;
u32 *push;
NV_ATOMIC(drm, "commit core %08x\n", interlock);
drm_for_each_encoder(encoder, drm->dev) {
if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
mstm = nouveau_encoder(encoder)->dp.mstm;
if (mstm && mstm->modified)
nv50_mstm_prepare(mstm);
}
}
if ((push = evo_wait(core, 5))) {
evo_mthd(push, 0x0084, 1);
evo_data(push, 0x80000000);
evo_mthd(push, 0x0080, 2);
evo_data(push, interlock);
evo_data(push, 0x00000000);
nouveau_bo_wr32(disp->sync, 0, 0x00000000);
evo_kick(push, core);
if (nvif_msec(&drm->device, 2000ULL,
if (nouveau_bo_rd32(disp->sync, 0))
break;
usleep_range(1, 2);
) < 0)
NV_ERROR(drm, "EVO timeout\n");
}
drm_for_each_encoder(encoder, drm->dev) {
if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
mstm = nouveau_encoder(encoder)->dp.mstm;
if (mstm && mstm->modified)
nv50_mstm_cleanup(mstm);
}
}
}
static void
nv50_disp_atomic_commit_tail(struct drm_atomic_state *state)
{
struct drm_device *dev = state->dev;
struct drm_crtc_state *crtc_state;
struct drm_crtc *crtc;
struct drm_plane_state *plane_state;
struct drm_plane *plane;
struct nouveau_drm *drm = nouveau_drm(dev);
struct nv50_disp *disp = nv50_disp(dev);
struct nv50_atom *atom = nv50_atom(state);
struct nv50_outp_atom *outp, *outt;
u32 interlock_core = 0;
u32 interlock_chan = 0;
int i;
for (i = 0; i < ARRAY_SIZE(fbdma->base); i++)
nvif_object_fini(&fbdma->base[i]);
nvif_object_fini(&fbdma->core);
list_del(&fbdma->head);
kfree(fbdma);
NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable);
drm_atomic_helper_wait_for_fences(dev, state, false);
drm_atomic_helper_wait_for_dependencies(state);
drm_atomic_helper_update_legacy_modeset_state(dev, state);
if (atom->lock_core)
mutex_lock(&disp->mutex);
/* Disable head(s). */
for_each_crtc_in_state(state, crtc, crtc_state, i) {
struct nv50_head_atom *asyh = nv50_head_atom(crtc->state);
struct nv50_head *head = nv50_head(crtc);
NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name,
asyh->clr.mask, asyh->set.mask);
if (asyh->clr.mask) {
nv50_head_flush_clr(head, asyh, atom->flush_disable);
interlock_core |= 1;
}
}
/* Disable plane(s). */
for_each_plane_in_state(state, plane, plane_state, i) {
struct nv50_wndw_atom *asyw = nv50_wndw_atom(plane->state);
struct nv50_wndw *wndw = nv50_wndw(plane);
NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name,
asyw->clr.mask, asyw->set.mask);
if (!asyw->clr.mask)
continue;
interlock_chan |= nv50_wndw_flush_clr(wndw, interlock_core,
atom->flush_disable,
asyw);
}
/* Disable output path(s). */
list_for_each_entry(outp, &atom->outp, head) {
const struct drm_encoder_helper_funcs *help;
struct drm_encoder *encoder;
encoder = outp->encoder;
help = encoder->helper_private;
NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name,
outp->clr.mask, outp->set.mask);
if (outp->clr.mask) {
help->disable(encoder);
interlock_core |= 1;
if (outp->flush_disable) {
nv50_disp_atomic_commit_core(drm, interlock_chan);
interlock_core = 0;
interlock_chan = 0;
}
}
}
/* Flush disable. */
if (interlock_core) {
if (atom->flush_disable) {
nv50_disp_atomic_commit_core(drm, interlock_chan);
interlock_core = 0;
interlock_chan = 0;
}
}
/* Update output path(s). */
list_for_each_entry_safe(outp, outt, &atom->outp, head) {
const struct drm_encoder_helper_funcs *help;
struct drm_encoder *encoder;
encoder = outp->encoder;
help = encoder->helper_private;
NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name,
outp->set.mask, outp->clr.mask);
if (outp->set.mask) {
help->enable(encoder);
interlock_core = 1;
}
list_del(&outp->head);
kfree(outp);
}
/* Update head(s). */
for_each_crtc_in_state(state, crtc, crtc_state, i) {
struct nv50_head_atom *asyh = nv50_head_atom(crtc->state);
struct nv50_head *head = nv50_head(crtc);
NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
asyh->set.mask, asyh->clr.mask);
if (asyh->set.mask) {
nv50_head_flush_set(head, asyh);
interlock_core = 1;
}
}
/* Update plane(s). */
for_each_plane_in_state(state, plane, plane_state, i) {
struct nv50_wndw_atom *asyw = nv50_wndw_atom(plane->state);
struct nv50_wndw *wndw = nv50_wndw(plane);
NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name,
asyw->set.mask, asyw->clr.mask);
if ( !asyw->set.mask &&
(!asyw->clr.mask || atom->flush_disable))
continue;
interlock_chan |= nv50_wndw_flush_set(wndw, interlock_core, asyw);
}
/* Flush update. */
if (interlock_core) {
if (!interlock_chan && atom->state.legacy_cursor_update) {
u32 *push = evo_wait(&disp->mast, 2);
if (push) {
evo_mthd(push, 0x0080, 1);
evo_data(push, 0x00000000);
evo_kick(push, &disp->mast);
}
} else {
nv50_disp_atomic_commit_core(drm, interlock_chan);
}
}
if (atom->lock_core)
mutex_unlock(&disp->mutex);
/* Wait for HW to signal completion. */
for_each_plane_in_state(state, plane, plane_state, i) {
struct nv50_wndw_atom *asyw = nv50_wndw_atom(plane->state);
struct nv50_wndw *wndw = nv50_wndw(plane);
int ret = nv50_wndw_wait_armed(wndw, asyw);
if (ret)
NV_ERROR(drm, "%s: timeout\n", plane->name);
}
for_each_crtc_in_state(state, crtc, crtc_state, i) {
if (crtc->state->event) {
unsigned long flags;
spin_lock_irqsave(&crtc->dev->event_lock, flags);
drm_crtc_send_vblank_event(crtc, crtc->state->event);
spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
crtc->state->event = NULL;
}
}
drm_atomic_helper_commit_hw_done(state);
drm_atomic_helper_cleanup_planes(dev, state);
drm_atomic_helper_commit_cleanup_done(state);
drm_atomic_state_put(state);
}
static void
nv50_disp_atomic_commit_work(struct work_struct *work)
{
struct drm_atomic_state *state =
container_of(work, typeof(*state), commit_work);
nv50_disp_atomic_commit_tail(state);
}
static int
nv50_fbdma_init(struct drm_device *dev, u32 name, u64 offset, u64 length, u8 kind)
nv50_disp_atomic_commit(struct drm_device *dev,
struct drm_atomic_state *state, bool nonblock)
{
struct nouveau_drm *drm = nouveau_drm(dev);
struct nv50_disp *disp = nv50_disp(dev);
struct nv50_mast *mast = nv50_mast(dev);
struct __attribute__ ((packed)) {
struct nv_dma_v0 base;
union {
struct nv50_dma_v0 nv50;
struct gf100_dma_v0 gf100;
struct gf119_dma_v0 gf119;
};
} args = {};
struct nv50_fbdma *fbdma;
struct drm_plane_state *plane_state;
struct drm_plane *plane;
struct drm_crtc *crtc;
u32 size = sizeof(args.base);
int ret;
bool active = false;
int ret, i;
list_for_each_entry(fbdma, &disp->fbdma, head) {
if (fbdma->core.handle == name)
return 0;
}
ret = pm_runtime_get_sync(dev->dev);
if (ret < 0 && ret != -EACCES)
return ret;
fbdma = kzalloc(sizeof(*fbdma), GFP_KERNEL);
if (!fbdma)
return -ENOMEM;
list_add(&fbdma->head, &disp->fbdma);
ret = drm_atomic_helper_setup_commit(state, nonblock);
if (ret)
goto done;
args.base.target = NV_DMA_V0_TARGET_VRAM;
args.base.access = NV_DMA_V0_ACCESS_RDWR;
args.base.start = offset;
args.base.limit = offset + length - 1;
INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work);
if (drm->device.info.chipset < 0x80) {
args.nv50.part = NV50_DMA_V0_PART_256;
size += sizeof(args.nv50);
} else
if (drm->device.info.chipset < 0xc0) {
args.nv50.part = NV50_DMA_V0_PART_256;
args.nv50.kind = kind;
size += sizeof(args.nv50);
} else
if (drm->device.info.chipset < 0xd0) {
args.gf100.kind = kind;
size += sizeof(args.gf100);
} else {
args.gf119.page = GF119_DMA_V0_PAGE_LP;
args.gf119.kind = kind;
size += sizeof(args.gf119);
ret = drm_atomic_helper_prepare_planes(dev, state);
if (ret)
goto done;
if (!nonblock) {
ret = drm_atomic_helper_wait_for_fences(dev, state, true);
if (ret)
goto done;
}
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
struct nv50_head *head = nv50_head(crtc);
int ret = nvif_object_init(&head->sync.base.base.user, name,
NV_DMA_IN_MEMORY, &args, size,
&fbdma->base[head->base.index]);
if (ret) {
nv50_fbdma_fini(fbdma);
for_each_plane_in_state(state, plane, plane_state, i) {
struct nv50_wndw_atom *asyw = nv50_wndw_atom(plane_state);
struct nv50_wndw *wndw = nv50_wndw(plane);
if (asyw->set.image) {
asyw->ntfy.handle = wndw->dmac->sync.handle;
asyw->ntfy.offset = wndw->ntfy;
asyw->ntfy.awaken = false;
asyw->set.ntfy = true;
nouveau_bo_wr32(disp->sync, wndw->ntfy / 4, 0x00000000);
wndw->ntfy ^= 0x10;
}
}
drm_atomic_helper_swap_state(state, true);
drm_atomic_state_get(state);
if (nonblock)
queue_work(system_unbound_wq, &state->commit_work);
else
nv50_disp_atomic_commit_tail(state);
drm_for_each_crtc(crtc, dev) {
if (crtc->state->enable) {
if (!drm->have_disp_power_ref) {
drm->have_disp_power_ref = true;
return ret;
}
active = true;
break;
}
}
ret = nvif_object_init(&mast->base.base.user, name, NV_DMA_IN_MEMORY,
&args, size, &fbdma->core);
if (ret) {
nv50_fbdma_fini(fbdma);
if (!active && drm->have_disp_power_ref) {
pm_runtime_put_autosuspend(dev->dev);
drm->have_disp_power_ref = false;
}
done:
pm_runtime_put_autosuspend(dev->dev);
return ret;
}
static struct nv50_outp_atom *
nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder)
{
struct nv50_outp_atom *outp;
list_for_each_entry(outp, &atom->outp, head) {
if (outp->encoder == encoder)
return outp;
}
outp = kzalloc(sizeof(*outp), GFP_KERNEL);
if (!outp)
return ERR_PTR(-ENOMEM);
list_add(&outp->head, &atom->outp);
outp->encoder = encoder;
return outp;
}
static int
nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom,
struct drm_connector *connector)
{
struct drm_encoder *encoder = connector->state->best_encoder;
struct drm_crtc_state *crtc_state;
struct drm_crtc *crtc;
struct nv50_outp_atom *outp;
if (!(crtc = connector->state->crtc))
return 0;
crtc_state = drm_atomic_get_existing_crtc_state(&atom->state, crtc);
if (crtc->state->active && drm_atomic_crtc_needs_modeset(crtc_state)) {
outp = nv50_disp_outp_atomic_add(atom, encoder);
if (IS_ERR(outp))
return PTR_ERR(outp);
if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
outp->flush_disable = true;
atom->flush_disable = true;
}
outp->clr.ctrl = true;
atom->lock_core = true;
}
return 0;
}
static void
nv50_fb_dtor(struct drm_framebuffer *fb)
static int
nv50_disp_outp_atomic_check_set(struct nv50_atom *atom,
struct drm_connector_state *connector_state)
{
struct drm_encoder *encoder = connector_state->best_encoder;
struct drm_crtc_state *crtc_state;
struct drm_crtc *crtc;
struct nv50_outp_atom *outp;
if (!(crtc = connector_state->crtc))
return 0;
crtc_state = drm_atomic_get_existing_crtc_state(&atom->state, crtc);
if (crtc_state->active && drm_atomic_crtc_needs_modeset(crtc_state)) {
outp = nv50_disp_outp_atomic_add(atom, encoder);
if (IS_ERR(outp))
return PTR_ERR(outp);
outp->set.ctrl = true;
atom->lock_core = true;
}
return 0;
}
static int
nv50_fb_ctor(struct drm_framebuffer *fb)
nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
{
struct nouveau_framebuffer *nv_fb = nouveau_framebuffer(fb);
struct nouveau_drm *drm = nouveau_drm(fb->dev);
struct nouveau_bo *nvbo = nv_fb->nvbo;
struct nv50_disp *disp = nv50_disp(fb->dev);
u8 kind = nouveau_bo_tile_layout(nvbo) >> 8;
u8 tile = nvbo->tile_mode;
struct nv50_atom *atom = nv50_atom(state);
struct drm_connector_state *connector_state;
struct drm_connector *connector;
int ret, i;
if (drm->device.info.chipset >= 0xc0)
tile >>= 4; /* yep.. */
switch (fb->depth) {
case 8: nv_fb->r_format = 0x1e00; break;
case 15: nv_fb->r_format = 0xe900; break;
case 16: nv_fb->r_format = 0xe800; break;
case 24:
case 32: nv_fb->r_format = 0xcf00; break;
case 30: nv_fb->r_format = 0xd100; break;
default:
NV_ERROR(drm, "unknown depth %d\n", fb->depth);
return -EINVAL;
ret = drm_atomic_helper_check(dev, state);
if (ret)
return ret;
for_each_connector_in_state(state, connector, connector_state, i) {
ret = nv50_disp_outp_atomic_check_clr(atom, connector);
if (ret)
return ret;
ret = nv50_disp_outp_atomic_check_set(atom, connector_state);
if (ret)
return ret;
}
if (disp->disp->oclass < G82_DISP) {
nv_fb->r_pitch = kind ? (((fb->pitches[0] / 4) << 4) | tile) :
(fb->pitches[0] | 0x00100000);
nv_fb->r_format |= kind << 16;
} else
if (disp->disp->oclass < GF110_DISP) {
nv_fb->r_pitch = kind ? (((fb->pitches[0] / 4) << 4) | tile) :
(fb->pitches[0] | 0x00100000);
} else {
nv_fb->r_pitch = kind ? (((fb->pitches[0] / 4) << 4) | tile) :
(fb->pitches[0] | 0x01000000);
return 0;
}
static void
nv50_disp_atomic_state_clear(struct drm_atomic_state *state)
{
struct nv50_atom *atom = nv50_atom(state);
struct nv50_outp_atom *outp, *outt;
list_for_each_entry_safe(outp, outt, &atom->outp, head) {
list_del(&outp->head);
kfree(outp);
}
nv_fb->r_handle = 0xffff0000 | kind;
return nv50_fbdma_init(fb->dev, nv_fb->r_handle, 0,
drm->device.info.ram_user, kind);
drm_atomic_state_default_clear(state);
}
static void
nv50_disp_atomic_state_free(struct drm_atomic_state *state)
{
struct nv50_atom *atom = nv50_atom(state);
drm_atomic_state_default_release(&atom->state);
kfree(atom);
}
static struct drm_atomic_state *
nv50_disp_atomic_state_alloc(struct drm_device *dev)
{
struct nv50_atom *atom;
if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) ||
drm_atomic_state_init(dev, &atom->state) < 0) {
kfree(atom);
return NULL;
}
INIT_LIST_HEAD(&atom->outp);
return &atom->state;
}
static const struct drm_mode_config_funcs
nv50_disp_func = {
.fb_create = nouveau_user_framebuffer_create,
.output_poll_changed = nouveau_fbcon_output_poll_changed,
.atomic_check = nv50_disp_atomic_check,
.atomic_commit = nv50_disp_atomic_commit,
.atomic_state_alloc = nv50_disp_atomic_state_alloc,
.atomic_state_clear = nv50_disp_atomic_state_clear,
.atomic_state_free = nv50_disp_atomic_state_free,
};
/******************************************************************************
* Init
*****************************************************************************/
......@@ -2471,12 +4333,30 @@ nv50_fb_ctor(struct drm_framebuffer *fb)
void
nv50_display_fini(struct drm_device *dev)
{
struct nouveau_encoder *nv_encoder;
struct drm_encoder *encoder;
struct drm_plane *plane;
drm_for_each_plane(plane, dev) {
struct nv50_wndw *wndw = nv50_wndw(plane);
if (plane->funcs != &nv50_wndw)
continue;
nv50_wndw_fini(wndw);
}
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
nv_encoder = nouveau_encoder(encoder);
nv50_mstm_fini(nv_encoder->dp.mstm);
}
}
}
int
nv50_display_init(struct drm_device *dev)
{
struct nv50_disp *disp = nv50_disp(dev);
struct drm_encoder *encoder;
struct drm_plane *plane;
struct drm_crtc *crtc;
u32 *push;
......@@ -2484,16 +4364,35 @@ nv50_display_init(struct drm_device *dev)
if (!push)
return -EBUSY;
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
struct nv50_sync *sync = nv50_sync(crtc);
nv50_crtc_lut_load(crtc);
nouveau_bo_wr32(disp->sync, sync->addr / 4, sync->data);
}
evo_mthd(push, 0x0088, 1);
evo_data(push, nv50_mast(dev)->base.sync.handle);
evo_kick(push, nv50_mast(dev));
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
const struct drm_encoder_helper_funcs *help;
struct nouveau_encoder *nv_encoder;
nv_encoder = nouveau_encoder(encoder);
help = encoder->helper_private;
if (help && help->dpms)
help->dpms(encoder, DRM_MODE_DPMS_ON);
nv50_mstm_init(nv_encoder->dp.mstm);
}
}
drm_for_each_crtc(crtc, dev) {
nv50_head_lut_load(crtc);
}
drm_for_each_plane(plane, dev) {
struct nv50_wndw *wndw = nv50_wndw(plane);
if (plane->funcs != &nv50_wndw)
continue;
nv50_wndw_init(wndw);
}
return 0;
}
......@@ -2501,11 +4400,6 @@ void
nv50_display_destroy(struct drm_device *dev)
{
struct nv50_disp *disp = nv50_disp(dev);
struct nv50_fbdma *fbdma, *fbtmp;
list_for_each_entry_safe(fbdma, fbtmp, &disp->fbdma, head) {
nv50_fbdma_fini(fbdma);
}
nv50_dmac_destroy(&disp->mast.base, disp->disp);
......@@ -2518,6 +4412,10 @@ nv50_display_destroy(struct drm_device *dev)
kfree(disp);
}
MODULE_PARM_DESC(atomic, "Expose atomic ioctl (default: disabled)");
static int nouveau_atomic = 0;
module_param_named(atomic, nouveau_atomic, int, 0400);
int
nv50_display_create(struct drm_device *dev)
{
......@@ -2532,15 +4430,17 @@ nv50_display_create(struct drm_device *dev)
disp = kzalloc(sizeof(*disp), GFP_KERNEL);
if (!disp)
return -ENOMEM;
INIT_LIST_HEAD(&disp->fbdma);
mutex_init(&disp->mutex);
nouveau_display(dev)->priv = disp;
nouveau_display(dev)->dtor = nv50_display_destroy;
nouveau_display(dev)->init = nv50_display_init;
nouveau_display(dev)->fini = nv50_display_fini;
nouveau_display(dev)->fb_ctor = nv50_fb_ctor;
nouveau_display(dev)->fb_dtor = nv50_fb_dtor;
disp->disp = &nouveau_display(dev)->disp;
dev->mode_config.funcs = &nv50_disp_func;
if (nouveau_atomic)
dev->driver->driver_features |= DRIVER_ATOMIC;
/* small shared memory area we use for notifiers and semaphores */
ret = nouveau_bo_new(dev, 4096, 0x1000, TTM_PL_FLAG_VRAM,
......@@ -2572,7 +4472,7 @@ nv50_display_create(struct drm_device *dev)
crtcs = 2;
for (i = 0; i < crtcs; i++) {
ret = nv50_crtc_create(dev, i);
ret = nv50_head_create(dev, i);
if (ret)
goto out;
}
......
......@@ -35,11 +35,4 @@ int nv50_display_create(struct drm_device *);
void nv50_display_destroy(struct drm_device *);
int nv50_display_init(struct drm_device *);
void nv50_display_fini(struct drm_device *);
void nv50_display_flip_stop(struct drm_crtc *);
int nv50_display_flip_next(struct drm_crtc *, struct drm_framebuffer *,
struct nouveau_channel *, u32 swap_interval);
struct nouveau_bo *nv50_display_crtc_sema(struct drm_device *, int head);
#endif /* __NV50_DISPLAY_H__ */
......@@ -30,7 +30,7 @@ int
nv50_fbcon_fillrect(struct fb_info *info, const struct fb_fillrect *rect)
{
struct nouveau_fbdev *nfbdev = info->par;
struct nouveau_drm *drm = nouveau_drm(nfbdev->dev);
struct nouveau_drm *drm = nouveau_drm(nfbdev->helper.dev);
struct nouveau_channel *chan = drm->channel;
int ret;
......@@ -65,7 +65,7 @@ int
nv50_fbcon_copyarea(struct fb_info *info, const struct fb_copyarea *region)
{
struct nouveau_fbdev *nfbdev = info->par;
struct nouveau_drm *drm = nouveau_drm(nfbdev->dev);
struct nouveau_drm *drm = nouveau_drm(nfbdev->helper.dev);
struct nouveau_channel *chan = drm->channel;
int ret;
......@@ -93,7 +93,7 @@ int
nv50_fbcon_imageblit(struct fb_info *info, const struct fb_image *image)
{
struct nouveau_fbdev *nfbdev = info->par;
struct nouveau_drm *drm = nouveau_drm(nfbdev->dev);
struct nouveau_drm *drm = nouveau_drm(nfbdev->helper.dev);
struct nouveau_channel *chan = drm->channel;
uint32_t dwords, *data = (uint32_t *)image->data;
uint32_t mask = ~(~0 >> (32 - info->var.bits_per_pixel));
......@@ -148,8 +148,8 @@ int
nv50_fbcon_accel_init(struct fb_info *info)
{
struct nouveau_fbdev *nfbdev = info->par;
struct nouveau_framebuffer *fb = &nfbdev->nouveau_fb;
struct drm_device *dev = nfbdev->dev;
struct nouveau_framebuffer *fb = nouveau_framebuffer(nfbdev->helper.fb);
struct drm_device *dev = nfbdev->helper.dev;
struct nouveau_drm *drm = nouveau_drm(dev);
struct nouveau_channel *chan = drm->channel;
int ret, format;
......
......@@ -35,13 +35,12 @@
static int
nv50_fence_context_new(struct nouveau_channel *chan)
{
struct drm_device *dev = chan->drm->dev;
struct nv10_fence_priv *priv = chan->drm->fence;
struct nv10_fence_chan *fctx;
struct ttm_mem_reg *mem = &priv->bo->bo.mem;
u32 start = mem->start * PAGE_SIZE;
u32 limit = start + mem->size - 1;
int ret, i;
int ret;
fctx = chan->fence = kzalloc(sizeof(*fctx), GFP_KERNEL);
if (!fctx)
......@@ -60,23 +59,6 @@ nv50_fence_context_new(struct nouveau_channel *chan)
.limit = limit,
}, sizeof(struct nv_dma_v0),
&fctx->sema);
/* dma objects for display sync channel semaphore blocks */
for (i = 0; !ret && i < dev->mode_config.num_crtc; i++) {
struct nouveau_bo *bo = nv50_display_crtc_sema(dev, i);
u32 start = bo->bo.mem.start * PAGE_SIZE;
u32 limit = start + bo->bo.mem.size - 1;
ret = nvif_object_init(&chan->user, NvEvoSema0 + i,
NV_DMA_IN_MEMORY, &(struct nv_dma_v0) {
.target = NV_DMA_V0_TARGET_VRAM,
.access = NV_DMA_V0_ACCESS_RDWR,
.start = start,
.limit = limit,
}, sizeof(struct nv_dma_v0),
&fctx->head[i]);
}
if (ret)
nv10_fence_context_del(chan);
return ret;
......
......@@ -28,13 +28,6 @@
#include "nv50_display.h"
u64
nv84_fence_crtc(struct nouveau_channel *chan, int crtc)
{
struct nv84_fence_chan *fctx = chan->fence;
return fctx->dispc_vma[crtc].offset;
}
static int
nv84_fence_emit32(struct nouveau_channel *chan, u64 virtual, u32 sequence)
{
......@@ -110,15 +103,8 @@ nv84_fence_read(struct nouveau_channel *chan)
static void
nv84_fence_context_del(struct nouveau_channel *chan)
{
struct drm_device *dev = chan->drm->dev;
struct nv84_fence_priv *priv = chan->drm->fence;
struct nv84_fence_chan *fctx = chan->fence;
int i;
for (i = 0; i < dev->mode_config.num_crtc; i++) {
struct nouveau_bo *bo = nv50_display_crtc_sema(dev, i);
nouveau_bo_vma_del(bo, &fctx->dispc_vma[i]);
}
nouveau_bo_wr32(priv->bo, chan->chid * 16 / 4, fctx->base.sequence);
nouveau_bo_vma_del(priv->bo, &fctx->vma_gart);
......@@ -134,7 +120,7 @@ nv84_fence_context_new(struct nouveau_channel *chan)
struct nouveau_cli *cli = (void *)chan->user.client;
struct nv84_fence_priv *priv = chan->drm->fence;
struct nv84_fence_chan *fctx;
int ret, i;
int ret;
fctx = chan->fence = kzalloc(sizeof(*fctx), GFP_KERNEL);
if (!fctx)
......@@ -154,12 +140,6 @@ nv84_fence_context_new(struct nouveau_channel *chan)
&fctx->vma_gart);
}
/* map display semaphore buffers into channel's vm */
for (i = 0; !ret && i < chan->drm->dev->mode_config.num_crtc; i++) {
struct nouveau_bo *bo = nv50_display_crtc_sema(chan->drm->dev, i);
ret = nouveau_bo_vma_add(bo, cli->vm, &fctx->dispc_vma[i]);
}
if (ret)
nv84_fence_context_del(chan);
return ret;
......
......@@ -30,7 +30,7 @@ int
nvc0_fbcon_fillrect(struct fb_info *info, const struct fb_fillrect *rect)
{
struct nouveau_fbdev *nfbdev = info->par;
struct nouveau_drm *drm = nouveau_drm(nfbdev->dev);
struct nouveau_drm *drm = nouveau_drm(nfbdev->helper.dev);
struct nouveau_channel *chan = drm->channel;
int ret;
......@@ -65,7 +65,7 @@ int
nvc0_fbcon_copyarea(struct fb_info *info, const struct fb_copyarea *region)
{
struct nouveau_fbdev *nfbdev = info->par;
struct nouveau_drm *drm = nouveau_drm(nfbdev->dev);
struct nouveau_drm *drm = nouveau_drm(nfbdev->helper.dev);
struct nouveau_channel *chan = drm->channel;
int ret;
......@@ -93,7 +93,7 @@ int
nvc0_fbcon_imageblit(struct fb_info *info, const struct fb_image *image)
{
struct nouveau_fbdev *nfbdev = info->par;
struct nouveau_drm *drm = nouveau_drm(nfbdev->dev);
struct nouveau_drm *drm = nouveau_drm(nfbdev->helper.dev);
struct nouveau_channel *chan = drm->channel;
uint32_t dwords, *data = (uint32_t *)image->data;
uint32_t mask = ~(~0 >> (32 - info->var.bits_per_pixel));
......@@ -148,8 +148,8 @@ int
nvc0_fbcon_accel_init(struct fb_info *info)
{
struct nouveau_fbdev *nfbdev = info->par;
struct drm_device *dev = nfbdev->dev;
struct nouveau_framebuffer *fb = &nfbdev->nouveau_fb;
struct drm_device *dev = nfbdev->helper.dev;
struct nouveau_framebuffer *fb = nouveau_framebuffer(nfbdev->helper.fb);
struct nouveau_drm *drm = nouveau_drm(dev);
struct nouveau_channel *chan = drm->channel;
int ret, format;
......
......@@ -55,7 +55,7 @@ nvif_client_fini(struct nvif_client *client)
}
}
const struct nvif_driver *
static const struct nvif_driver *
nvif_drivers[] = {
#ifdef __KERNEL__
&nvif_driver_nvkm,
......
......@@ -155,11 +155,9 @@ nvif_notify_fini(struct nvif_notify *notify)
int ret = nvif_notify_put(notify);
if (ret >= 0 && object) {
ret = nvif_object_ioctl(object, &args, sizeof(args), NULL);
if (ret == 0) {
notify->object = NULL;
kfree((void *)notify->data);
}
}
return ret;
}
......
uint32_t gf100_ce_data[] = {
static uint32_t gf100_ce_data[] = {
/* 0x0000: ctx_object */
0x00000000,
/* 0x0004: ctx_query_address_high */
......@@ -171,7 +171,7 @@ uint32_t gf100_ce_data[] = {
0x00000800,
};
uint32_t gf100_ce_code[] = {
static uint32_t gf100_ce_code[] = {
/* 0x0000: main */
0x04fe04bd,
0x3517f000,
......
uint32_t gt215_ce_data[] = {
static uint32_t gt215_ce_data[] = {
/* 0x0000: ctx_object */
0x00000000,
/* 0x0004: ctx_dma */
......@@ -183,7 +183,7 @@ uint32_t gt215_ce_data[] = {
0x00000800,
};
uint32_t gt215_ce_code[] = {
static uint32_t gt215_ce_code[] = {
/* 0x0000: main */
0x04fe04bd,
0x3517f000,
......
......@@ -1852,7 +1852,7 @@ nvf1_chipset = {
.fb = gk104_fb_new,
.fuse = gf100_fuse_new,
.gpio = gk104_gpio_new,
.i2c = gf119_i2c_new,
.i2c = gk104_i2c_new,
.ibus = gk104_ibus_new,
.iccsense = gf100_iccsense_new,
.imem = nv50_instmem_new,
......@@ -1966,7 +1966,7 @@ nv117_chipset = {
.fb = gm107_fb_new,
.fuse = gm107_fuse_new,
.gpio = gk104_gpio_new,
.i2c = gf119_i2c_new,
.i2c = gk104_i2c_new,
.ibus = gk104_ibus_new,
.iccsense = gf100_iccsense_new,
.imem = nv50_instmem_new,
......@@ -2000,7 +2000,7 @@ nv118_chipset = {
.fb = gm107_fb_new,
.fuse = gm107_fuse_new,
.gpio = gk104_gpio_new,
.i2c = gf119_i2c_new,
.i2c = gk104_i2c_new,
.ibus = gk104_ibus_new,
.iccsense = gf100_iccsense_new,
.imem = nv50_instmem_new,
......@@ -2131,7 +2131,7 @@ nv12b_chipset = {
.bar = gk20a_bar_new,
.bus = gf100_bus_new,
.clk = gm20b_clk_new,
.fb = gk20a_fb_new,
.fb = gm20b_fb_new,
.fuse = gm107_fuse_new,
.ibus = gk20a_ibus_new,
.imem = gk20a_instmem_new,
......
......@@ -102,7 +102,7 @@ nvkm_device_tegra_probe_iommu(struct nvkm_device_tegra *tdev)
if (iommu_present(&platform_bus_type)) {
tdev->iommu.domain = iommu_domain_alloc(&platform_bus_type);
if (IS_ERR(tdev->iommu.domain))
if (!tdev->iommu.domain)
goto error;
/*
......
......@@ -326,7 +326,7 @@ nvkm_udevice = {
.sclass = nvkm_udevice_child_get,
};
int
static int
nvkm_udevice_new(const struct nvkm_oclass *oclass, void *data, u32 size,
struct nvkm_object **pobject)
{
......
......@@ -153,7 +153,7 @@ nv50_disp_chan_uevent = {
.fini = nv50_disp_chan_uevent_fini,
};
int
static int
nv50_disp_chan_rd32(struct nvkm_object *object, u64 addr, u32 *data)
{
struct nv50_disp_chan *chan = nv50_disp_chan(object);
......@@ -163,7 +163,7 @@ nv50_disp_chan_rd32(struct nvkm_object *object, u64 addr, u32 *data)
return 0;
}
int
static int
nv50_disp_chan_wr32(struct nvkm_object *object, u64 addr, u32 data)
{
struct nv50_disp_chan *chan = nv50_disp_chan(object);
......@@ -173,7 +173,7 @@ nv50_disp_chan_wr32(struct nvkm_object *object, u64 addr, u32 data)
return 0;
}
int
static int
nv50_disp_chan_ntfy(struct nvkm_object *object, u32 type,
struct nvkm_event **pevent)
{
......@@ -189,7 +189,7 @@ nv50_disp_chan_ntfy(struct nvkm_object *object, u32 type,
return -EINVAL;
}
int
static int
nv50_disp_chan_map(struct nvkm_object *object, u64 *addr, u32 *size)
{
struct nv50_disp_chan *chan = nv50_disp_chan(object);
......
......@@ -26,7 +26,7 @@
#include <nvif/class.h>
const struct nv50_disp_mthd_list
static const struct nv50_disp_mthd_list
g94_disp_core_mthd_sor = {
.mthd = 0x0040,
.addr = 0x000008,
......
......@@ -59,7 +59,7 @@ gp104_disp_core_init(struct nv50_disp_dmac *chan)
return 0;
}
const struct nv50_disp_dmac_func
static const struct nv50_disp_dmac_func
gp104_disp_core_func = {
.init = gp104_disp_core_init,
.fini = gf119_disp_core_fini,
......
......@@ -319,9 +319,8 @@ static const struct dp_rates {
};
void
nvkm_dp_train(struct work_struct *w)
nvkm_dp_train(struct nvkm_output_dp *outp)
{
struct nvkm_output_dp *outp = container_of(w, typeof(*outp), lt.work);
struct nv50_disp *disp = nv50_disp(outp->base.disp);
const struct dp_rates *cfg = nvkm_dp_rates;
struct dp_state _dp = {
......@@ -353,9 +352,6 @@ nvkm_dp_train(struct work_struct *w)
}
cfg--;
/* disable link interrupt handling during link training */
nvkm_notify_put(&outp->irq);
/* ensure sink is not in a low-power state */
if (!nvkm_rdaux(outp->aux, DPCD_SC00, &pwr, 1)) {
if ((pwr & DPCD_SC00_SET_POWER) != DPCD_SC00_SET_POWER_D0) {
......@@ -400,9 +396,6 @@ nvkm_dp_train(struct work_struct *w)
dp_link_train_fini(dp);
/* signal completion and enable link interrupt handling */
OUTP_DBG(&outp->base, "training complete");
atomic_set(&outp->lt.done, 1);
wake_up(&outp->lt.wait);
nvkm_notify_get(&outp->irq);
}
#ifndef __NVKM_DISP_DPORT_H__
#define __NVKM_DISP_DPORT_H__
#include <core/os.h>
struct nvkm_output_dp;
/* DPCD Receiver Capabilities */
#define DPCD_RC00_DPCD_REV 0x00000
......@@ -77,5 +77,5 @@
#define DPCD_SC00_SET_POWER_D0 0x01
#define DPCD_SC00_SET_POWER_D3 0x03
void nvkm_dp_train(struct work_struct *);
void nvkm_dp_train(struct nvkm_output_dp *);
#endif
......@@ -203,6 +203,7 @@ gf119_disp_intr_unk2_0(struct nv50_disp *disp, int head)
/* see note in nv50_disp_intr_unk20_0() */
if (outp && outp->info.type == DCB_OUTPUT_DP) {
struct nvkm_output_dp *outpdp = nvkm_output_dp(outp);
if (!outpdp->lt.mst) {
struct nvbios_init init = {
.subdev = subdev,
.bios = subdev->device->bios,
......@@ -212,9 +213,11 @@ gf119_disp_intr_unk2_0(struct nv50_disp *disp, int head)
.execute = 1,
};
nvkm_notify_put(&outpdp->irq);
nvbios_exec(&init);
atomic_set(&outpdp->lt.done, 0);
}
}
}
static void
......@@ -314,7 +317,7 @@ gf119_disp_intr_unk2_2(struct nv50_disp *disp, int head)
break;
}
if (nvkm_output_dp_train(outp, pclk, true))
if (nvkm_output_dp_train(outp, pclk))
OUTP_ERR(outp, "link not trained before attach");
} else {
if (disp->func->sor.magic)
......
......@@ -590,6 +590,7 @@ nv50_disp_intr_unk20_0(struct nv50_disp *disp, int head)
.execute = 1,
};
nvkm_notify_put(&outpdp->irq);
nvbios_exec(&init);
atomic_set(&outpdp->lt.done, 0);
}
......@@ -779,7 +780,7 @@ nv50_disp_intr_unk20_2(struct nv50_disp *disp, int head)
break;
}
if (nvkm_output_dp_train(outp, datarate / soff, true))
if (nvkm_output_dp_train(outp, datarate / soff))
OUTP_ERR(outp, "link not trained before attach");
}
......
......@@ -31,7 +31,7 @@
#include <nvif/event.h>
int
nvkm_output_dp_train(struct nvkm_output *base, u32 datarate, bool wait)
nvkm_output_dp_train(struct nvkm_output *base, u32 datarate)
{
struct nvkm_output_dp *outp = nvkm_output_dp(base);
bool retrain = true;
......@@ -39,6 +39,8 @@ nvkm_output_dp_train(struct nvkm_output *base, u32 datarate, bool wait)
u32 linkrate;
int ret, i;
mutex_lock(&outp->mutex);
/* check that the link is trained at a high enough rate */
ret = nvkm_rdaux(outp->aux, DPCD_LC00_LINK_BW_SET, link, 2);
if (ret) {
......@@ -88,19 +90,10 @@ nvkm_output_dp_train(struct nvkm_output *base, u32 datarate, bool wait)
outp->dpcd[DPCD_RC02] =
outp->base.info.dpconf.link_nr;
}
atomic_set(&outp->lt.done, 0);
schedule_work(&outp->lt.work);
} else {
nvkm_notify_get(&outp->irq);
}
if (wait) {
if (!wait_event_timeout(outp->lt.wait,
atomic_read(&outp->lt.done),
msecs_to_jiffies(2000)))
ret = -ETIMEDOUT;
nvkm_dp_train(outp);
}
mutex_unlock(&outp->mutex);
return ret;
}
......@@ -118,7 +111,7 @@ nvkm_output_dp_enable(struct nvkm_output_dp *outp, bool enable)
if (!nvkm_rdaux(aux, DPCD_RC00_DPCD_REV, outp->dpcd,
sizeof(outp->dpcd))) {
nvkm_output_dp_train(&outp->base, 0, true);
nvkm_output_dp_train(&outp->base, 0);
return;
}
}
......@@ -165,10 +158,10 @@ nvkm_output_dp_irq(struct nvkm_notify *notify)
};
OUTP_DBG(&outp->base, "IRQ: %d", line->mask);
nvkm_output_dp_train(&outp->base, 0, true);
nvkm_output_dp_train(&outp->base, 0);
nvkm_event_send(&disp->hpd, rep.mask, conn->index, &rep, sizeof(rep));
return NVKM_NOTIFY_DROP;
return NVKM_NOTIFY_KEEP;
}
static void
......@@ -177,7 +170,6 @@ nvkm_output_dp_fini(struct nvkm_output *base)
struct nvkm_output_dp *outp = nvkm_output_dp(base);
nvkm_notify_put(&outp->hpd);
nvkm_notify_put(&outp->irq);
flush_work(&outp->lt.work);
nvkm_output_dp_enable(outp, false);
}
......@@ -187,6 +179,7 @@ nvkm_output_dp_init(struct nvkm_output *base)
struct nvkm_output_dp *outp = nvkm_output_dp(base);
nvkm_notify_put(&outp->base.conn->hpd);
nvkm_output_dp_enable(outp, true);
nvkm_notify_get(&outp->irq);
nvkm_notify_get(&outp->hpd);
}
......@@ -238,11 +231,6 @@ nvkm_output_dp_ctor(const struct nvkm_output_dp_func *func,
OUTP_DBG(&outp->base, "bios dp %02x %02x %02x %02x",
outp->version, hdr, cnt, len);
/* link training */
INIT_WORK(&outp->lt.work, nvkm_dp_train);
init_waitqueue_head(&outp->lt.wait);
atomic_set(&outp->lt.done, 0);
/* link maintenance */
ret = nvkm_notify_init(NULL, &i2c->event, nvkm_output_dp_irq, true,
&(struct nvkm_i2c_ntfy_req) {
......@@ -257,6 +245,9 @@ nvkm_output_dp_ctor(const struct nvkm_output_dp_func *func,
return ret;
}
mutex_init(&outp->mutex);
atomic_set(&outp->lt.done, 0);
/* hotplug detect, replaces gpio-based mechanism with aux events */
ret = nvkm_notify_init(NULL, &i2c->event, nvkm_output_dp_hpd, true,
&(struct nvkm_i2c_ntfy_req) {
......
......@@ -29,10 +29,10 @@ struct nvkm_output_dp {
bool present;
u8 dpcd[16];
struct mutex mutex;
struct {
struct work_struct work;
wait_queue_head_t wait;
atomic_t done;
bool mst;
} lt;
};
......@@ -41,9 +41,11 @@ struct nvkm_output_dp_func {
int (*lnk_pwr)(struct nvkm_output_dp *, int nr);
int (*lnk_ctl)(struct nvkm_output_dp *, int nr, int bw, bool ef);
int (*drv_ctl)(struct nvkm_output_dp *, int ln, int vs, int pe, int pc);
void (*vcpi)(struct nvkm_output_dp *, int head, u8 start_slot,
u8 num_slots, u16 pbn, u16 aligned_pbn);
};
int nvkm_output_dp_train(struct nvkm_output *, u32 rate, bool wait);
int nvkm_output_dp_train(struct nvkm_output *, u32 rate);
int nvkm_output_dp_ctor(const struct nvkm_output_dp_func *, struct nvkm_disp *,
int index, struct dcb_output *, struct nvkm_i2c_aux *,
......@@ -63,6 +65,7 @@ int gf119_sor_dp_new(struct nvkm_disp *, int, struct dcb_output *,
struct nvkm_output **);
int gf119_sor_dp_lnk_ctl(struct nvkm_output_dp *, int, int, bool);
int gf119_sor_dp_drv_ctl(struct nvkm_output_dp *, int, int, int, int);
void gf119_sor_dp_vcpi(struct nvkm_output_dp *, int, u8, u8, u16, u16);
int gm107_sor_dp_new(struct nvkm_disp *, int, struct dcb_output *,
struct nvkm_output **);
......
......@@ -66,7 +66,7 @@ nv50_disp_root_scanoutpos(NV50_DISP_MTHD_V0)
return 0;
}
int
static int
nv50_disp_root_mthd_(struct nvkm_object *object, u32 mthd, void *data, u32 size)
{
union {
......@@ -173,9 +173,52 @@ nv50_disp_root_mthd_(struct nvkm_object *object, u32 mthd, void *data, u32 size)
return 0;
} else
if (args->v0.state != 0) {
nvkm_output_dp_train(&outpdp->base, 0, true);
nvkm_output_dp_train(&outpdp->base, 0);
return 0;
}
} else
return ret;
}
break;
case NV50_DISP_MTHD_V1_SOR_DP_MST_LINK: {
struct nvkm_output_dp *outpdp = nvkm_output_dp(outp);
union {
struct nv50_disp_sor_dp_mst_link_v0 v0;
} *args = data;
int ret = -ENOSYS;
nvif_ioctl(object, "disp sor dp mst link size %d\n", size);
if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) {
nvif_ioctl(object, "disp sor dp mst link vers %d state %d\n",
args->v0.version, args->v0.state);
if (outpdp->lt.mst != !!args->v0.state) {
outpdp->lt.mst = !!args->v0.state;
atomic_set(&outpdp->lt.done, 0);
nvkm_output_dp_train(&outpdp->base, 0);
}
return 0;
} else
return ret;
}
break;
case NV50_DISP_MTHD_V1_SOR_DP_MST_VCPI: {
struct nvkm_output_dp *outpdp = nvkm_output_dp(outp);
union {
struct nv50_disp_sor_dp_mst_vcpi_v0 v0;
} *args = data;
int ret = -ENOSYS;
nvif_ioctl(object, "disp sor dp mst vcpi size %d\n", size);
if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) {
nvif_ioctl(object, "disp sor dp mst vcpi vers %d "
"slot %02x/%02x pbn %04x/%04x\n",
args->v0.version, args->v0.start_slot,
args->v0.num_slots, args->v0.pbn,
args->v0.aligned_pbn);
if (!outpdp->func->vcpi)
return -ENODEV;
outpdp->func->vcpi(outpdp, head, args->v0.start_slot,
args->v0.num_slots, args->v0.pbn,
args->v0.aligned_pbn);
return 0;
} else
return ret;
}
......
......@@ -56,11 +56,13 @@ gf119_sor_dp_lnk_ctl(struct nvkm_output_dp *outp, int nr, int bw, bool ef)
clksor |= bw << 18;
dpctrl |= ((1 << nr) - 1) << 16;
if (outp->lt.mst)
dpctrl |= 0x40000000;
if (ef)
dpctrl |= 0x00004000;
nvkm_mask(device, 0x612300 + soff, 0x007c0000, clksor);
nvkm_mask(device, 0x61c10c + loff, 0x001f4000, dpctrl);
nvkm_mask(device, 0x61c10c + loff, 0x401f4000, dpctrl);
return 0;
}
......@@ -101,12 +103,24 @@ gf119_sor_dp_drv_ctl(struct nvkm_output_dp *outp,
return 0;
}
void
gf119_sor_dp_vcpi(struct nvkm_output_dp *outp, int head, u8 slot,
u8 slot_nr, u16 pbn, u16 aligned)
{
struct nvkm_device *device = outp->base.disp->engine.subdev.device;
const u32 hoff = head * 0x800;
nvkm_mask(device, 0x616588 + hoff, 0x00003f3f, (slot_nr << 8) | slot);
nvkm_mask(device, 0x61658c + hoff, 0xffffffff, (aligned << 16) | pbn);
}
static const struct nvkm_output_dp_func
gf119_sor_dp_func = {
.pattern = gf119_sor_dp_pattern,
.lnk_pwr = g94_sor_dp_lnk_pwr,
.lnk_ctl = gf119_sor_dp_lnk_ctl,
.drv_ctl = gf119_sor_dp_drv_ctl,
.vcpi = gf119_sor_dp_vcpi,
};
int
......
......@@ -43,6 +43,7 @@ gm107_sor_dp_func = {
.lnk_pwr = g94_sor_dp_lnk_pwr,
.lnk_ctl = gf119_sor_dp_lnk_ctl,
.drv_ctl = gf119_sor_dp_drv_ctl,
.vcpi = gf119_sor_dp_vcpi,
};
int
......
......@@ -120,6 +120,7 @@ gm200_sor_dp_func = {
.lnk_pwr = gm200_sor_dp_lnk_pwr,
.lnk_ctl = gf119_sor_dp_lnk_ctl,
.drv_ctl = gm200_sor_dp_drv_ctl,
.vcpi = gf119_sor_dp_vcpi,
};
int
......
......@@ -129,7 +129,7 @@ g84_fifo_chan_engine_fini(struct nvkm_fifo_chan *base,
}
int
static int
g84_fifo_chan_engine_init(struct nvkm_fifo_chan *base,
struct nvkm_engine *engine)
{
......@@ -170,7 +170,7 @@ g84_fifo_chan_engine_ctor(struct nvkm_fifo_chan *base,
return nvkm_object_bind(object, NULL, 0, &chan->engn[engn]);
}
int
static int
g84_fifo_chan_object_ctor(struct nvkm_fifo_chan *base,
struct nvkm_object *object)
{
......
......@@ -60,6 +60,7 @@ gf100_fifo_gpfifo_engine_fini(struct nvkm_fifo_chan *base,
struct nvkm_gpuobj *inst = chan->base.inst;
int ret = 0;
mutex_lock(&subdev->mutex);
nvkm_wr32(device, 0x002634, chan->base.chid);
if (nvkm_msec(device, 2000,
if (nvkm_rd32(device, 0x002634) == chan->base.chid)
......@@ -67,10 +68,12 @@ gf100_fifo_gpfifo_engine_fini(struct nvkm_fifo_chan *base,
) < 0) {
nvkm_error(subdev, "channel %d [%s] kick timeout\n",
chan->base.chid, chan->base.object.client->name);
ret = -EBUSY;
if (suspend)
return ret;
ret = -ETIMEDOUT;
}
mutex_unlock(&subdev->mutex);
if (ret && suspend)
return ret;
if (offset) {
nvkm_kmap(inst);
......
......@@ -40,7 +40,9 @@ gk104_fifo_gpfifo_kick(struct gk104_fifo_chan *chan)
struct nvkm_subdev *subdev = &fifo->base.engine.subdev;
struct nvkm_device *device = subdev->device;
struct nvkm_client *client = chan->base.object.client;
int ret = 0;
mutex_lock(&subdev->mutex);
nvkm_wr32(device, 0x002634, chan->base.chid);
if (nvkm_msec(device, 2000,
if (!(nvkm_rd32(device, 0x002634) & 0x00100000))
......@@ -48,10 +50,10 @@ gk104_fifo_gpfifo_kick(struct gk104_fifo_chan *chan)
) < 0) {
nvkm_error(subdev, "channel %d [%s] kick timeout\n",
chan->base.chid, client->name);
return -EBUSY;
ret = -ETIMEDOUT;
}
return 0;
mutex_unlock(&subdev->mutex);
return ret;
}
static u32
......
......@@ -218,7 +218,7 @@ gf117_grctx_generate_attrib(struct gf100_grctx *info)
}
}
void
static void
gf117_grctx_generate_main(struct gf100_gr *gr, struct gf100_grctx *info)
{
struct nvkm_device *device = gr->base.engine.subdev.device;
......
......@@ -933,7 +933,7 @@ gm107_grctx_generate_attrib(struct gf100_grctx *info)
}
}
void
static void
gm107_grctx_generate_tpcid(struct gf100_gr *gr)
{
struct nvkm_device *device = gr->base.engine.subdev.device;
......
......@@ -106,6 +106,7 @@
#define CP_SEEK_2 0x00c800ff
#include "ctxnv40.h"
#include "nv50.h"
#include <subdev/fb.h>
......
uint32_t gf100_grgpc_data[] = {
static uint32_t gf100_grgpc_data[] = {
/* 0x0000: gpc_mmio_list_head */
0x00000064,
/* 0x0004: gpc_mmio_list_tail */
......@@ -36,7 +36,7 @@ uint32_t gf100_grgpc_data[] = {
0x00000000,
};
uint32_t gf100_grgpc_code[] = {
static uint32_t gf100_grgpc_code[] = {
0x03a10ef5,
/* 0x0004: queue_put */
0x9800d898,
......
uint32_t gf117_grgpc_data[] = {
static uint32_t gf117_grgpc_data[] = {
/* 0x0000: gpc_mmio_list_head */
0x0000006c,
/* 0x0004: gpc_mmio_list_tail */
......@@ -40,7 +40,7 @@ uint32_t gf117_grgpc_data[] = {
0x00000000,
};
uint32_t gf117_grgpc_code[] = {
static uint32_t gf117_grgpc_code[] = {
0x03a10ef5,
/* 0x0004: queue_put */
0x9800d898,
......
uint32_t gk104_grgpc_data[] = {
static uint32_t gk104_grgpc_data[] = {
/* 0x0000: gpc_mmio_list_head */
0x0000006c,
/* 0x0004: gpc_mmio_list_tail */
......@@ -40,7 +40,7 @@ uint32_t gk104_grgpc_data[] = {
0x00000000,
};
uint32_t gk104_grgpc_code[] = {
static uint32_t gk104_grgpc_code[] = {
0x03a10ef5,
/* 0x0004: queue_put */
0x9800d898,
......
uint32_t gk110_grgpc_data[] = {
static uint32_t gk110_grgpc_data[] = {
/* 0x0000: gpc_mmio_list_head */
0x0000006c,
/* 0x0004: gpc_mmio_list_tail */
......@@ -40,7 +40,7 @@ uint32_t gk110_grgpc_data[] = {
0x00000000,
};
uint32_t gk110_grgpc_code[] = {
static uint32_t gk110_grgpc_code[] = {
0x03a10ef5,
/* 0x0004: queue_put */
0x9800d898,
......
uint32_t gk208_grgpc_data[] = {
static uint32_t gk208_grgpc_data[] = {
/* 0x0000: gpc_mmio_list_head */
0x0000006c,
/* 0x0004: gpc_mmio_list_tail */
......@@ -40,7 +40,7 @@ uint32_t gk208_grgpc_data[] = {
0x00000000,
};
uint32_t gk208_grgpc_code[] = {
static uint32_t gk208_grgpc_code[] = {
0x03140ef5,
/* 0x0004: queue_put */
0x9800d898,
......
uint32_t gm107_grgpc_data[] = {
static uint32_t gm107_grgpc_data[] = {
/* 0x0000: gpc_mmio_list_head */
0x0000006c,
/* 0x0004: gpc_mmio_list_tail */
......@@ -40,7 +40,7 @@ uint32_t gm107_grgpc_data[] = {
0x00000000,
};
uint32_t gm107_grgpc_code[] = {
static uint32_t gm107_grgpc_code[] = {
0x03410ef5,
/* 0x0004: queue_put */
0x9800d898,
......
uint32_t gf100_grhub_data[] = {
static uint32_t gf100_grhub_data[] = {
/* 0x0000: hub_mmio_list_head */
0x00000300,
/* 0x0004: hub_mmio_list_tail */
......@@ -205,7 +205,7 @@ uint32_t gf100_grhub_data[] = {
0x0417e91c,
};
uint32_t gf100_grhub_code[] = {
static uint32_t gf100_grhub_code[] = {
0x039b0ef5,
/* 0x0004: queue_put */
0x9800d898,
......
uint32_t gf117_grhub_data[] = {
static uint32_t gf117_grhub_data[] = {
/* 0x0000: hub_mmio_list_head */
0x00000300,
/* 0x0004: hub_mmio_list_tail */
......@@ -205,7 +205,7 @@ uint32_t gf117_grhub_data[] = {
0x0417e91c,
};
uint32_t gf117_grhub_code[] = {
static uint32_t gf117_grhub_code[] = {
0x039b0ef5,
/* 0x0004: queue_put */
0x9800d898,
......
uint32_t gk104_grhub_data[] = {
static uint32_t gk104_grhub_data[] = {
/* 0x0000: hub_mmio_list_head */
0x00000300,
/* 0x0004: hub_mmio_list_tail */
......@@ -205,7 +205,7 @@ uint32_t gk104_grhub_data[] = {
0x0417e91c,
};
uint32_t gk104_grhub_code[] = {
static uint32_t gk104_grhub_code[] = {
0x039b0ef5,
/* 0x0004: queue_put */
0x9800d898,
......
uint32_t gk110_grhub_data[] = {
static uint32_t gk110_grhub_data[] = {
/* 0x0000: hub_mmio_list_head */
0x00000300,
/* 0x0004: hub_mmio_list_tail */
......@@ -205,7 +205,7 @@ uint32_t gk110_grhub_data[] = {
0x0417e91c,
};
uint32_t gk110_grhub_code[] = {
static uint32_t gk110_grhub_code[] = {
0x039b0ef5,
/* 0x0004: queue_put */
0x9800d898,
......
uint32_t gk208_grhub_data[] = {
static uint32_t gk208_grhub_data[] = {
/* 0x0000: hub_mmio_list_head */
0x00000300,
/* 0x0004: hub_mmio_list_tail */
......@@ -205,7 +205,7 @@ uint32_t gk208_grhub_data[] = {
0x0417e91c,
};
uint32_t gk208_grhub_code[] = {
static uint32_t gk208_grhub_code[] = {
0x030e0ef5,
/* 0x0004: queue_put */
0x9800d898,
......
uint32_t gm107_grhub_data[] = {
static uint32_t gm107_grhub_data[] = {
/* 0x0000: hub_mmio_list_head */
0x00000300,
/* 0x0004: hub_mmio_list_tail */
......@@ -205,7 +205,7 @@ uint32_t gm107_grhub_data[] = {
0x0417e91c,
};
uint32_t gm107_grhub_code[] = {
static uint32_t gm107_grhub_code[] = {
0x030e0ef5,
/* 0x0004: queue_put */
0x9800d898,
......
......@@ -1384,7 +1384,7 @@ gf100_gr_intr(struct nvkm_gr *base)
nvkm_fifo_chan_put(device->fifo, flags, &chan);
}
void
static void
gf100_gr_init_fw(struct gf100_gr *gr, u32 fuc_base,
struct gf100_gr_fuc *code, struct gf100_gr_fuc *data)
{
......@@ -1701,7 +1701,7 @@ gf100_gr_oneinit(struct nvkm_gr *base)
return 0;
}
int
static int
gf100_gr_init_(struct nvkm_gr *base)
{
struct gf100_gr *gr = gf100_gr(base);
......@@ -1756,19 +1756,61 @@ gf100_gr_ = {
};
int
gf100_gr_ctor_fw(struct gf100_gr *gr, const char *fwname,
struct gf100_gr_fuc *fuc)
gf100_gr_ctor_fw_legacy(struct gf100_gr *gr, const char *fwname,
struct gf100_gr_fuc *fuc, int ret)
{
struct nvkm_subdev *subdev = &gr->base.engine.subdev;
struct nvkm_device *device = subdev->device;
const struct firmware *fw;
int ret;
char f[32];
/* see if this firmware has a legacy path */
if (!strcmp(fwname, "fecs_inst"))
fwname = "fuc409c";
else if (!strcmp(fwname, "fecs_data"))
fwname = "fuc409d";
else if (!strcmp(fwname, "gpccs_inst"))
fwname = "fuc41ac";
else if (!strcmp(fwname, "gpccs_data"))
fwname = "fuc41ad";
else {
/* nope, let's just return the error we got */
nvkm_error(subdev, "failed to load %s\n", fwname);
return ret;
}
ret = nvkm_firmware_get(device, fwname, &fw);
/* yes, try to load from the legacy path */
nvkm_debug(subdev, "%s: falling back to legacy path\n", fwname);
snprintf(f, sizeof(f), "nouveau/nv%02x_%s", device->chipset, fwname);
ret = request_firmware(&fw, f, device->dev);
if (ret) {
snprintf(f, sizeof(f), "nouveau/%s", fwname);
ret = request_firmware(&fw, f, device->dev);
if (ret) {
nvkm_error(subdev, "failed to load %s\n", fwname);
return ret;
}
}
fuc->size = fw->size;
fuc->data = kmemdup(fw->data, fuc->size, GFP_KERNEL);
release_firmware(fw);
return (fuc->data != NULL) ? 0 : -ENOMEM;
}
int
gf100_gr_ctor_fw(struct gf100_gr *gr, const char *fwname,
struct gf100_gr_fuc *fuc)
{
struct nvkm_subdev *subdev = &gr->base.engine.subdev;
struct nvkm_device *device = subdev->device;
const struct firmware *fw;
int ret;
ret = nvkm_firmware_get(device, fwname, &fw);
if (ret)
return gf100_gr_ctor_fw_legacy(gr, fwname, fuc, ret);
fuc->size = fw->size;
fuc->data = kmemdup(fw->data, fuc->size, GFP_KERNEL);
......
......@@ -102,7 +102,7 @@ gf117_gr_pack_mmio[] = {
#include "fuc/hubgf117.fuc3.h"
struct gf100_gr_ucode
static struct gf100_gr_ucode
gf117_gr_fecs_ucode = {
.code.data = gf117_grhub_code,
.code.size = sizeof(gf117_grhub_code),
......@@ -112,7 +112,7 @@ gf117_gr_fecs_ucode = {
#include "fuc/gpcgf117.fuc3.h"
struct gf100_gr_ucode
static struct gf100_gr_ucode
gf117_gr_gpccs_ucode = {
.code.data = gf117_grgpc_code,
.code.size = sizeof(gf117_grgpc_code),
......
......@@ -308,7 +308,7 @@ gm107_gr_init_bios(struct gf100_gr *gr)
}
}
int
static int
gm107_gr_init(struct gf100_gr *gr)
{
struct nvkm_device *device = gr->base.engine.subdev.device;
......
......@@ -71,7 +71,7 @@ nvkm_perfdom_find(struct nvkm_pm *pm, int di)
return NULL;
}
struct nvkm_perfsig *
static struct nvkm_perfsig *
nvkm_perfsig_find(struct nvkm_pm *pm, u8 di, u8 si, struct nvkm_perfdom **pdom)
{
struct nvkm_perfdom *dom = *pdom;
......@@ -699,7 +699,7 @@ nvkm_pm_oclass_get(struct nvkm_oclass *oclass, int index,
return 1;
}
int
static int
nvkm_perfsrc_new(struct nvkm_pm *pm, struct nvkm_perfsig *sig,
const struct nvkm_specsrc *spec)
{
......
......@@ -102,7 +102,7 @@ gf100_pm_gpc[] = {
{}
};
const struct nvkm_specdom
static const struct nvkm_specdom
gf100_pm_part[] = {
{ 0xe0, (const struct nvkm_specsig[]) {
{ 0x0f, "part00_pbfb_00", gf100_pbfb_sources },
......
uint32_t g98_sec_data[] = {
static uint32_t g98_sec_data[] = {
/* 0x0000: ctx_dma */
/* 0x0000: ctx_dma_query */
0x00000000,
......@@ -150,7 +150,7 @@ uint32_t g98_sec_data[] = {
0x00000000,
};
uint32_t g98_sec_code[] = {
static uint32_t g98_sec_code[] = {
0x17f004bd,
0x0010fe35,
0xf10004fe,
......
......@@ -25,7 +25,7 @@
#include <subdev/bios/bit.h>
#include <subdev/bios/fan.h>
u16
static u16
nvbios_fan_table(struct nvkm_bios *bios, u8 *ver, u8 *hdr, u8 *cnt, u8 *len)
{
struct bit_entry bit_P;
......@@ -52,7 +52,7 @@ nvbios_fan_table(struct nvkm_bios *bios, u8 *ver, u8 *hdr, u8 *cnt, u8 *len)
return 0x0000;
}
u16
static u16
nvbios_fan_entry(struct nvkm_bios *bios, int idx, u8 *ver, u8 *hdr,
u8 *cnt, u8 *len)
{
......
......@@ -12,6 +12,7 @@ struct nvbios_source {
bool rw;
bool ignore_checksum;
bool no_pcir;
bool require_checksum;
};
int nvbios_extend(struct nvkm_bios *, u32 length);
......
......@@ -86,9 +86,12 @@ shadow_image(struct nvkm_bios *bios, int idx, u32 offset, struct shadow *mthd)
nvbios_checksum(&bios->data[image.base], image.size)) {
nvkm_debug(subdev, "%08x: checksum failed\n",
image.base);
if (!mthd->func->require_checksum) {
if (mthd->func->rw)
score += 1;
score += 1;
} else
return 0;
} else {
score += 3;
}
......
......@@ -99,6 +99,7 @@ nvbios_acpi_fast = {
.init = acpi_init,
.read = acpi_read_fast,
.rw = false,
.require_checksum = true,
};
const struct nvbios_source
......
......@@ -180,7 +180,7 @@ gt215_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
return 0;
}
int
static int
gt215_clk_info(struct nvkm_clk *base, int idx, u32 khz,
struct gt215_clk_info *info)
{
......
......@@ -24,6 +24,7 @@ nvkm-y += nvkm/subdev/fb/gk104.o
nvkm-y += nvkm/subdev/fb/gk20a.o
nvkm-y += nvkm/subdev/fb/gm107.o
nvkm-y += nvkm/subdev/fb/gm200.o
nvkm-y += nvkm/subdev/fb/gm20b.o
nvkm-y += nvkm/subdev/fb/gp100.o
nvkm-y += nvkm/subdev/fb/gp104.o
......
......@@ -16,4 +16,8 @@ void gf100_fb_init(struct nvkm_fb *);
void gf100_fb_intr(struct nvkm_fb *);
void gp100_fb_init(struct nvkm_fb *);
void gm200_fb_init_page(struct nvkm_fb *fb);
void gm200_fb_init(struct nvkm_fb *base);
#endif
/*
* Copyright (c) 2014, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2014-2016, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
......@@ -20,27 +20,21 @@
* DEALINGS IN THE SOFTWARE.
*/
#include "priv.h"
#include "gf100.h"
#include <core/memory.h>
static void
gk20a_fb_init(struct nvkm_fb *fb)
{
struct nvkm_device *device = fb->subdev.device;
nvkm_wr32(device, 0x100cc8, nvkm_memory_addr(fb->mmu_wr) >> 8);
nvkm_wr32(device, 0x100ccc, nvkm_memory_addr(fb->mmu_rd) >> 8);
}
/* GK20A's FB is similar to GF100's, but without the ability to allocate VRAM */
static const struct nvkm_fb_func
gk20a_fb = {
.dtor = gf100_fb_dtor,
.oneinit = gf100_fb_oneinit,
.init = gk20a_fb_init,
.init = gf100_fb_init,
.init_page = gf100_fb_init_page,
.intr = gf100_fb_intr,
.memtype_valid = gf100_fb_memtype_valid,
};
int
gk20a_fb_new(struct nvkm_device *device, int index, struct nvkm_fb **pfb)
{
return nvkm_fb_new_(&gk20a_fb, device, index, pfb);
return gf100_fb_new_(&gk20a_fb, device, index, pfb);
}
......@@ -44,7 +44,7 @@ gm200_fb_init_page(struct nvkm_fb *fb)
}
}
static void
void
gm200_fb_init(struct nvkm_fb *base)
{
struct gf100_fb *fb = gf100_fb(base);
......
/*
* Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "priv.h"
#include "gf100.h"
/* GM20B's FB is similar to GM200, but without the ability to allocate VRAM */
static const struct nvkm_fb_func
gm20b_fb = {
.dtor = gf100_fb_dtor,
.oneinit = gf100_fb_oneinit,
.init = gm200_fb_init,
.init_page = gm200_fb_init_page,
.intr = gf100_fb_intr,
.memtype_valid = gf100_fb_memtype_valid,
};
int
gm20b_fb_new(struct nvkm_device *device, int index, struct nvkm_fb **pfb)
{
return gf100_fb_new_(&gm20b_fb, device, index, pfb);
}
......@@ -420,8 +420,6 @@ gf100_ram_tidy(struct nvkm_ram *base)
ram_exec(&ram->fuc, false);
}
extern const u8 gf100_pte_storage_type_map[256];
void
gf100_ram_put(struct nvkm_ram *ram, struct nvkm_mem **pmem)
{
......
......@@ -95,7 +95,7 @@ struct gt215_ram {
struct gt215_ltrain ltrain;
};
void
static void
gt215_link_train_calc(u32 *vals, struct gt215_ltrain *train)
{
int i, lo, hi;
......@@ -149,7 +149,7 @@ gt215_link_train_calc(u32 *vals, struct gt215_ltrain *train)
/*
* Link training for (at least) DDR3
*/
int
static int
gt215_link_train(struct gt215_ram *ram)
{
struct gt215_ltrain *train = &ram->ltrain;
......@@ -267,7 +267,7 @@ gt215_link_train(struct gt215_ram *ram)
return ret;
}
int
static int
gt215_link_train_init(struct gt215_ram *ram)
{
static const u32 pattern[16] = {
......@@ -333,7 +333,7 @@ gt215_link_train_init(struct gt215_ram *ram)
return 0;
}
void
static void
gt215_link_train_fini(struct gt215_ram *ram)
{
if (ram->ltrain.mem)
......
......@@ -23,6 +23,7 @@
* Ben Skeggs
*/
#include "priv.h"
#include "ram.h"
struct ramxlat {
int id;
......
......@@ -23,6 +23,7 @@
* Roy Spliet <rspliet@eclipso.eu>
*/
#include "priv.h"
#include "ram.h"
struct ramxlat {
int id;
......
......@@ -37,7 +37,7 @@ gk104_gpio_intr_stat(struct nvkm_gpio *gpio, u32 *hi, u32 *lo)
nvkm_wr32(device, 0x00dc80, intr1);
}
void
static void
gk104_gpio_intr_mask(struct nvkm_gpio *gpio, u32 type, u32 mask, u32 data)
{
struct nvkm_device *device = gpio->subdev.device;
......
......@@ -74,7 +74,7 @@ nvkm_i2c_aux_i2c_func(struct i2c_adapter *adap)
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}
const struct i2c_algorithm
static const struct i2c_algorithm
nvkm_i2c_aux_i2c_algo = {
.master_xfer = nvkm_i2c_aux_i2c_xfer,
.functionality = nvkm_i2c_aux_i2c_func
......
......@@ -79,7 +79,7 @@ g94_i2c_aux_xfer(struct nvkm_i2c_aux *obj, bool retry,
struct g94_i2c_aux *aux = g94_i2c_aux(obj);
struct nvkm_device *device = aux->base.pad->i2c->subdev.device;
const u32 base = aux->ch * 0x50;
u32 ctrl, stat, timeout, retries;
u32 ctrl, stat, timeout, retries = 0;
u32 xbuf[4] = {};
int ret, i;
......@@ -111,7 +111,7 @@ g94_i2c_aux_xfer(struct nvkm_i2c_aux *obj, bool retry,
nvkm_wr32(device, 0x00e4e0 + base, addr);
/* (maybe) retry transaction a number of times on failure... */
for (retries = 0; !ret && retries < 32; retries++) {
do {
/* reset, and delay a while if this is a retry */
nvkm_wr32(device, 0x00e4e4 + base, 0x80000000 | ctrl);
nvkm_wr32(device, 0x00e4e4 + base, 0x00000000 | ctrl);
......@@ -131,20 +131,20 @@ g94_i2c_aux_xfer(struct nvkm_i2c_aux *obj, bool retry,
goto out;
}
} while (ctrl & 0x00010000);
ret = 1;
ret = 0;
/* read status, and check if transaction completed ok */
stat = nvkm_mask(device, 0x00e4e8 + base, 0, 0);
if ((stat & 0x000f0000) == 0x00080000 ||
(stat & 0x000f0000) == 0x00020000)
ret = retry ? 0 : 1;
ret = 1;
if ((stat & 0x00000100))
ret = -ETIMEDOUT;
if ((stat & 0x00000e00))
ret = -EIO;
AUX_TRACE(&aux->base, "%02d %08x %08x", retries, ctrl, stat);
}
} while (ret && retry && retries++ < 32);
if (type & 1) {
for (i = 0; i < 16; i += 4) {
......
......@@ -79,7 +79,7 @@ gm200_i2c_aux_xfer(struct nvkm_i2c_aux *obj, bool retry,
struct gm200_i2c_aux *aux = gm200_i2c_aux(obj);
struct nvkm_device *device = aux->base.pad->i2c->subdev.device;
const u32 base = aux->ch * 0x50;
u32 ctrl, stat, timeout, retries;
u32 ctrl, stat, timeout, retries = 0;
u32 xbuf[4] = {};
int ret, i;
......@@ -111,7 +111,7 @@ gm200_i2c_aux_xfer(struct nvkm_i2c_aux *obj, bool retry,
nvkm_wr32(device, 0x00d950 + base, addr);
/* (maybe) retry transaction a number of times on failure... */
for (retries = 0; !ret && retries < 32; retries++) {
do {
/* reset, and delay a while if this is a retry */
nvkm_wr32(device, 0x00d954 + base, 0x80000000 | ctrl);
nvkm_wr32(device, 0x00d954 + base, 0x00000000 | ctrl);
......@@ -131,20 +131,20 @@ gm200_i2c_aux_xfer(struct nvkm_i2c_aux *obj, bool retry,
goto out;
}
} while (ctrl & 0x00010000);
ret = 1;
ret = 0;
/* read status, and check if transaction completed ok */
stat = nvkm_mask(device, 0x00d958 + base, 0, 0);
if ((stat & 0x000f0000) == 0x00080000 ||
(stat & 0x000f0000) == 0x00020000)
ret = retry ? 0 : 1;
ret = 1;
if ((stat & 0x00000100))
ret = -ETIMEDOUT;
if ((stat & 0x00000e00))
ret = -EIO;
AUX_TRACE(&aux->base, "%02d %08x %08x", retries, ctrl, stat);
}
} while (ret && retry && retries++ < 32);
if (type & 1) {
for (i = 0; i < 16; i += 4) {
......
......@@ -288,7 +288,8 @@ nvkm_iccsense_init(struct nvkm_subdev *subdev)
return 0;
}
struct nvkm_subdev_func iccsense_func = {
static const struct nvkm_subdev_func
iccsense_func = {
.oneinit = nvkm_iccsense_oneinit,
.init = nvkm_iccsense_init,
.dtor = nvkm_iccsense_dtor,
......
......@@ -104,7 +104,7 @@ nvkm_instobj_dtor(struct nvkm_memory *memory)
return iobj;
}
const struct nvkm_memory_func
static const struct nvkm_memory_func
nvkm_instobj_func = {
.dtor = nvkm_instobj_dtor,
.target = nvkm_instobj_target,
......@@ -156,7 +156,7 @@ nvkm_instobj_wr32_slow(struct nvkm_memory *memory, u64 offset, u32 data)
return nvkm_wo32(iobj->parent, offset, data);
}
const struct nvkm_memory_func
static const struct nvkm_memory_func
nvkm_instobj_func_slow = {
.dtor = nvkm_instobj_dtor,
.target = nvkm_instobj_target,
......
......@@ -34,7 +34,7 @@ g84_mc_reset[] = {
{}
};
const struct nvkm_mc_map
static const struct nvkm_mc_map
g84_mc_intr[] = {
{ 0x04000000, NVKM_ENGINE_DISP },
{ 0x00020000, NVKM_ENGINE_VP },
......
......@@ -250,6 +250,10 @@ nvkm_mxm_new_(struct nvkm_device *device, int index, struct nvkm_mxm **pmxm)
}
nvkm_info(&mxm->subdev, "BIOS version %d.%d\n", ver >> 4, ver & 0x0f);
nvkm_debug(&mxm->subdev, "module flags: %02x\n",
nvbios_rd08(bios, data + 0x01));
nvkm_debug(&mxm->subdev, "config flags: %02x\n",
nvbios_rd08(bios, data + 0x02));
if (mxm_shadow(mxm, ver)) {
nvkm_warn(&mxm->subdev, "failed to locate valid SIS\n");
......
uint32_t gf100_pmu_data[] = {
static uint32_t gf100_pmu_data[] = {
/* 0x0000: proc_kern */
0x52544e49,
0x00000000,
......@@ -916,7 +916,7 @@ uint32_t gf100_pmu_data[] = {
0x00000000,
};
uint32_t gf100_pmu_code[] = {
static uint32_t gf100_pmu_code[] = {
0x03920ef5,
/* 0x0004: rd32 */
0x07a007f1,
......
uint32_t gf119_pmu_data[] = {
static uint32_t gf119_pmu_data[] = {
/* 0x0000: proc_kern */
0x52544e49,
0x00000000,
......@@ -915,7 +915,7 @@ uint32_t gf119_pmu_data[] = {
0x00000000,
};
uint32_t gf119_pmu_code[] = {
static uint32_t gf119_pmu_code[] = {
0x03410ef5,
/* 0x0004: rd32 */
0x07a007f1,
......
uint32_t gk208_pmu_data[] = {
static uint32_t gk208_pmu_data[] = {
/* 0x0000: proc_kern */
0x52544e49,
0x00000000,
......@@ -915,7 +915,7 @@ uint32_t gk208_pmu_data[] = {
0x00000000,
};
uint32_t gk208_pmu_code[] = {
static uint32_t gk208_pmu_code[] = {
0x02f90ef5,
/* 0x0004: rd32 */
0xf607a040,
......
uint32_t gt215_pmu_data[] = {
static uint32_t gt215_pmu_data[] = {
/* 0x0000: proc_kern */
0x52544e49,
0x00000000,
......@@ -916,7 +916,7 @@ uint32_t gt215_pmu_data[] = {
0x00000000,
};
uint32_t gt215_pmu_code[] = {
static uint32_t gt215_pmu_code[] = {
0x03920ef5,
/* 0x0004: rd32 */
0x07a007f1,
......
......@@ -24,17 +24,8 @@
#include "priv.h"
#include "fuc/gt215.fuc3.h"
static void
gt215_pmu_reset(struct nvkm_pmu *pmu)
{
struct nvkm_device *device = pmu->subdev.device;
nvkm_mask(device, 0x022210, 0x00000001, 0x00000000);
nvkm_mask(device, 0x022210, 0x00000001, 0x00000001);
}
static const struct nvkm_pmu_func
gt215_pmu = {
.reset = gt215_pmu_reset,
.code.data = gt215_pmu_code,
.code.size = sizeof(gt215_pmu_code),
.data.data = gt215_pmu_data,
......
......@@ -8,8 +8,6 @@ int nvkm_pmu_new_(const struct nvkm_pmu_func *, struct nvkm_device *,
int index, struct nvkm_pmu **);
struct nvkm_pmu_func {
void (*reset)(struct nvkm_pmu *);
struct {
u32 *data;
u32 size;
......
......@@ -1364,7 +1364,7 @@ gm200_secboot_init(struct nvkm_secboot *sb)
return 0;
}
int
static int
gm200_secboot_fini(struct nvkm_secboot *sb, bool suspend)
{
struct gm200_secboot *gsb = gm200_secboot(sb);
......
......@@ -35,7 +35,7 @@ struct gk104_volt {
struct nvbios_volt bios;
};
int
static int
gk104_volt_get(struct nvkm_volt *base)
{
struct nvbios_volt *bios = &gk104_volt(base)->bios;
......@@ -48,7 +48,7 @@ gk104_volt_get(struct nvkm_volt *base)
return bios->base + bios->pwm_range * duty / div;
}
int
static int
gk104_volt_set(struct nvkm_volt *base, u32 uv)
{
struct nvbios_volt *bios = &gk104_volt(base)->bios;
......
......@@ -25,7 +25,7 @@
#include <core/tegra.h>
const struct cvb_coef gm20b_cvb_coef[] = {
static const struct cvb_coef gm20b_cvb_coef[] = {
/* KHz, c0, c1, c2 */
/* 76800 */ { 1786666, -85625, 1632 },
/* 153600 */ { 1846729, -87525, 1632 },
......@@ -58,7 +58,7 @@ static const struct cvb_coef gm20b_na_cvb_coef[] = {
/* 998400 */ { 1316991, 8144, -940, 808, -21583, 226 },
};
const u32 speedo_to_vmin[] = {
static const u32 speedo_to_vmin[] = {
/* 0, 1, 2, 3, 4, */
950000, 840000, 818750, 840000, 810000,
};
......
......@@ -25,6 +25,7 @@
#include <subdev/bios.h>
#include <subdev/bios/gpio.h>
#include <subdev/gpio.h>
#include "priv.h"
static const u8 tags[] = {
DCB_GPIO_VID0, DCB_GPIO_VID1, DCB_GPIO_VID2, DCB_GPIO_VID3,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册