提交 aae95ca7 编写于 作者: B Ben Skeggs

drm/nouveau/fb: implement various bits of work towards memory reclocking

Not even remotely ready for the vast majority of the world.
Signed-off-by: NBen Skeggs <bskeggs@redhat.com>
上级 26fdd78c
......@@ -94,6 +94,7 @@ nouveau-y += core/subdev/fb/nva3.o
nouveau-y += core/subdev/fb/nvaa.o
nouveau-y += core/subdev/fb/nvaf.o
nouveau-y += core/subdev/fb/nvc0.o
nouveau-y += core/subdev/fb/nve0.o
nouveau-y += core/subdev/fb/ramnv04.o
nouveau-y += core/subdev/fb/ramnv10.o
nouveau-y += core/subdev/fb/ramnv1a.o
......@@ -107,6 +108,9 @@ nouveau-y += core/subdev/fb/ramnv50.o
nouveau-y += core/subdev/fb/ramnva3.o
nouveau-y += core/subdev/fb/ramnvaa.o
nouveau-y += core/subdev/fb/ramnvc0.o
nouveau-y += core/subdev/fb/ramnve0.o
nouveau-y += core/subdev/fb/sddr3.o
nouveau-y += core/subdev/fb/gddr5.o
nouveau-y += core/subdev/gpio/base.o
nouveau-y += core/subdev/gpio/nv10.o
nouveau-y += core/subdev/gpio/nv50.o
......
......@@ -69,7 +69,7 @@ nve0_identify(struct nouveau_device *device)
device->oclass[NVDEV_SUBDEV_MC ] = nvc3_mc_oclass;
device->oclass[NVDEV_SUBDEV_BUS ] = nvc0_bus_oclass;
device->oclass[NVDEV_SUBDEV_TIMER ] = &nv04_timer_oclass;
device->oclass[NVDEV_SUBDEV_FB ] = nvc0_fb_oclass;
device->oclass[NVDEV_SUBDEV_FB ] = nve0_fb_oclass;
device->oclass[NVDEV_SUBDEV_LTCG ] = &nvc0_ltcg_oclass;
device->oclass[NVDEV_SUBDEV_IBUS ] = &nve0_ibus_oclass;
device->oclass[NVDEV_SUBDEV_INSTMEM] = &nv50_instmem_oclass;
......@@ -102,7 +102,7 @@ nve0_identify(struct nouveau_device *device)
device->oclass[NVDEV_SUBDEV_MC ] = nvc3_mc_oclass;
device->oclass[NVDEV_SUBDEV_BUS ] = nvc0_bus_oclass;
device->oclass[NVDEV_SUBDEV_TIMER ] = &nv04_timer_oclass;
device->oclass[NVDEV_SUBDEV_FB ] = nvc0_fb_oclass;
device->oclass[NVDEV_SUBDEV_FB ] = nve0_fb_oclass;
device->oclass[NVDEV_SUBDEV_LTCG ] = &nvc0_ltcg_oclass;
device->oclass[NVDEV_SUBDEV_IBUS ] = &nve0_ibus_oclass;
device->oclass[NVDEV_SUBDEV_INSTMEM] = &nv50_instmem_oclass;
......@@ -135,7 +135,7 @@ nve0_identify(struct nouveau_device *device)
device->oclass[NVDEV_SUBDEV_MC ] = nvc3_mc_oclass;
device->oclass[NVDEV_SUBDEV_BUS ] = nvc0_bus_oclass;
device->oclass[NVDEV_SUBDEV_TIMER ] = &nv04_timer_oclass;
device->oclass[NVDEV_SUBDEV_FB ] = nvc0_fb_oclass;
device->oclass[NVDEV_SUBDEV_FB ] = nve0_fb_oclass;
device->oclass[NVDEV_SUBDEV_LTCG ] = &nvc0_ltcg_oclass;
device->oclass[NVDEV_SUBDEV_IBUS ] = &nve0_ibus_oclass;
device->oclass[NVDEV_SUBDEV_INSTMEM] = &nv50_instmem_oclass;
......@@ -168,7 +168,7 @@ nve0_identify(struct nouveau_device *device)
device->oclass[NVDEV_SUBDEV_MC ] = nvc3_mc_oclass;
device->oclass[NVDEV_SUBDEV_BUS ] = nvc0_bus_oclass;
device->oclass[NVDEV_SUBDEV_TIMER ] = &nv04_timer_oclass;
device->oclass[NVDEV_SUBDEV_FB ] = nvc0_fb_oclass;
device->oclass[NVDEV_SUBDEV_FB ] = nve0_fb_oclass;
device->oclass[NVDEV_SUBDEV_LTCG ] = &nvc0_ltcg_oclass;
device->oclass[NVDEV_SUBDEV_IBUS ] = &nve0_ibus_oclass;
device->oclass[NVDEV_SUBDEV_INSTMEM] = &nv50_instmem_oclass;
......@@ -203,7 +203,7 @@ nve0_identify(struct nouveau_device *device)
device->oclass[NVDEV_SUBDEV_MC ] = nvc3_mc_oclass;
device->oclass[NVDEV_SUBDEV_BUS ] = nvc0_bus_oclass;
device->oclass[NVDEV_SUBDEV_TIMER ] = &nv04_timer_oclass;
device->oclass[NVDEV_SUBDEV_FB ] = nvc0_fb_oclass;
device->oclass[NVDEV_SUBDEV_FB ] = nve0_fb_oclass;
device->oclass[NVDEV_SUBDEV_LTCG ] = &nvc0_ltcg_oclass;
device->oclass[NVDEV_SUBDEV_IBUS ] = &nve0_ibus_oclass;
device->oclass[NVDEV_SUBDEV_INSTMEM] = &nv50_instmem_oclass;
......
......@@ -99,6 +99,7 @@ extern struct nouveau_oclass *nva3_fb_oclass;
extern struct nouveau_oclass *nvaa_fb_oclass;
extern struct nouveau_oclass *nvaf_fb_oclass;
extern struct nouveau_oclass *nvc0_fb_oclass;
extern struct nouveau_oclass *nve0_fb_oclass;
struct nouveau_ram {
struct nouveau_object base;
......@@ -125,9 +126,17 @@ struct nouveau_ram {
int (*get)(struct nouveau_fb *, u64 size, u32 align,
u32 size_nc, u32 type, struct nouveau_mem **);
void (*put)(struct nouveau_fb *, struct nouveau_mem **);
int (*calc)(struct nouveau_fb *, u32 freq);
int (*prog)(struct nouveau_fb *);
void (*tidy)(struct nouveau_fb *);
struct {
u8 version;
u32 data;
u8 size;
} rammap, ramcfg, timing;
u32 freq;
u32 mr[16];
};
#endif
......@@ -45,6 +45,7 @@ nva3_pll_calc(struct nouveau_subdev *subdev, struct nvbios_pll *info,
lM = max(lM, (int)info->vco1.min_m);
hM = (info->refclk + info->vco1.min_inputfreq) / info->vco1.min_inputfreq;
hM = min(hM, (int)info->vco1.max_m);
lM = min(lM, hM);
for (M = lM; M <= hM; M++) {
u32 tmp = freq * *P * M;
......
/*
* Copyright 2013 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs <bskeggs@redhat.com>
*/
#include <subdev/bios.h>
#include "priv.h"
int
nouveau_gddr5_calc(struct nouveau_ram *ram)
{
struct nouveau_bios *bios = nouveau_bios(ram);
int pd, lf, xd, vh, vr, vo;
int WL, CL, WR, at, dt, ds;
int rq = ram->freq < 1000000; /* XXX */
switch (!!ram->ramcfg.data * ram->ramcfg.version) {
case 0x11:
pd = (nv_ro08(bios, ram->ramcfg.data + 0x01) & 0x80) >> 7;
lf = (nv_ro08(bios, ram->ramcfg.data + 0x01) & 0x40) >> 6;
xd = !(nv_ro08(bios, ram->ramcfg.data + 0x01) & 0x20);
vh = (nv_ro08(bios, ram->ramcfg.data + 0x02) & 0x10) >> 4;
vr = (nv_ro08(bios, ram->ramcfg.data + 0x02) & 0x04) >> 2;
vo = nv_ro08(bios, ram->ramcfg.data + 0x06) & 0xff;
break;
default:
return -ENOSYS;
}
switch (!!ram->timing.data * ram->timing.version) {
case 0x20:
WL = (nv_ro16(bios, ram->timing.data + 0x04) & 0x0f80) >> 7;
CL = nv_ro08(bios, ram->timing.data + 0x04) & 0x1f;
WR = nv_ro08(bios, ram->timing.data + 0x0a) & 0x7f;
at = (nv_ro08(bios, ram->timing.data + 0x2e) & 0xc0) >> 6;
dt = nv_ro08(bios, ram->timing.data + 0x2e) & 0x03;
ds = nv_ro08(bios, ram->timing.data + 0x2f) & 0x03;
break;
default:
return -ENOSYS;
}
if (WL < 1 || WL > 7 || CL < 5 || CL > 36 || WR < 4 || WR > 35)
return -EINVAL;
CL -= 5;
WR -= 4;
ram->mr[0] &= ~0xf7f;
ram->mr[0] |= (WR & 0x0f) << 8;
ram->mr[0] |= (CL & 0x0f) << 3;
ram->mr[0] |= (WL & 0x07) << 0;
ram->mr[1] &= ~0x0bf;
ram->mr[1] |= (xd & 0x01) << 7;
ram->mr[1] |= (at & 0x03) << 4;
ram->mr[1] |= (dt & 0x03) << 2;
ram->mr[1] |= (ds & 0x03) << 0;
ram->mr[3] &= ~0x020;
ram->mr[3] |= (rq & 0x01) << 5;
if (!vo)
vo = (ram->mr[6] & 0xff0) >> 4;
if (ram->mr[6] & 0x001)
pd = 1; /* binary driver does this.. bug? */
ram->mr[6] &= ~0xff1;
ram->mr[6] |= (vo & 0xff) << 4;
ram->mr[6] |= (pd & 0x01) << 0;
if (!(ram->mr[7] & 0x100))
vr = 0; /* binary driver does this.. bug? */
ram->mr[7] &= ~0x188;
ram->mr[7] |= (vr & 0x01) << 8;
ram->mr[7] |= (vh & 0x01) << 7;
ram->mr[7] |= (lf & 0x01) << 3;
return 0;
}
#ifndef __NVKM_FB_NV40_H__
#define __NVKM_FB_NV40_H__
#include "priv.h"
struct nv40_ram {
struct nouveau_ram base;
u32 ctrl;
u32 coef;
};
int nv40_ram_calc(struct nouveau_fb *, u32);
int nv40_ram_prog(struct nouveau_fb *);
void nv40_ram_tidy(struct nouveau_fb *);
#endif
......@@ -22,24 +22,18 @@
* Authors: Ben Skeggs
*/
#include "nv04.h"
struct nvc0_fb_priv {
struct nouveau_fb base;
struct page *r100c10_page;
dma_addr_t r100c10;
};
#include "nvc0.h"
extern const u8 nvc0_pte_storage_type_map[256];
static bool
bool
nvc0_fb_memtype_valid(struct nouveau_fb *pfb, u32 tile_flags)
{
u8 memtype = (tile_flags & 0x0000ff00) >> 8;
return likely((nvc0_pte_storage_type_map[memtype] != 0xff));
}
static int
int
nvc0_fb_init(struct nouveau_object *object)
{
struct nvc0_fb_priv *priv = (void *)object;
......@@ -54,7 +48,7 @@ nvc0_fb_init(struct nouveau_object *object)
return 0;
}
static void
void
nvc0_fb_dtor(struct nouveau_object *object)
{
struct nouveau_device *device = nv_device(object);
......@@ -69,7 +63,7 @@ nvc0_fb_dtor(struct nouveau_object *object)
nouveau_fb_destroy(&priv->base);
}
static int
int
nvc0_fb_ctor(struct nouveau_object *parent, struct nouveau_object *engine,
struct nouveau_oclass *oclass, void *data, u32 size,
struct nouveau_object **pobject)
......
#ifndef __NVKM_RAM_NVC0_H__
#define __NVKM_RAM_NVC0_H__
#include "priv.h"
#include "nv50.h"
struct nvc0_fb_priv {
struct nouveau_fb base;
struct page *r100c10_page;
dma_addr_t r100c10;
};
int nvc0_fb_ctor(struct nouveau_object *, struct nouveau_object *,
struct nouveau_oclass *, void *, u32,
struct nouveau_object **);
void nvc0_fb_dtor(struct nouveau_object *);
int nvc0_fb_init(struct nouveau_object *);
bool nvc0_fb_memtype_valid(struct nouveau_fb *, u32);
#define nvc0_ram_create(p,e,o,d) \
nvc0_ram_create_((p), (e), (o), sizeof(**d), (void **)d)
int nvc0_ram_create_(struct nouveau_object *, struct nouveau_object *,
struct nouveau_oclass *, int, void **);
int nvc0_ram_get(struct nouveau_fb *, u64, u32, u32, u32,
struct nouveau_mem **);
void nvc0_ram_put(struct nouveau_fb *, struct nouveau_mem **);
#endif
/*
* Copyright 2012 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs
*/
#include "nvc0.h"
struct nouveau_oclass *
nve0_fb_oclass = &(struct nouveau_fb_impl) {
.base.handle = NV_SUBDEV(FB, 0xe0),
.base.ofuncs = &(struct nouveau_ofuncs) {
.ctor = nvc0_fb_ctor,
.dtor = nvc0_fb_dtor,
.init = nvc0_fb_init,
.fini = _nouveau_fb_fini,
},
.memtype = nvc0_fb_memtype_valid,
.ram = &nve0_ram_oclass,
}.base;
......@@ -31,6 +31,10 @@ extern struct nouveau_oclass nv50_ram_oclass;
extern struct nouveau_oclass nva3_ram_oclass;
extern struct nouveau_oclass nvaa_ram_oclass;
extern struct nouveau_oclass nvc0_ram_oclass;
extern struct nouveau_oclass nve0_ram_oclass;
int nouveau_sddr3_calc(struct nouveau_ram *ram);
int nouveau_gddr5_calc(struct nouveau_ram *ram);
#define nouveau_fb_create(p,e,c,d) \
nouveau_fb_create_((p), (e), (c), sizeof(**d), (void **)d)
......
#ifndef __NVKM_FBRAM_FUC_H__
#define __NVKM_FBRAM_FUC_H__
#include <subdev/pwr.h>
struct ramfuc {
struct nouveau_memx *memx;
struct nouveau_fb *pfb;
int sequence;
};
struct ramfuc_reg {
int sequence;
bool force;
u32 addr[2];
u32 data;
};
static inline struct ramfuc_reg
ramfuc_reg2(u32 addr1, u32 addr2)
{
return (struct ramfuc_reg) {
.sequence = 0,
.addr = { addr1, addr2 },
.data = 0xdeadbeef,
};
}
static inline struct ramfuc_reg
ramfuc_reg(u32 addr)
{
return ramfuc_reg2(addr, addr);
}
static inline int
ramfuc_init(struct ramfuc *ram, struct nouveau_fb *pfb)
{
struct nouveau_pwr *ppwr = nouveau_pwr(pfb);
int ret;
ret = nouveau_memx_init(ppwr, &ram->memx);
if (ret)
return ret;
ram->sequence++;
ram->pfb = pfb;
return 0;
}
static inline int
ramfuc_exec(struct ramfuc *ram, bool exec)
{
int ret = 0;
if (ram->pfb) {
ret = nouveau_memx_fini(&ram->memx, exec);
ram->pfb = NULL;
}
return ret;
}
static inline u32
ramfuc_rd32(struct ramfuc *ram, struct ramfuc_reg *reg)
{
if (reg->sequence != ram->sequence)
reg->data = nv_rd32(ram->pfb, reg->addr[0]);
return reg->data;
}
static inline void
ramfuc_wr32(struct ramfuc *ram, struct ramfuc_reg *reg, u32 data)
{
reg->sequence = ram->sequence;
reg->data = data;
if (reg->addr[0] != reg->addr[1])
nouveau_memx_wr32(ram->memx, reg->addr[1], reg->data);
nouveau_memx_wr32(ram->memx, reg->addr[0], reg->data);
}
static inline void
ramfuc_nuke(struct ramfuc *ram, struct ramfuc_reg *reg)
{
reg->force = true;
}
static inline u32
ramfuc_mask(struct ramfuc *ram, struct ramfuc_reg *reg, u32 mask, u32 data)
{
u32 temp = ramfuc_rd32(ram, reg);
if (temp != ((temp & ~mask) | data) || reg->force) {
ramfuc_wr32(ram, reg, (temp & ~mask) | data);
reg->force = false;
}
return temp;
}
static inline void
ramfuc_wait(struct ramfuc *ram, u32 addr, u32 mask, u32 data, u32 nsec)
{
nouveau_memx_wait(ram->memx, addr, mask, data, nsec);
}
static inline void
ramfuc_nsec(struct ramfuc *ram, u32 nsec)
{
nouveau_memx_nsec(ram->memx, nsec);
}
#define ram_init(s,p) ramfuc_init(&(s)->base, (p))
#define ram_exec(s,e) ramfuc_exec(&(s)->base, (e))
#define ram_have(s,r) ((s)->r_##r.addr != 0x000000)
#define ram_rd32(s,r) ramfuc_rd32(&(s)->base, &(s)->r_##r)
#define ram_wr32(s,r,d) ramfuc_wr32(&(s)->base, &(s)->r_##r, (d))
#define ram_nuke(s,r) ramfuc_nuke(&(s)->base, &(s)->r_##r)
#define ram_mask(s,r,m,d) ramfuc_mask(&(s)->base, &(s)->r_##r, (m), (d))
#define ram_wait(s,r,m,d,n) ramfuc_wait(&(s)->base, (r), (m), (d), (n))
#define ram_nsec(s,n) ramfuc_nsec(&(s)->base, (n))
#endif
......@@ -22,7 +22,154 @@
* Authors: Ben Skeggs
*/
#include "priv.h"
#include <subdev/bios.h>
#include <subdev/bios/bit.h>
#include <subdev/bios/pll.h>
#include <subdev/bios/init.h>
#include <subdev/clock.h>
#include <subdev/clock/pll.h>
#include <subdev/timer.h>
#include <engine/fifo.h>
#include "nv40.h"
int
nv40_ram_calc(struct nouveau_fb *pfb, u32 freq)
{
struct nouveau_bios *bios = nouveau_bios(pfb);
struct nv40_ram *ram = (void *)pfb->ram;
struct nvbios_pll pll;
int N1, M1, N2, M2;
int log2P, ret;
ret = nvbios_pll_parse(bios, 0x04, &pll);
if (ret) {
nv_error(pfb, "mclk pll data not found\n");
return ret;
}
ret = nv04_pll_calc(nv_subdev(pfb), &pll, freq,
&N1, &M1, &N2, &M2, &log2P);
if (ret < 0)
return ret;
ram->ctrl = 0x80000000 | (log2P << 16);
ram->ctrl |= min(pll.bias_p + log2P, (int)pll.max_p) << 20;
if (N2 == M2) {
ram->ctrl |= 0x00000100;
ram->coef = (N1 << 8) | M1;
} else {
ram->ctrl |= 0x40000000;
ram->coef = (N2 << 24) | (M2 << 16) | (N1 << 8) | M1;
}
return 0;
}
int
nv40_ram_prog(struct nouveau_fb *pfb)
{
struct nouveau_bios *bios = nouveau_bios(pfb);
struct nv40_ram *ram = (void *)pfb->ram;
struct bit_entry M;
u32 crtc_mask = 0;
u8 sr1[2];
int i;
/* determine which CRTCs are active, fetch VGA_SR1 for each */
for (i = 0; i < 2; i++) {
u32 vbl = nv_rd32(pfb, 0x600808 + (i * 0x2000));
u32 cnt = 0;
do {
if (vbl != nv_rd32(pfb, 0x600808 + (i * 0x2000))) {
nv_wr08(pfb, 0x0c03c4 + (i * 0x2000), 0x01);
sr1[i] = nv_rd08(pfb, 0x0c03c5 + (i * 0x2000));
if (!(sr1[i] & 0x20))
crtc_mask |= (1 << i);
break;
}
udelay(1);
} while (cnt++ < 32);
}
/* wait for vblank start on active crtcs, disable memory access */
for (i = 0; i < 2; i++) {
if (!(crtc_mask & (1 << i)))
continue;
nv_wait(pfb, 0x600808 + (i * 0x2000), 0x00010000, 0x00000000);
nv_wait(pfb, 0x600808 + (i * 0x2000), 0x00010000, 0x00010000);
nv_wr08(pfb, 0x0c03c4 + (i * 0x2000), 0x01);
nv_wr08(pfb, 0x0c03c5 + (i * 0x2000), sr1[i] | 0x20);
}
/* prepare ram for reclocking */
nv_wr32(pfb, 0x1002d4, 0x00000001); /* precharge */
nv_wr32(pfb, 0x1002d0, 0x00000001); /* refresh */
nv_wr32(pfb, 0x1002d0, 0x00000001); /* refresh */
nv_mask(pfb, 0x100210, 0x80000000, 0x00000000); /* no auto refresh */
nv_wr32(pfb, 0x1002dc, 0x00000001); /* enable self-refresh */
/* change the PLL of each memory partition */
nv_mask(pfb, 0x00c040, 0x0000c000, 0x00000000);
switch (nv_device(pfb)->chipset) {
case 0x40:
case 0x45:
case 0x41:
case 0x42:
case 0x47:
nv_mask(pfb, 0x004044, 0xc0771100, ram->ctrl);
nv_mask(pfb, 0x00402c, 0xc0771100, ram->ctrl);
nv_wr32(pfb, 0x004048, ram->coef);
nv_wr32(pfb, 0x004030, ram->coef);
case 0x43:
case 0x49:
case 0x4b:
nv_mask(pfb, 0x004038, 0xc0771100, ram->ctrl);
nv_wr32(pfb, 0x00403c, ram->coef);
default:
nv_mask(pfb, 0x004020, 0xc0771100, ram->ctrl);
nv_wr32(pfb, 0x004024, ram->coef);
break;
}
udelay(100);
nv_mask(pfb, 0x00c040, 0x0000c000, 0x0000c000);
/* re-enable normal operation of memory controller */
nv_wr32(pfb, 0x1002dc, 0x00000000);
nv_mask(pfb, 0x100210, 0x80000000, 0x80000000);
udelay(100);
/* execute memory reset script from vbios */
if (!bit_entry(bios, 'M', &M)) {
struct nvbios_init init = {
.subdev = nv_subdev(pfb),
.bios = bios,
.offset = nv_ro16(bios, M.offset + 0x00),
.execute = 1,
};
nvbios_exec(&init);
}
/* make sure we're in vblank (hopefully the same one as before), and
* then re-enable crtc memory access
*/
for (i = 0; i < 2; i++) {
if (!(crtc_mask & (1 << i)))
continue;
nv_wait(pfb, 0x600808 + (i * 0x2000), 0x00010000, 0x00010000);
nv_wr08(pfb, 0x0c03c4 + (i * 0x2000), 0x01);
nv_wr08(pfb, 0x0c03c5 + (i * 0x2000), sr1[i]);
}
return 0;
}
void
nv40_ram_tidy(struct nouveau_fb *pfb)
{
}
static int
nv40_ram_create(struct nouveau_object *parent, struct nouveau_object *engine,
......@@ -30,7 +177,7 @@ nv40_ram_create(struct nouveau_object *parent, struct nouveau_object *engine,
struct nouveau_object **pobject)
{
struct nouveau_fb *pfb = nouveau_fb(parent);
struct nouveau_ram *ram;
struct nv40_ram *ram;
u32 pbus1218 = nv_rd32(pfb, 0x001218);
int ret;
......@@ -40,15 +187,18 @@ nv40_ram_create(struct nouveau_object *parent, struct nouveau_object *engine,
return ret;
switch (pbus1218 & 0x00000300) {
case 0x00000000: ram->type = NV_MEM_TYPE_SDRAM; break;
case 0x00000100: ram->type = NV_MEM_TYPE_DDR1; break;
case 0x00000200: ram->type = NV_MEM_TYPE_GDDR3; break;
case 0x00000300: ram->type = NV_MEM_TYPE_DDR2; break;
case 0x00000000: ram->base.type = NV_MEM_TYPE_SDRAM; break;
case 0x00000100: ram->base.type = NV_MEM_TYPE_DDR1; break;
case 0x00000200: ram->base.type = NV_MEM_TYPE_GDDR3; break;
case 0x00000300: ram->base.type = NV_MEM_TYPE_DDR2; break;
}
ram->size = nv_rd32(pfb, 0x10020c) & 0xff000000;
ram->parts = (nv_rd32(pfb, 0x100200) & 0x00000003) + 1;
ram->tags = nv_rd32(pfb, 0x100320);
ram->base.size = nv_rd32(pfb, 0x10020c) & 0xff000000;
ram->base.parts = (nv_rd32(pfb, 0x100200) & 0x00000003) + 1;
ram->base.tags = nv_rd32(pfb, 0x100320);
ram->base.calc = nv40_ram_calc;
ram->base.prog = nv40_ram_prog;
ram->base.tidy = nv40_ram_tidy;
return 0;
}
......
......@@ -22,7 +22,7 @@
* Authors: Ben Skeggs
*/
#include "priv.h"
#include "nv40.h"
static int
nv41_ram_create(struct nouveau_object *parent, struct nouveau_object *engine,
......@@ -30,7 +30,7 @@ nv41_ram_create(struct nouveau_object *parent, struct nouveau_object *engine,
struct nouveau_object **pobject)
{
struct nouveau_fb *pfb = nouveau_fb(parent);
struct nouveau_ram *ram;
struct nv40_ram *ram;
u32 pfb474 = nv_rd32(pfb, 0x100474);
int ret;
......@@ -40,15 +40,18 @@ nv41_ram_create(struct nouveau_object *parent, struct nouveau_object *engine,
return ret;
if (pfb474 & 0x00000004)
ram->type = NV_MEM_TYPE_GDDR3;
ram->base.type = NV_MEM_TYPE_GDDR3;
if (pfb474 & 0x00000002)
ram->type = NV_MEM_TYPE_DDR2;
ram->base.type = NV_MEM_TYPE_DDR2;
if (pfb474 & 0x00000001)
ram->type = NV_MEM_TYPE_DDR1;
ram->base.type = NV_MEM_TYPE_DDR1;
ram->size = nv_rd32(pfb, 0x10020c) & 0xff000000;
ram->parts = (nv_rd32(pfb, 0x100200) & 0x00000003) + 1;
ram->tags = nv_rd32(pfb, 0x100320);
ram->base.size = nv_rd32(pfb, 0x10020c) & 0xff000000;
ram->base.parts = (nv_rd32(pfb, 0x100200) & 0x00000003) + 1;
ram->base.tags = nv_rd32(pfb, 0x100320);
ram->base.calc = nv40_ram_calc;
ram->base.prog = nv40_ram_prog;
ram->base.tidy = nv40_ram_tidy;
return 0;
}
......
......@@ -22,7 +22,7 @@
* Authors: Ben Skeggs
*/
#include "priv.h"
#include "nv40.h"
static int
nv44_ram_create(struct nouveau_object *parent, struct nouveau_object *engine,
......@@ -30,7 +30,7 @@ nv44_ram_create(struct nouveau_object *parent, struct nouveau_object *engine,
struct nouveau_object **pobject)
{
struct nouveau_fb *pfb = nouveau_fb(parent);
struct nouveau_ram *ram;
struct nv40_ram *ram;
u32 pfb474 = nv_rd32(pfb, 0x100474);
int ret;
......@@ -40,13 +40,16 @@ nv44_ram_create(struct nouveau_object *parent, struct nouveau_object *engine,
return ret;
if (pfb474 & 0x00000004)
ram->type = NV_MEM_TYPE_GDDR3;
ram->base.type = NV_MEM_TYPE_GDDR3;
if (pfb474 & 0x00000002)
ram->type = NV_MEM_TYPE_DDR2;
ram->base.type = NV_MEM_TYPE_DDR2;
if (pfb474 & 0x00000001)
ram->type = NV_MEM_TYPE_DDR1;
ram->base.type = NV_MEM_TYPE_DDR1;
ram->size = nv_rd32(pfb, 0x10020c) & 0xff000000;
ram->base.size = nv_rd32(pfb, 0x10020c) & 0xff000000;
ram->base.calc = nv40_ram_calc;
ram->base.prog = nv40_ram_prog;
ram->base.tidy = nv40_ram_tidy;
return 0;
}
......
......@@ -22,7 +22,7 @@
* Authors: Ben Skeggs
*/
#include "priv.h"
#include "nv40.h"
static int
nv49_ram_create(struct nouveau_object *parent, struct nouveau_object *engine,
......@@ -30,7 +30,7 @@ nv49_ram_create(struct nouveau_object *parent, struct nouveau_object *engine,
struct nouveau_object **pobject)
{
struct nouveau_fb *pfb = nouveau_fb(parent);
struct nouveau_ram *ram;
struct nv40_ram *ram;
u32 pfb914 = nv_rd32(pfb, 0x100914);
int ret;
......@@ -40,15 +40,18 @@ nv49_ram_create(struct nouveau_object *parent, struct nouveau_object *engine,
return ret;
switch (pfb914 & 0x00000003) {
case 0x00000000: ram->type = NV_MEM_TYPE_DDR1; break;
case 0x00000001: ram->type = NV_MEM_TYPE_DDR2; break;
case 0x00000002: ram->type = NV_MEM_TYPE_GDDR3; break;
case 0x00000000: ram->base.type = NV_MEM_TYPE_DDR1; break;
case 0x00000001: ram->base.type = NV_MEM_TYPE_DDR2; break;
case 0x00000002: ram->base.type = NV_MEM_TYPE_GDDR3; break;
case 0x00000003: break;
}
ram->size = nv_rd32(pfb, 0x10020c) & 0xff000000;
ram->parts = (nv_rd32(pfb, 0x100200) & 0x00000003) + 1;
ram->tags = nv_rd32(pfb, 0x100320);
ram->base.size = nv_rd32(pfb, 0x10020c) & 0xff000000;
ram->base.parts = (nv_rd32(pfb, 0x100200) & 0x00000003) + 1;
ram->base.tags = nv_rd32(pfb, 0x100320);
ram->base.calc = nv40_ram_calc;
ram->base.prog = nv40_ram_prog;
ram->base.tidy = nv40_ram_tidy;
return 0;
}
......
......@@ -23,14 +23,216 @@
*/
#include <subdev/bios.h>
#include <subdev/bios/bit.h>
#include <subdev/bios/pll.h>
#include <subdev/bios/perf.h>
#include <subdev/bios/timing.h>
#include <subdev/clock/pll.h>
#include <subdev/fb.h>
#include <core/option.h>
#include <core/mm.h>
#include "ramseq.h"
#include "nv50.h"
struct nv50_ramseq {
struct hwsq base;
struct hwsq_reg r_0x002504;
struct hwsq_reg r_0x004008;
struct hwsq_reg r_0x00400c;
struct hwsq_reg r_0x00c040;
struct hwsq_reg r_0x100210;
struct hwsq_reg r_0x1002d0;
struct hwsq_reg r_0x1002d4;
struct hwsq_reg r_0x1002dc;
struct hwsq_reg r_0x100da0[8];
struct hwsq_reg r_0x100e20;
struct hwsq_reg r_0x100e24;
struct hwsq_reg r_0x611200;
struct hwsq_reg r_timing[9];
struct hwsq_reg r_mr[4];
};
struct nv50_ram {
struct nouveau_ram base;
struct nv50_ramseq hwsq;
};
#define QFX5800NVA0 1
static int
nv50_ram_calc(struct nouveau_fb *pfb, u32 freq)
{
struct nouveau_bios *bios = nouveau_bios(pfb);
struct nv50_ram *ram = (void *)pfb->ram;
struct nv50_ramseq *hwsq = &ram->hwsq;
struct nvbios_perfE perfE;
struct nvbios_pll mpll;
struct bit_entry M;
struct {
u32 data;
u8 size;
} ramcfg, timing;
u8 ver, hdr, cnt, strap;
u32 data;
int N1, M1, N2, M2, P;
int ret, i;
/* lookup closest matching performance table entry for frequency */
i = 0;
do {
ramcfg.data = nvbios_perfEp(bios, i++, &ver, &hdr, &cnt,
&ramcfg.size, &perfE);
if (!ramcfg.data || (ver < 0x25 || ver >= 0x40) ||
(ramcfg.size < 2)) {
nv_error(pfb, "invalid/missing perftab entry\n");
return -EINVAL;
}
} while (perfE.memory < freq);
/* locate specific data set for the attached memory */
if (bit_entry(bios, 'M', &M) || M.version != 1 || M.length < 5) {
nv_error(pfb, "invalid/missing memory table\n");
return -EINVAL;
}
strap = (nv_rd32(pfb, 0x101000) & 0x0000003c) >> 2;
data = nv_ro16(bios, M.offset + 3);
if (data)
strap = nv_ro08(bios, data + strap);
if (strap >= cnt) {
nv_error(pfb, "invalid ramcfg strap\n");
return -EINVAL;
}
ramcfg.data += hdr + (strap * ramcfg.size);
/* lookup memory timings, if bios says they're present */
strap = nv_ro08(bios, ramcfg.data + 0x01);
if (strap != 0xff) {
timing.data = nvbios_timing_entry(bios, strap, &ver, &hdr);
if (!timing.data || ver != 0x10 || hdr < 0x12) {
nv_error(pfb, "invalid/missing timing entry "
"%02x %04x %02x %02x\n",
strap, timing.data, ver, hdr);
return -EINVAL;
}
} else {
timing.data = 0;
}
ret = ram_init(hwsq, nv_subdev(pfb));
if (ret)
return ret;
ram_wait(hwsq, 0x01, 0x00); /* wait for !vblank */
ram_wait(hwsq, 0x01, 0x01); /* wait for vblank */
ram_wr32(hwsq, 0x611200, 0x00003300);
ram_wr32(hwsq, 0x002504, 0x00000001); /* block fifo */
ram_nsec(hwsq, 8000);
ram_setf(hwsq, 0x10, 0x00); /* disable fb */
ram_wait(hwsq, 0x00, 0x01); /* wait for fb disabled */
ram_wr32(hwsq, 0x1002d4, 0x00000001); /* precharge */
ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */
ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */
ram_wr32(hwsq, 0x100210, 0x00000000); /* disable auto-refresh */
ram_wr32(hwsq, 0x1002dc, 0x00000001); /* enable self-refresh */
ret = nvbios_pll_parse(bios, 0x004008, &mpll);
mpll.vco2.max_freq = 0;
if (ret == 0) {
ret = nv04_pll_calc(nv_subdev(pfb), &mpll, freq,
&N1, &M1, &N2, &M2, &P);
if (ret == 0)
ret = -EINVAL;
}
if (ret < 0)
return ret;
ram_mask(hwsq, 0x00c040, 0xc000c000, 0x0000c000);
ram_mask(hwsq, 0x004008, 0x00000200, 0x00000200);
ram_mask(hwsq, 0x00400c, 0x0000ffff, (N1 << 8) | M1);
ram_mask(hwsq, 0x004008, 0x81ff0000, 0x80000000 | (mpll.bias_p << 19) |
(P << 22) | (P << 16));
#if QFX5800NVA0
for (i = 0; i < 8; i++)
ram_mask(hwsq, 0x100da0[i], 0x00000000, 0x00000000); /*XXX*/
#endif
ram_nsec(hwsq, 96000); /*XXX*/
ram_mask(hwsq, 0x004008, 0x00002200, 0x00002000);
ram_wr32(hwsq, 0x1002dc, 0x00000000); /* disable self-refresh */
ram_wr32(hwsq, 0x100210, 0x80000000); /* enable auto-refresh */
ram_nsec(hwsq, 12000);
switch (ram->base.type) {
case NV_MEM_TYPE_DDR2:
ram_nuke(hwsq, mr[0]); /* force update */
ram_mask(hwsq, mr[0], 0x000, 0x000);
break;
case NV_MEM_TYPE_GDDR3:
ram_mask(hwsq, mr[2], 0x000, 0x000);
ram_nuke(hwsq, mr[0]); /* force update */
ram_mask(hwsq, mr[0], 0x000, 0x000);
break;
default:
break;
}
ram_mask(hwsq, timing[3], 0x00000000, 0x00000000); /*XXX*/
ram_mask(hwsq, timing[1], 0x00000000, 0x00000000); /*XXX*/
ram_mask(hwsq, timing[6], 0x00000000, 0x00000000); /*XXX*/
ram_mask(hwsq, timing[7], 0x00000000, 0x00000000); /*XXX*/
ram_mask(hwsq, timing[8], 0x00000000, 0x00000000); /*XXX*/
ram_mask(hwsq, timing[0], 0x00000000, 0x00000000); /*XXX*/
ram_mask(hwsq, timing[2], 0x00000000, 0x00000000); /*XXX*/
ram_mask(hwsq, timing[4], 0x00000000, 0x00000000); /*XXX*/
ram_mask(hwsq, timing[5], 0x00000000, 0x00000000); /*XXX*/
ram_mask(hwsq, timing[0], 0x00000000, 0x00000000); /*XXX*/
#if QFX5800NVA0
ram_nuke(hwsq, 0x100e24);
ram_mask(hwsq, 0x100e24, 0x00000000, 0x00000000);
ram_nuke(hwsq, 0x100e20);
ram_mask(hwsq, 0x100e20, 0x00000000, 0x00000000);
#endif
ram_mask(hwsq, mr[0], 0x100, 0x100);
ram_mask(hwsq, mr[0], 0x100, 0x000);
ram_setf(hwsq, 0x10, 0x01); /* enable fb */
ram_wait(hwsq, 0x00, 0x00); /* wait for fb enabled */
ram_wr32(hwsq, 0x611200, 0x00003330);
ram_wr32(hwsq, 0x002504, 0x00000000); /* un-block fifo */
return 0;
}
static int
nv50_ram_prog(struct nouveau_fb *pfb)
{
struct nouveau_device *device = nv_device(pfb);
struct nv50_ram *ram = (void *)pfb->ram;
struct nv50_ramseq *hwsq = &ram->hwsq;
ram_exec(hwsq, nouveau_boolopt(device->cfgopt, "NvMemExec", false));
return 0;
}
static void
nv50_ram_tidy(struct nouveau_fb *pfb)
{
struct nv50_ram *ram = (void *)pfb->ram;
struct nv50_ramseq *hwsq = &ram->hwsq;
ram_exec(hwsq, false);
}
void
__nv50_ram_put(struct nouveau_fb *pfb, struct nouveau_mem *mem)
{
......@@ -218,13 +420,54 @@ nv50_ram_ctor(struct nouveau_object *parent, struct nouveau_object *engine,
struct nouveau_object **pobject)
{
struct nv50_ram *ram;
int ret;
int ret, i;
ret = nv50_ram_create(parent, engine, oclass, &ram);
*pobject = nv_object(ram);
if (ret)
return ret;
switch (ram->base.type) {
case NV_MEM_TYPE_DDR2:
case NV_MEM_TYPE_GDDR3:
ram->base.calc = nv50_ram_calc;
ram->base.prog = nv50_ram_prog;
ram->base.tidy = nv50_ram_tidy;
break;
default:
nv_warn(ram, "reclocking of this ram type unsupported\n");
return 0;
}
ram->hwsq.r_0x002504 = hwsq_reg(0x002504);
ram->hwsq.r_0x00c040 = hwsq_reg(0x00c040);
ram->hwsq.r_0x004008 = hwsq_reg(0x004008);
ram->hwsq.r_0x00400c = hwsq_reg(0x00400c);
ram->hwsq.r_0x100210 = hwsq_reg(0x100210);
ram->hwsq.r_0x1002d0 = hwsq_reg(0x1002d0);
ram->hwsq.r_0x1002d4 = hwsq_reg(0x1002d4);
ram->hwsq.r_0x1002dc = hwsq_reg(0x1002dc);
for (i = 0; i < 8; i++)
ram->hwsq.r_0x100da0[i] = hwsq_reg(0x100da0 + (i * 0x04));
ram->hwsq.r_0x100e20 = hwsq_reg(0x100e20);
ram->hwsq.r_0x100e24 = hwsq_reg(0x100e24);
ram->hwsq.r_0x611200 = hwsq_reg(0x611200);
for (i = 0; i < 9; i++)
ram->hwsq.r_timing[i] = hwsq_reg(0x100220 + (i * 0x04));
if (ram->base.ranks > 1) {
ram->hwsq.r_mr[0] = hwsq_reg2(0x1002c0, 0x1002c8);
ram->hwsq.r_mr[1] = hwsq_reg2(0x1002c4, 0x1002cc);
ram->hwsq.r_mr[2] = hwsq_reg2(0x1002e0, 0x1002e8);
ram->hwsq.r_mr[3] = hwsq_reg2(0x1002e4, 0x1002ec);
} else {
ram->hwsq.r_mr[0] = hwsq_reg(0x1002c0);
ram->hwsq.r_mr[1] = hwsq_reg(0x1002c4);
ram->hwsq.r_mr[2] = hwsq_reg(0x1002e0);
ram->hwsq.r_mr[3] = hwsq_reg(0x1002e4);
}
return 0;
}
......
......@@ -22,25 +22,417 @@
* Authors: Ben Skeggs
*/
#include <subdev/bios.h>
#include <subdev/bios/bit.h>
#include <subdev/bios/pll.h>
#include <subdev/bios/rammap.h>
#include <subdev/bios/timing.h>
#include <subdev/clock/nva3.h>
#include <subdev/clock/pll.h>
#include <core/option.h>
#include "ramfuc.h"
#include "nv50.h"
struct nva3_ramfuc {
struct ramfuc base;
struct ramfuc_reg r_0x004000;
struct ramfuc_reg r_0x004004;
struct ramfuc_reg r_0x004018;
struct ramfuc_reg r_0x004128;
struct ramfuc_reg r_0x004168;
struct ramfuc_reg r_0x100200;
struct ramfuc_reg r_0x100210;
struct ramfuc_reg r_0x100220[9];
struct ramfuc_reg r_0x1002d0;
struct ramfuc_reg r_0x1002d4;
struct ramfuc_reg r_0x1002dc;
struct ramfuc_reg r_0x10053c;
struct ramfuc_reg r_0x1005a0;
struct ramfuc_reg r_0x1005a4;
struct ramfuc_reg r_0x100714;
struct ramfuc_reg r_0x100718;
struct ramfuc_reg r_0x10071c;
struct ramfuc_reg r_0x100760;
struct ramfuc_reg r_0x1007a0;
struct ramfuc_reg r_0x1007e0;
struct ramfuc_reg r_0x10f804;
struct ramfuc_reg r_0x1110e0;
struct ramfuc_reg r_0x111100;
struct ramfuc_reg r_0x111104;
struct ramfuc_reg r_0x611200;
struct ramfuc_reg r_mr[4];
};
struct nva3_ram {
struct nouveau_ram base;
struct nva3_ramfuc fuc;
};
static int
nva3_ram_calc(struct nouveau_fb *pfb, u32 freq)
{
struct nouveau_bios *bios = nouveau_bios(pfb);
struct nva3_ram *ram = (void *)pfb->ram;
struct nva3_ramfuc *fuc = &ram->fuc;
struct nva3_clock_info mclk;
struct bit_entry M;
u8 ver, cnt, strap;
u32 data;
struct {
u32 data;
u8 size;
} rammap, ramcfg, timing;
u32 r004018, r100760, ctrl;
u32 unk714, unk718, unk71c;
int ret;
/* lookup memory config data relevant to the target frequency */
rammap.data = nvbios_rammap_match(bios, freq / 1000, &ver, &rammap.size,
&cnt, &ramcfg.size);
if (!rammap.data || ver != 0x10 || rammap.size < 0x0e) {
nv_error(pfb, "invalid/missing rammap entry\n");
return -EINVAL;
}
/* locate specific data set for the attached memory */
if (bit_entry(bios, 'M', &M) || M.version != 2 || M.length < 3) {
nv_error(pfb, "invalid/missing memory table\n");
return -EINVAL;
}
strap = (nv_rd32(pfb, 0x101000) & 0x0000003c) >> 2;
data = nv_ro16(bios, M.offset + 1);
if (data)
strap = nv_ro08(bios, data + strap);
if (strap >= cnt) {
nv_error(pfb, "invalid ramcfg strap\n");
return -EINVAL;
}
ramcfg.data = rammap.data + rammap.size + (strap * ramcfg.size);
if (!ramcfg.data || ver != 0x10 || ramcfg.size < 0x0e) {
nv_error(pfb, "invalid/missing ramcfg entry\n");
return -EINVAL;
}
/* lookup memory timings, if bios says they're present */
strap = nv_ro08(bios, ramcfg.data + 0x01);
if (strap != 0xff) {
timing.data = nvbios_timing_entry(bios, strap, &ver,
&timing.size);
if (!timing.data || ver != 0x10 || timing.size < 0x19) {
nv_error(pfb, "invalid/missing timing entry\n");
return -EINVAL;
}
} else {
timing.data = 0;
}
ret = nva3_clock_info(nouveau_clock(pfb), 0x12, 0x4000, freq, &mclk);
if (ret < 0) {
nv_error(pfb, "failed mclk calculation\n");
return ret;
}
ret = ram_init(fuc, pfb);
if (ret)
return ret;
/* XXX: where the fuck does 750MHz come from? */
if (freq <= 750000) {
r004018 = 0x10000000;
r100760 = 0x22222222;
} else {
r004018 = 0x00000000;
r100760 = 0x00000000;
}
ctrl = ram_rd32(fuc, 0x004000);
if (ctrl & 0x00000008) {
if (mclk.pll) {
ram_mask(fuc, 0x004128, 0x00000101, 0x00000101);
ram_wr32(fuc, 0x004004, mclk.pll);
ram_wr32(fuc, 0x004000, (ctrl |= 0x00000001));
ram_wr32(fuc, 0x004000, (ctrl &= 0xffffffef));
ram_wait(fuc, 0x004000, 0x00020000, 0x00020000, 64000);
ram_wr32(fuc, 0x004000, (ctrl |= 0x00000010));
ram_wr32(fuc, 0x004018, 0x00005000 | r004018);
ram_wr32(fuc, 0x004000, (ctrl |= 0x00000004));
}
} else {
u32 ssel = 0x00000101;
if (mclk.clk)
ssel |= mclk.clk;
else
ssel |= 0x00080000; /* 324MHz, shouldn't matter... */
ram_mask(fuc, 0x004168, 0x003f3141, ctrl);
}
if ( (nv_ro08(bios, ramcfg.data + 0x02) & 0x10)) {
ram_mask(fuc, 0x111104, 0x00000600, 0x00000000);
} else {
ram_mask(fuc, 0x111100, 0x40000000, 0x40000000);
ram_mask(fuc, 0x111104, 0x00000180, 0x00000000);
}
if (!(nv_ro08(bios, rammap.data + 0x04) & 0x02))
ram_mask(fuc, 0x100200, 0x00000800, 0x00000000);
ram_wr32(fuc, 0x611200, 0x00003300);
if (!(nv_ro08(bios, ramcfg.data + 0x02) & 0x10))
ram_wr32(fuc, 0x111100, 0x4c020000); /*XXX*/
ram_wr32(fuc, 0x1002d4, 0x00000001);
ram_wr32(fuc, 0x1002d0, 0x00000001);
ram_wr32(fuc, 0x1002d0, 0x00000001);
ram_wr32(fuc, 0x100210, 0x00000000);
ram_wr32(fuc, 0x1002dc, 0x00000001);
ram_nsec(fuc, 2000);
ctrl = ram_rd32(fuc, 0x004000);
if (!(ctrl & 0x00000008) && mclk.pll) {
ram_wr32(fuc, 0x004000, (ctrl |= 0x00000008));
ram_mask(fuc, 0x1110e0, 0x00088000, 0x00088000);
ram_wr32(fuc, 0x004018, 0x00001000);
ram_wr32(fuc, 0x004000, (ctrl &= ~0x00000001));
ram_wr32(fuc, 0x004004, mclk.pll);
ram_wr32(fuc, 0x004000, (ctrl |= 0x00000001));
udelay(64);
ram_wr32(fuc, 0x004018, 0x00005000 | r004018);
udelay(20);
} else
if (!mclk.pll) {
ram_mask(fuc, 0x004168, 0x003f3040, mclk.clk);
ram_wr32(fuc, 0x004000, (ctrl |= 0x00000008));
ram_mask(fuc, 0x1110e0, 0x00088000, 0x00088000);
ram_wr32(fuc, 0x004018, 0x0000d000 | r004018);
}
if ( (nv_ro08(bios, rammap.data + 0x04) & 0x08)) {
u32 unk5a0 = (nv_ro16(bios, ramcfg.data + 0x05) << 8) |
nv_ro08(bios, ramcfg.data + 0x05);
u32 unk5a4 = (nv_ro16(bios, ramcfg.data + 0x07));
u32 unk804 = (nv_ro08(bios, ramcfg.data + 0x09) & 0xf0) << 16 |
(nv_ro08(bios, ramcfg.data + 0x03) & 0x0f) << 16 |
(nv_ro08(bios, ramcfg.data + 0x09) & 0x0f) |
0x80000000;
ram_wr32(fuc, 0x1005a0, unk5a0);
ram_wr32(fuc, 0x1005a4, unk5a4);
ram_wr32(fuc, 0x10f804, unk804);
ram_mask(fuc, 0x10053c, 0x00001000, 0x00000000);
} else {
ram_mask(fuc, 0x10053c, 0x00001000, 0x00001000);
ram_mask(fuc, 0x10f804, 0x80000000, 0x00000000);
ram_mask(fuc, 0x100760, 0x22222222, r100760);
ram_mask(fuc, 0x1007a0, 0x22222222, r100760);
ram_mask(fuc, 0x1007e0, 0x22222222, r100760);
}
if (mclk.pll) {
ram_mask(fuc, 0x1110e0, 0x00088000, 0x00011000);
ram_wr32(fuc, 0x004000, (ctrl &= ~0x00000008));
}
/*XXX: LEAVE */
ram_wr32(fuc, 0x1002dc, 0x00000000);
ram_wr32(fuc, 0x1002d4, 0x00000001);
ram_wr32(fuc, 0x100210, 0x80000000);
ram_nsec(fuc, 1000);
ram_nsec(fuc, 1000);
ram_mask(fuc, mr[2], 0x00000000, 0x00000000);
ram_nsec(fuc, 1000);
ram_nuke(fuc, mr[0]);
ram_mask(fuc, mr[0], 0x00000000, 0x00000000);
ram_nsec(fuc, 1000);
ram_mask(fuc, 0x100220[3], 0x00000000, 0x00000000);
ram_mask(fuc, 0x100220[1], 0x00000000, 0x00000000);
ram_mask(fuc, 0x100220[6], 0x00000000, 0x00000000);
ram_mask(fuc, 0x100220[7], 0x00000000, 0x00000000);
ram_mask(fuc, 0x100220[2], 0x00000000, 0x00000000);
ram_mask(fuc, 0x100220[4], 0x00000000, 0x00000000);
ram_mask(fuc, 0x100220[5], 0x00000000, 0x00000000);
ram_mask(fuc, 0x100220[0], 0x00000000, 0x00000000);
ram_mask(fuc, 0x100220[8], 0x00000000, 0x00000000);
data = (nv_ro08(bios, ramcfg.data + 0x02) & 0x08) ? 0x00000000 : 0x00001000;
ram_mask(fuc, 0x100200, 0x00001000, data);
unk714 = ram_rd32(fuc, 0x100714) & ~0xf0000010;
unk718 = ram_rd32(fuc, 0x100718) & ~0x00000100;
unk71c = ram_rd32(fuc, 0x10071c) & ~0x00000100;
if ( (nv_ro08(bios, ramcfg.data + 0x02) & 0x20))
unk714 |= 0xf0000000;
if (!(nv_ro08(bios, ramcfg.data + 0x02) & 0x04))
unk714 |= 0x00000010;
ram_wr32(fuc, 0x100714, unk714);
if (nv_ro08(bios, ramcfg.data + 0x02) & 0x01)
unk71c |= 0x00000100;
ram_wr32(fuc, 0x10071c, unk71c);
if (nv_ro08(bios, ramcfg.data + 0x02) & 0x02)
unk718 |= 0x00000100;
ram_wr32(fuc, 0x100718, unk718);
if (nv_ro08(bios, ramcfg.data + 0x02) & 0x10)
ram_wr32(fuc, 0x111100, 0x48000000); /*XXX*/
ram_mask(fuc, mr[0], 0x100, 0x100);
ram_nsec(fuc, 1000);
ram_mask(fuc, mr[0], 0x100, 0x000);
ram_nsec(fuc, 1000);
ram_nsec(fuc, 2000);
ram_nsec(fuc, 12000);
ram_wr32(fuc, 0x611200, 0x00003330);
if ( (nv_ro08(bios, rammap.data + 0x04) & 0x02))
ram_mask(fuc, 0x100200, 0x00000800, 0x00000800);
if ( (nv_ro08(bios, ramcfg.data + 0x02) & 0x10)) {
ram_mask(fuc, 0x111104, 0x00000180, 0x00000180);
ram_mask(fuc, 0x111100, 0x40000000, 0x00000000);
} else {
ram_mask(fuc, 0x111104, 0x00000600, 0x00000600);
}
if (mclk.pll) {
ram_mask(fuc, 0x004168, 0x00000001, 0x00000000);
ram_mask(fuc, 0x004168, 0x00000100, 0x00000000);
} else {
ram_mask(fuc, 0x004000, 0x00000001, 0x00000000);
ram_mask(fuc, 0x004128, 0x00000001, 0x00000000);
ram_mask(fuc, 0x004128, 0x00000100, 0x00000000);
}
return 0;
}
static int
nva3_ram_prog(struct nouveau_fb *pfb)
{
struct nouveau_device *device = nv_device(pfb);
struct nva3_ram *ram = (void *)pfb->ram;
struct nva3_ramfuc *fuc = &ram->fuc;
ram_exec(fuc, nouveau_boolopt(device->cfgopt, "NvMemExec", false));
return 0;
}
static void
nva3_ram_tidy(struct nouveau_fb *pfb)
{
struct nva3_ram *ram = (void *)pfb->ram;
struct nva3_ramfuc *fuc = &ram->fuc;
ram_exec(fuc, false);
}
static int
nva3_ram_init(struct nouveau_object *object)
{
struct nouveau_fb *pfb = (void *)object->parent;
struct nva3_ram *ram = (void *)object;
int ret, i;
ret = nouveau_ram_init(&ram->base);
if (ret)
return ret;
/* prepare for ddr link training, and load training patterns */
switch (ram->base.type) {
case NV_MEM_TYPE_DDR3: {
static const u32 pattern[16] = {
0xaaaaaaaa, 0xcccccccc, 0xdddddddd, 0xeeeeeeee,
0x00000000, 0x11111111, 0x44444444, 0xdddddddd,
0x33333333, 0x55555555, 0x77777777, 0x66666666,
0x99999999, 0x88888888, 0xeeeeeeee, 0xbbbbbbbb,
};
nv_wr32(pfb, 0x100538, 0x10001ff6); /*XXX*/
nv_wr32(pfb, 0x1005a8, 0x0000ffff);
nv_mask(pfb, 0x10f800, 0x00000001, 0x00000001);
for (i = 0; i < 0x30; i++) {
nv_wr32(pfb, 0x10f8c0, (i << 8) | i);
nv_wr32(pfb, 0x10f8e0, (i << 8) | i);
nv_wr32(pfb, 0x10f900, pattern[i % 16]);
nv_wr32(pfb, 0x10f920, pattern[i % 16]);
}
}
break;
default:
break;
}
return 0;
}
static int
nva3_ram_ctor(struct nouveau_object *parent, struct nouveau_object *engine,
struct nouveau_oclass *oclass, void *data, u32 datasize,
struct nouveau_object **pobject)
{
struct nva3_ram *ram;
int ret;
int ret, i;
ret = nv50_ram_create(parent, engine, oclass, &ram);
*pobject = nv_object(ram);
if (ret)
return ret;
switch (ram->base.type) {
case NV_MEM_TYPE_DDR3:
ram->base.calc = nva3_ram_calc;
ram->base.prog = nva3_ram_prog;
ram->base.tidy = nva3_ram_tidy;
break;
default:
nv_warn(ram, "reclocking of this ram type unsupported\n");
return 0;
}
ram->fuc.r_0x004000 = ramfuc_reg(0x004000);
ram->fuc.r_0x004004 = ramfuc_reg(0x004004);
ram->fuc.r_0x004018 = ramfuc_reg(0x004018);
ram->fuc.r_0x004128 = ramfuc_reg(0x004128);
ram->fuc.r_0x004168 = ramfuc_reg(0x004168);
ram->fuc.r_0x100200 = ramfuc_reg(0x100200);
ram->fuc.r_0x100210 = ramfuc_reg(0x100210);
for (i = 0; i < 9; i++)
ram->fuc.r_0x100220[i] = ramfuc_reg(0x100220 + (i * 4));
ram->fuc.r_0x1002d0 = ramfuc_reg(0x1002d0);
ram->fuc.r_0x1002d4 = ramfuc_reg(0x1002d4);
ram->fuc.r_0x1002dc = ramfuc_reg(0x1002dc);
ram->fuc.r_0x10053c = ramfuc_reg(0x10053c);
ram->fuc.r_0x1005a0 = ramfuc_reg(0x1005a0);
ram->fuc.r_0x1005a4 = ramfuc_reg(0x1005a4);
ram->fuc.r_0x100714 = ramfuc_reg(0x100714);
ram->fuc.r_0x100718 = ramfuc_reg(0x100718);
ram->fuc.r_0x10071c = ramfuc_reg(0x10071c);
ram->fuc.r_0x100760 = ramfuc_reg(0x100760);
ram->fuc.r_0x1007a0 = ramfuc_reg(0x1007a0);
ram->fuc.r_0x1007e0 = ramfuc_reg(0x1007e0);
ram->fuc.r_0x10f804 = ramfuc_reg(0x10f804);
ram->fuc.r_0x1110e0 = ramfuc_reg(0x1110e0);
ram->fuc.r_0x111100 = ramfuc_reg(0x111100);
ram->fuc.r_0x111104 = ramfuc_reg(0x111104);
ram->fuc.r_0x611200 = ramfuc_reg(0x611200);
if (ram->base.ranks > 1) {
ram->fuc.r_mr[0] = ramfuc_reg2(0x1002c0, 0x1002c8);
ram->fuc.r_mr[1] = ramfuc_reg2(0x1002c4, 0x1002cc);
ram->fuc.r_mr[2] = ramfuc_reg2(0x1002e0, 0x1002e8);
ram->fuc.r_mr[3] = ramfuc_reg2(0x1002e4, 0x1002ec);
} else {
ram->fuc.r_mr[0] = ramfuc_reg(0x1002c0);
ram->fuc.r_mr[1] = ramfuc_reg(0x1002c4);
ram->fuc.r_mr[2] = ramfuc_reg(0x1002e0);
ram->fuc.r_mr[3] = ramfuc_reg(0x1002e4);
}
return 0;
}
......@@ -49,7 +441,7 @@ nva3_ram_oclass = {
.ofuncs = &(struct nouveau_ofuncs) {
.ctor = nva3_ram_ctor,
.dtor = _nouveau_ram_dtor,
.init = _nouveau_ram_init,
.init = nva3_ram_init,
.fini = _nouveau_ram_fini,
},
};
......@@ -23,10 +23,414 @@
*/
#include <subdev/bios.h>
#include <subdev/bios/bit.h>
#include <subdev/bios/pll.h>
#include <subdev/bios/rammap.h>
#include <subdev/bios/timing.h>
#include <subdev/ltcg.h>
#include "priv.h"
#include "nv50.h"
#include <subdev/clock.h>
#include <subdev/clock/pll.h>
#include <core/option.h>
#include "ramfuc.h"
#include "nvc0.h"
struct nvc0_ramfuc {
struct ramfuc base;
struct ramfuc_reg r_0x10fe20;
struct ramfuc_reg r_0x10fe24;
struct ramfuc_reg r_0x137320;
struct ramfuc_reg r_0x137330;
struct ramfuc_reg r_0x132000;
struct ramfuc_reg r_0x132004;
struct ramfuc_reg r_0x132100;
struct ramfuc_reg r_0x137390;
struct ramfuc_reg r_0x10f290;
struct ramfuc_reg r_0x10f294;
struct ramfuc_reg r_0x10f298;
struct ramfuc_reg r_0x10f29c;
struct ramfuc_reg r_0x10f2a0;
struct ramfuc_reg r_0x10f300;
struct ramfuc_reg r_0x10f338;
struct ramfuc_reg r_0x10f340;
struct ramfuc_reg r_0x10f344;
struct ramfuc_reg r_0x10f348;
struct ramfuc_reg r_0x10f910;
struct ramfuc_reg r_0x10f914;
struct ramfuc_reg r_0x100b0c;
struct ramfuc_reg r_0x10f050;
struct ramfuc_reg r_0x10f090;
struct ramfuc_reg r_0x10f200;
struct ramfuc_reg r_0x10f210;
struct ramfuc_reg r_0x10f310;
struct ramfuc_reg r_0x10f314;
struct ramfuc_reg r_0x10f610;
struct ramfuc_reg r_0x10f614;
struct ramfuc_reg r_0x10f800;
struct ramfuc_reg r_0x10f808;
struct ramfuc_reg r_0x10f824;
struct ramfuc_reg r_0x10f830;
struct ramfuc_reg r_0x10f988;
struct ramfuc_reg r_0x10f98c;
struct ramfuc_reg r_0x10f990;
struct ramfuc_reg r_0x10f998;
struct ramfuc_reg r_0x10f9b0;
struct ramfuc_reg r_0x10f9b4;
struct ramfuc_reg r_0x10fb04;
struct ramfuc_reg r_0x10fb08;
struct ramfuc_reg r_0x137300;
struct ramfuc_reg r_0x137310;
struct ramfuc_reg r_0x137360;
struct ramfuc_reg r_0x1373ec;
struct ramfuc_reg r_0x1373f0;
struct ramfuc_reg r_0x1373f8;
struct ramfuc_reg r_0x61c140;
struct ramfuc_reg r_0x611200;
struct ramfuc_reg r_0x13d8f4;
};
struct nvc0_ram {
struct nouveau_ram base;
struct nvc0_ramfuc fuc;
struct nvbios_pll refpll;
struct nvbios_pll mempll;
};
static void
nvc0_ram_train(struct nvc0_ramfuc *fuc, u32 magic)
{
struct nvc0_ram *ram = container_of(fuc, typeof(*ram), fuc);
struct nouveau_fb *pfb = nouveau_fb(ram);
u32 part = nv_rd32(pfb, 0x022438), i;
u32 mask = nv_rd32(pfb, 0x022554);
u32 addr = 0x110974;
ram_wr32(fuc, 0x10f910, magic);
ram_wr32(fuc, 0x10f914, magic);
for (i = 0; (magic & 0x80000000) && i < part; addr += 0x1000, i++) {
if (mask & (1 << i))
continue;
ram_wait(fuc, addr, 0x0000000f, 0x00000000, 500000);
}
}
static int
nvc0_ram_calc(struct nouveau_fb *pfb, u32 freq)
{
struct nouveau_clock *clk = nouveau_clock(pfb);
struct nouveau_bios *bios = nouveau_bios(pfb);
struct nvc0_ram *ram = (void *)pfb->ram;
struct nvc0_ramfuc *fuc = &ram->fuc;
struct bit_entry M;
u8 ver, cnt, strap;
u32 data;
struct {
u32 data;
u8 size;
} rammap, ramcfg, timing;
int ref, div, out;
int from, mode;
int N1, M1, P;
int ret;
/* lookup memory config data relevant to the target frequency */
rammap.data = nvbios_rammap_match(bios, freq / 1000, &ver, &rammap.size,
&cnt, &ramcfg.size);
if (!rammap.data || ver != 0x10 || rammap.size < 0x0e) {
nv_error(pfb, "invalid/missing rammap entry\n");
return -EINVAL;
}
/* locate specific data set for the attached memory */
if (bit_entry(bios, 'M', &M) || M.version != 2 || M.length < 3) {
nv_error(pfb, "invalid/missing memory table\n");
return -EINVAL;
}
strap = (nv_rd32(pfb, 0x101000) & 0x0000003c) >> 2;
data = nv_ro16(bios, M.offset + 1);
if (data)
strap = nv_ro08(bios, data + strap);
if (strap >= cnt) {
nv_error(pfb, "invalid ramcfg strap\n");
return -EINVAL;
}
ramcfg.data = rammap.data + rammap.size + (strap * ramcfg.size);
if (!ramcfg.data || ver != 0x10 || ramcfg.size < 0x0e) {
nv_error(pfb, "invalid/missing ramcfg entry\n");
return -EINVAL;
}
/* lookup memory timings, if bios says they're present */
strap = nv_ro08(bios, ramcfg.data + 0x01);
if (strap != 0xff) {
timing.data = nvbios_timing_entry(bios, strap, &ver,
&timing.size);
if (!timing.data || ver != 0x10 || timing.size < 0x19) {
nv_error(pfb, "invalid/missing timing entry\n");
return -EINVAL;
}
} else {
timing.data = 0;
}
ret = ram_init(fuc, pfb);
if (ret)
return ret;
/* determine current mclk configuration */
from = !!(ram_rd32(fuc, 0x1373f0) & 0x00000002); /*XXX: ok? */
/* determine target mclk configuration */
if (!(ram_rd32(fuc, 0x137300) & 0x00000100))
ref = clk->read(clk, nv_clk_src_sppll0);
else
ref = clk->read(clk, nv_clk_src_sppll1);
div = max(min((ref * 2) / freq, (u32)65), (u32)2) - 2;
out = (ref * 2) / (div + 2);
mode = freq != out;
ram_mask(fuc, 0x137360, 0x00000002, 0x00000000);
if ((ram_rd32(fuc, 0x132000) & 0x00000002) || 0 /*XXX*/) {
ram_nuke(fuc, 0x132000);
ram_mask(fuc, 0x132000, 0x00000002, 0x00000002);
ram_mask(fuc, 0x132000, 0x00000002, 0x00000000);
}
if (mode == 1) {
ram_nuke(fuc, 0x10fe20);
ram_mask(fuc, 0x10fe20, 0x00000002, 0x00000002);
ram_mask(fuc, 0x10fe20, 0x00000002, 0x00000000);
}
// 0x00020034 // 0x0000000a
ram_wr32(fuc, 0x132100, 0x00000001);
if (mode == 1 && from == 0) {
/* calculate refpll */
ret = nva3_pll_calc(nv_subdev(pfb), &ram->refpll,
ram->mempll.refclk, &N1, NULL, &M1, &P);
if (ret <= 0) {
nv_error(pfb, "unable to calc refpll\n");
return ret ? ret : -ERANGE;
}
ram_wr32(fuc, 0x10fe20, 0x20010000);
ram_wr32(fuc, 0x137320, 0x00000003);
ram_wr32(fuc, 0x137330, 0x81200006);
ram_wr32(fuc, 0x10fe24, (P << 16) | (N1 << 8) | M1);
ram_wr32(fuc, 0x10fe20, 0x20010001);
ram_wait(fuc, 0x137390, 0x00020000, 0x00020000, 64000);
/* calculate mempll */
ret = nva3_pll_calc(nv_subdev(pfb), &ram->mempll, freq,
&N1, NULL, &M1, &P);
if (ret <= 0) {
nv_error(pfb, "unable to calc refpll\n");
return ret ? ret : -ERANGE;
}
ram_wr32(fuc, 0x10fe20, 0x20010005);
ram_wr32(fuc, 0x132004, (P << 16) | (N1 << 8) | M1);
ram_wr32(fuc, 0x132000, 0x18010101);
ram_wait(fuc, 0x137390, 0x00000002, 0x00000002, 64000);
} else
if (mode == 0) {
ram_wr32(fuc, 0x137300, 0x00000003);
}
if (from == 0) {
ram_nuke(fuc, 0x10fb04);
ram_mask(fuc, 0x10fb04, 0x0000ffff, 0x00000000);
ram_nuke(fuc, 0x10fb08);
ram_mask(fuc, 0x10fb08, 0x0000ffff, 0x00000000);
ram_wr32(fuc, 0x10f988, 0x2004ff00);
ram_wr32(fuc, 0x10f98c, 0x003fc040);
ram_wr32(fuc, 0x10f990, 0x20012001);
ram_wr32(fuc, 0x10f998, 0x00011a00);
ram_wr32(fuc, 0x13d8f4, 0x00000000);
} else {
ram_wr32(fuc, 0x10f988, 0x20010000);
ram_wr32(fuc, 0x10f98c, 0x00000000);
ram_wr32(fuc, 0x10f990, 0x20012001);
ram_wr32(fuc, 0x10f998, 0x00010a00);
}
if (from == 0) {
// 0x00020039 // 0x000000ba
}
// 0x0002003a // 0x00000002
ram_wr32(fuc, 0x100b0c, 0x00080012);
// 0x00030014 // 0x00000000 // 0x02b5f070
// 0x00030014 // 0x00010000 // 0x02b5f070
ram_wr32(fuc, 0x611200, 0x00003300);
// 0x00020034 // 0x0000000a
// 0x00030020 // 0x00000001 // 0x00000000
ram_mask(fuc, 0x10f200, 0x00000800, 0x00000000);
ram_wr32(fuc, 0x10f210, 0x00000000);
ram_nsec(fuc, 1000);
if (mode == 0)
nvc0_ram_train(fuc, 0x000c1001);
ram_wr32(fuc, 0x10f310, 0x00000001);
ram_nsec(fuc, 1000);
ram_wr32(fuc, 0x10f090, 0x00000061);
ram_wr32(fuc, 0x10f090, 0xc000007f);
ram_nsec(fuc, 1000);
if (from == 0) {
ram_wr32(fuc, 0x10f824, 0x00007fd4);
} else {
ram_wr32(fuc, 0x1373ec, 0x00020404);
}
if (mode == 0) {
ram_mask(fuc, 0x10f808, 0x00080000, 0x00000000);
ram_mask(fuc, 0x10f200, 0x00008000, 0x00008000);
ram_wr32(fuc, 0x10f830, 0x41500010);
ram_mask(fuc, 0x10f830, 0x01000000, 0x00000000);
ram_mask(fuc, 0x132100, 0x00000100, 0x00000100);
ram_wr32(fuc, 0x10f050, 0xff000090);
ram_wr32(fuc, 0x1373ec, 0x00020f0f);
ram_wr32(fuc, 0x1373f0, 0x00000003);
ram_wr32(fuc, 0x137310, 0x81201616);
ram_wr32(fuc, 0x132100, 0x00000001);
// 0x00020039 // 0x000000ba
ram_wr32(fuc, 0x10f830, 0x00300017);
ram_wr32(fuc, 0x1373f0, 0x00000001);
ram_wr32(fuc, 0x10f824, 0x00007e77);
ram_wr32(fuc, 0x132000, 0x18030001);
ram_wr32(fuc, 0x10f090, 0x4000007e);
ram_nsec(fuc, 2000);
ram_wr32(fuc, 0x10f314, 0x00000001);
ram_wr32(fuc, 0x10f210, 0x80000000);
ram_wr32(fuc, 0x10f338, 0x00300220);
ram_wr32(fuc, 0x10f300, 0x0000011d);
ram_nsec(fuc, 1000);
ram_wr32(fuc, 0x10f290, 0x02060505);
ram_wr32(fuc, 0x10f294, 0x34208288);
ram_wr32(fuc, 0x10f298, 0x44050411);
ram_wr32(fuc, 0x10f29c, 0x0000114c);
ram_wr32(fuc, 0x10f2a0, 0x42e10069);
ram_wr32(fuc, 0x10f614, 0x40044f77);
ram_wr32(fuc, 0x10f610, 0x40044f77);
ram_wr32(fuc, 0x10f344, 0x00600009);
ram_nsec(fuc, 1000);
ram_wr32(fuc, 0x10f348, 0x00700008);
ram_wr32(fuc, 0x61c140, 0x19240000);
ram_wr32(fuc, 0x10f830, 0x00300017);
nvc0_ram_train(fuc, 0x80021001);
nvc0_ram_train(fuc, 0x80081001);
ram_wr32(fuc, 0x10f340, 0x00500004);
ram_nsec(fuc, 1000);
ram_wr32(fuc, 0x10f830, 0x01300017);
ram_wr32(fuc, 0x10f830, 0x00300017);
// 0x00030020 // 0x00000000 // 0x00000000
// 0x00020034 // 0x0000000b
ram_wr32(fuc, 0x100b0c, 0x00080028);
ram_wr32(fuc, 0x611200, 0x00003330);
} else {
ram_wr32(fuc, 0x10f800, 0x00001800);
ram_wr32(fuc, 0x13d8f4, 0x00000000);
ram_wr32(fuc, 0x1373ec, 0x00020404);
ram_wr32(fuc, 0x1373f0, 0x00000003);
ram_wr32(fuc, 0x10f830, 0x40700010);
ram_wr32(fuc, 0x10f830, 0x40500010);
ram_wr32(fuc, 0x13d8f4, 0x00000000);
ram_wr32(fuc, 0x1373f8, 0x00000000);
ram_wr32(fuc, 0x132100, 0x00000101);
ram_wr32(fuc, 0x137310, 0x89201616);
ram_wr32(fuc, 0x10f050, 0xff000090);
ram_wr32(fuc, 0x1373ec, 0x00030404);
ram_wr32(fuc, 0x1373f0, 0x00000002);
// 0x00020039 // 0x00000011
ram_wr32(fuc, 0x132100, 0x00000001);
ram_wr32(fuc, 0x1373f8, 0x00002000);
ram_nsec(fuc, 2000);
ram_wr32(fuc, 0x10f808, 0x7aaa0050);
ram_wr32(fuc, 0x10f830, 0x00500010);
ram_wr32(fuc, 0x10f200, 0x00ce1000);
ram_wr32(fuc, 0x10f090, 0x4000007e);
ram_nsec(fuc, 2000);
ram_wr32(fuc, 0x10f314, 0x00000001);
ram_wr32(fuc, 0x10f210, 0x80000000);
ram_wr32(fuc, 0x10f338, 0x00300200);
ram_wr32(fuc, 0x10f300, 0x0000084d);
ram_nsec(fuc, 1000);
ram_wr32(fuc, 0x10f290, 0x0b343825);
ram_wr32(fuc, 0x10f294, 0x3483028e);
ram_wr32(fuc, 0x10f298, 0x440c0600);
ram_wr32(fuc, 0x10f29c, 0x0000214c);
ram_wr32(fuc, 0x10f2a0, 0x42e20069);
ram_wr32(fuc, 0x10f200, 0x00ce0000);
ram_wr32(fuc, 0x10f614, 0x60044e77);
ram_wr32(fuc, 0x10f610, 0x60044e77);
ram_wr32(fuc, 0x10f340, 0x00500000);
ram_nsec(fuc, 1000);
ram_wr32(fuc, 0x10f344, 0x00600228);
ram_nsec(fuc, 1000);
ram_wr32(fuc, 0x10f348, 0x00700000);
ram_wr32(fuc, 0x13d8f4, 0x00000000);
ram_wr32(fuc, 0x61c140, 0x09a40000);
nvc0_ram_train(fuc, 0x800e1008);
ram_nsec(fuc, 1000);
ram_wr32(fuc, 0x10f800, 0x00001804);
// 0x00030020 // 0x00000000 // 0x00000000
// 0x00020034 // 0x0000000b
ram_wr32(fuc, 0x13d8f4, 0x00000000);
ram_wr32(fuc, 0x100b0c, 0x00080028);
ram_wr32(fuc, 0x611200, 0x00003330);
ram_nsec(fuc, 100000);
ram_wr32(fuc, 0x10f9b0, 0x05313f41);
ram_wr32(fuc, 0x10f9b4, 0x00002f50);
nvc0_ram_train(fuc, 0x010c1001);
}
ram_mask(fuc, 0x10f200, 0x00000800, 0x00000800);
// 0x00020016 // 0x00000000
if (mode == 0)
ram_mask(fuc, 0x132000, 0x00000001, 0x00000000);
return 0;
}
static int
nvc0_ram_prog(struct nouveau_fb *pfb)
{
struct nouveau_device *device = nv_device(pfb);
struct nvc0_ram *ram = (void *)pfb->ram;
struct nvc0_ramfuc *fuc = &ram->fuc;
ram_exec(fuc, nouveau_boolopt(device->cfgopt, "NvMemExec", false));
return 0;
}
static void
nvc0_ram_tidy(struct nouveau_fb *pfb)
{
struct nvc0_ram *ram = (void *)pfb->ram;
struct nvc0_ramfuc *fuc = &ram->fuc;
ram_exec(fuc, false);
}
extern const u8 nvc0_pte_storage_type_map[256];
......@@ -111,10 +515,9 @@ nvc0_ram_get(struct nouveau_fb *pfb, u64 size, u32 align, u32 ncmin,
return 0;
}
static int
nvc0_ram_create(struct nouveau_object *parent, struct nouveau_object *engine,
struct nouveau_oclass *oclass, void *data, u32 size,
struct nouveau_object **pobject)
int
nvc0_ram_create_(struct nouveau_object *parent, struct nouveau_object *engine,
struct nouveau_oclass *oclass, int size, void **pobject)
{
struct nouveau_fb *pfb = nouveau_fb(parent);
struct nouveau_bios *bios = nouveau_bios(pfb);
......@@ -128,8 +531,8 @@ nvc0_ram_create(struct nouveau_object *parent, struct nouveau_object *engine,
bool uniform = true;
int ret, part;
ret = nouveau_ram_create(parent, engine, oclass, &ram);
*pobject = nv_object(ram);
ret = nouveau_ram_create_(parent, engine, oclass, size, pobject);
ram = *pobject;
if (ret)
return ret;
......@@ -183,13 +586,158 @@ nvc0_ram_create(struct nouveau_object *parent, struct nouveau_object *engine,
return 0;
}
static int
nvc0_ram_init(struct nouveau_object *object)
{
struct nouveau_fb *pfb = (void *)object->parent;
struct nvc0_ram *ram = (void *)object;
int ret, i;
ret = nouveau_ram_init(&ram->base);
if (ret)
return ret;
/* prepare for ddr link training, and load training patterns */
switch (ram->base.type) {
case NV_MEM_TYPE_GDDR5: {
static const u8 train0[] = {
0x00, 0xff, 0x55, 0xaa, 0x33, 0xcc,
0x00, 0xff, 0xff, 0x00, 0xff, 0x00,
};
static const u32 train1[] = {
0x00000000, 0xffffffff,
0x55555555, 0xaaaaaaaa,
0x33333333, 0xcccccccc,
0xf0f0f0f0, 0x0f0f0f0f,
0x00ff00ff, 0xff00ff00,
0x0000ffff, 0xffff0000,
};
for (i = 0; i < 0x30; i++) {
nv_wr32(pfb, 0x10f968, 0x00000000 | (i << 8));
nv_wr32(pfb, 0x10f96c, 0x00000000 | (i << 8));
nv_wr32(pfb, 0x10f920, 0x00000100 | train0[i % 12]);
nv_wr32(pfb, 0x10f924, 0x00000100 | train0[i % 12]);
nv_wr32(pfb, 0x10f918, train1[i % 12]);
nv_wr32(pfb, 0x10f91c, train1[i % 12]);
nv_wr32(pfb, 0x10f920, 0x00000000 | train0[i % 12]);
nv_wr32(pfb, 0x10f924, 0x00000000 | train0[i % 12]);
nv_wr32(pfb, 0x10f918, train1[i % 12]);
nv_wr32(pfb, 0x10f91c, train1[i % 12]);
}
} break;
default:
break;
}
return 0;
}
static int
nvc0_ram_ctor(struct nouveau_object *parent, struct nouveau_object *engine,
struct nouveau_oclass *oclass, void *data, u32 size,
struct nouveau_object **pobject)
{
struct nouveau_bios *bios = nouveau_bios(parent);
struct nvc0_ram *ram;
int ret;
ret = nvc0_ram_create(parent, engine, oclass, &ram);
*pobject = nv_object(ram);
if (ret)
return ret;
ret = nvbios_pll_parse(bios, 0x0c, &ram->refpll);
if (ret) {
nv_error(ram, "mclk refpll data not found\n");
return ret;
}
ret = nvbios_pll_parse(bios, 0x04, &ram->mempll);
if (ret) {
nv_error(ram, "mclk pll data not found\n");
return ret;
}
switch (ram->base.type) {
case NV_MEM_TYPE_GDDR5:
ram->base.calc = nvc0_ram_calc;
ram->base.prog = nvc0_ram_prog;
ram->base.tidy = nvc0_ram_tidy;
break;
default:
nv_warn(ram, "reclocking of this ram type unsupported\n");
return 0;
}
ram->fuc.r_0x10fe20 = ramfuc_reg(0x10fe20);
ram->fuc.r_0x10fe24 = ramfuc_reg(0x10fe24);
ram->fuc.r_0x137320 = ramfuc_reg(0x137320);
ram->fuc.r_0x137330 = ramfuc_reg(0x137330);
ram->fuc.r_0x132000 = ramfuc_reg(0x132000);
ram->fuc.r_0x132004 = ramfuc_reg(0x132004);
ram->fuc.r_0x132100 = ramfuc_reg(0x132100);
ram->fuc.r_0x137390 = ramfuc_reg(0x137390);
ram->fuc.r_0x10f290 = ramfuc_reg(0x10f290);
ram->fuc.r_0x10f294 = ramfuc_reg(0x10f294);
ram->fuc.r_0x10f298 = ramfuc_reg(0x10f298);
ram->fuc.r_0x10f29c = ramfuc_reg(0x10f29c);
ram->fuc.r_0x10f2a0 = ramfuc_reg(0x10f2a0);
ram->fuc.r_0x10f300 = ramfuc_reg(0x10f300);
ram->fuc.r_0x10f338 = ramfuc_reg(0x10f338);
ram->fuc.r_0x10f340 = ramfuc_reg(0x10f340);
ram->fuc.r_0x10f344 = ramfuc_reg(0x10f344);
ram->fuc.r_0x10f348 = ramfuc_reg(0x10f348);
ram->fuc.r_0x10f910 = ramfuc_reg(0x10f910);
ram->fuc.r_0x10f914 = ramfuc_reg(0x10f914);
ram->fuc.r_0x100b0c = ramfuc_reg(0x100b0c);
ram->fuc.r_0x10f050 = ramfuc_reg(0x10f050);
ram->fuc.r_0x10f090 = ramfuc_reg(0x10f090);
ram->fuc.r_0x10f200 = ramfuc_reg(0x10f200);
ram->fuc.r_0x10f210 = ramfuc_reg(0x10f210);
ram->fuc.r_0x10f310 = ramfuc_reg(0x10f310);
ram->fuc.r_0x10f314 = ramfuc_reg(0x10f314);
ram->fuc.r_0x10f610 = ramfuc_reg(0x10f610);
ram->fuc.r_0x10f614 = ramfuc_reg(0x10f614);
ram->fuc.r_0x10f800 = ramfuc_reg(0x10f800);
ram->fuc.r_0x10f808 = ramfuc_reg(0x10f808);
ram->fuc.r_0x10f824 = ramfuc_reg(0x10f824);
ram->fuc.r_0x10f830 = ramfuc_reg(0x10f830);
ram->fuc.r_0x10f988 = ramfuc_reg(0x10f988);
ram->fuc.r_0x10f98c = ramfuc_reg(0x10f98c);
ram->fuc.r_0x10f990 = ramfuc_reg(0x10f990);
ram->fuc.r_0x10f998 = ramfuc_reg(0x10f998);
ram->fuc.r_0x10f9b0 = ramfuc_reg(0x10f9b0);
ram->fuc.r_0x10f9b4 = ramfuc_reg(0x10f9b4);
ram->fuc.r_0x10fb04 = ramfuc_reg(0x10fb04);
ram->fuc.r_0x10fb08 = ramfuc_reg(0x10fb08);
ram->fuc.r_0x137310 = ramfuc_reg(0x137300);
ram->fuc.r_0x137310 = ramfuc_reg(0x137310);
ram->fuc.r_0x137360 = ramfuc_reg(0x137360);
ram->fuc.r_0x1373ec = ramfuc_reg(0x1373ec);
ram->fuc.r_0x1373f0 = ramfuc_reg(0x1373f0);
ram->fuc.r_0x1373f8 = ramfuc_reg(0x1373f8);
ram->fuc.r_0x61c140 = ramfuc_reg(0x61c140);
ram->fuc.r_0x611200 = ramfuc_reg(0x611200);
ram->fuc.r_0x13d8f4 = ramfuc_reg(0x13d8f4);
return 0;
}
struct nouveau_oclass
nvc0_ram_oclass = {
.handle = 0,
.ofuncs = &(struct nouveau_ofuncs) {
.ctor = nvc0_ram_create,
.ctor = nvc0_ram_ctor,
.dtor = _nouveau_ram_dtor,
.init = _nouveau_ram_init,
.init = nvc0_ram_init,
.fini = _nouveau_ram_fini,
}
};
/*
* Copyright 2013 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs
*/
#include <subdev/gpio.h>
#include <subdev/bios.h>
#include <subdev/bios/bit.h>
#include <subdev/bios/pll.h>
#include <subdev/bios/init.h>
#include <subdev/bios/rammap.h>
#include <subdev/bios/timing.h>
#include <subdev/clock.h>
#include <subdev/clock/pll.h>
#include <subdev/timer.h>
#include <core/option.h>
#include "nvc0.h"
#include "ramfuc.h"
struct nve0_ramfuc {
struct ramfuc base;
struct nvbios_pll refpll;
struct nvbios_pll mempll;
struct ramfuc_reg r_gpioMV;
u32 r_funcMV[2];
struct ramfuc_reg r_gpio2E;
u32 r_func2E[2];
struct ramfuc_reg r_gpiotrig;
struct ramfuc_reg r_0x132020;
struct ramfuc_reg r_0x132028;
struct ramfuc_reg r_0x132024;
struct ramfuc_reg r_0x132030;
struct ramfuc_reg r_0x132034;
struct ramfuc_reg r_0x132000;
struct ramfuc_reg r_0x132004;
struct ramfuc_reg r_0x132040;
struct ramfuc_reg r_0x10f248;
struct ramfuc_reg r_0x10f290;
struct ramfuc_reg r_0x10f294;
struct ramfuc_reg r_0x10f298;
struct ramfuc_reg r_0x10f29c;
struct ramfuc_reg r_0x10f2a0;
struct ramfuc_reg r_0x10f2a4;
struct ramfuc_reg r_0x10f2a8;
struct ramfuc_reg r_0x10f2ac;
struct ramfuc_reg r_0x10f2cc;
struct ramfuc_reg r_0x10f2e8;
struct ramfuc_reg r_0x10f250;
struct ramfuc_reg r_0x10f24c;
struct ramfuc_reg r_0x10fec4;
struct ramfuc_reg r_0x10fec8;
struct ramfuc_reg r_0x10f604;
struct ramfuc_reg r_0x10f614;
struct ramfuc_reg r_0x10f610;
struct ramfuc_reg r_0x100770;
struct ramfuc_reg r_0x100778;
struct ramfuc_reg r_0x10f224;
struct ramfuc_reg r_0x10f870;
struct ramfuc_reg r_0x10f698;
struct ramfuc_reg r_0x10f694;
struct ramfuc_reg r_0x10f6b8;
struct ramfuc_reg r_0x10f808;
struct ramfuc_reg r_0x10f670;
struct ramfuc_reg r_0x10f60c;
struct ramfuc_reg r_0x10f830;
struct ramfuc_reg r_0x1373ec;
struct ramfuc_reg r_0x10f800;
struct ramfuc_reg r_0x10f82c;
struct ramfuc_reg r_0x10f978;
struct ramfuc_reg r_0x10f910;
struct ramfuc_reg r_0x10f914;
struct ramfuc_reg r_mr[16]; /* MR0 - MR8, MR15 */
struct ramfuc_reg r_0x62c000;
struct ramfuc_reg r_0x10f200;
struct ramfuc_reg r_0x10f210;
struct ramfuc_reg r_0x10f310;
struct ramfuc_reg r_0x10f314;
struct ramfuc_reg r_0x10f318;
struct ramfuc_reg r_0x10f090;
struct ramfuc_reg r_0x10f69c;
struct ramfuc_reg r_0x10f824;
struct ramfuc_reg r_0x1373f0;
struct ramfuc_reg r_0x1373f4;
struct ramfuc_reg r_0x137320;
struct ramfuc_reg r_0x10f65c;
struct ramfuc_reg r_0x10f6bc;
struct ramfuc_reg r_0x100710;
struct ramfuc_reg r_0x10f750;
};
struct nve0_ram {
struct nouveau_ram base;
struct nve0_ramfuc fuc;
int from;
int mode;
int N1, fN1, M1, P1;
int N2, M2, P2;
};
/*******************************************************************************
* GDDR5
******************************************************************************/
static void
train(struct nve0_ramfuc *fuc, u32 magic)
{
struct nve0_ram *ram = container_of(fuc, typeof(*ram), fuc);
struct nouveau_fb *pfb = nouveau_fb(ram);
const int mc = nv_rd32(pfb, 0x02243c);
int i;
ram_mask(fuc, 0x10f910, 0xbc0e0000, magic);
ram_mask(fuc, 0x10f914, 0xbc0e0000, magic);
for (i = 0; i < mc; i++) {
const u32 addr = 0x110974 + (i * 0x1000);
ram_wait(fuc, addr, 0x0000000f, 0x00000000, 500000);
}
}
static void
r1373f4_init(struct nve0_ramfuc *fuc)
{
struct nve0_ram *ram = container_of(fuc, typeof(*ram), fuc);
const u32 mcoef = ((--ram->P2 << 28) | (ram->N2 << 8) | ram->M2);
const u32 rcoef = (( ram->P1 << 16) | (ram->N1 << 8) | ram->M1);
const u32 runk0 = ram->fN1 << 16;
const u32 runk1 = ram->fN1;
if (ram->from == 2) {
ram_mask(fuc, 0x1373f4, 0x00000000, 0x00001100);
ram_mask(fuc, 0x1373f4, 0x00000000, 0x00000010);
} else {
ram_mask(fuc, 0x1373f4, 0x00000000, 0x00010010);
}
ram_mask(fuc, 0x1373f4, 0x00000003, 0x00000000);
ram_mask(fuc, 0x1373f4, 0x00000010, 0x00000000);
/* (re)program refpll, if required */
if ((ram_rd32(fuc, 0x132024) & 0xffffffff) != rcoef ||
(ram_rd32(fuc, 0x132034) & 0x0000ffff) != runk1) {
ram_mask(fuc, 0x132000, 0x00000001, 0x00000000);
ram_mask(fuc, 0x132020, 0x00000001, 0x00000000);
ram_wr32(fuc, 0x137320, 0x00000000);
ram_mask(fuc, 0x132030, 0xffff0000, runk0);
ram_mask(fuc, 0x132034, 0x0000ffff, runk1);
ram_wr32(fuc, 0x132024, rcoef);
ram_mask(fuc, 0x132028, 0x00080000, 0x00080000);
ram_mask(fuc, 0x132020, 0x00000001, 0x00000001);
ram_wait(fuc, 0x137390, 0x00020000, 0x00020000, 64000);
ram_mask(fuc, 0x132028, 0x00080000, 0x00000000);
}
/* (re)program mempll, if required */
if (ram->mode == 2) {
ram_mask(fuc, 0x1373f4, 0x00010000, 0x00000000);
ram_mask(fuc, 0x132000, 0x00000001, 0x00000000);
ram_mask(fuc, 0x132004, 0x103fffff, mcoef);
ram_mask(fuc, 0x132000, 0x00000001, 0x00000001);
ram_wait(fuc, 0x137390, 0x00000002, 0x00000002, 64000);
ram_mask(fuc, 0x1373f4, 0x00000000, 0x00001100);
} else {
ram_mask(fuc, 0x1373f4, 0x00000000, 0x00010100);
}
ram_mask(fuc, 0x1373f4, 0x00000000, 0x00000010);
}
static void
r1373f4_fini(struct nve0_ramfuc *fuc, u32 ramcfg)
{
struct nve0_ram *ram = container_of(fuc, typeof(*ram), fuc);
struct nouveau_bios *bios = nouveau_bios(ram);
u8 v0 = (nv_ro08(bios, ramcfg + 0x03) & 0xc0) >> 6;
u8 v1 = (nv_ro08(bios, ramcfg + 0x03) & 0x30) >> 4;
u32 tmp;
tmp = ram_rd32(fuc, 0x1373ec) & ~0x00030000;
ram_wr32(fuc, 0x1373ec, tmp | (v1 << 16));
ram_mask(fuc, 0x1373f0, (~ram->mode & 3), 0x00000000);
if (ram->mode == 2) {
ram_mask(fuc, 0x1373f4, 0x00000003, 0x000000002);
ram_mask(fuc, 0x1373f4, 0x00001100, 0x000000000);
} else {
ram_mask(fuc, 0x1373f4, 0x00000003, 0x000000001);
ram_mask(fuc, 0x1373f4, 0x00010000, 0x000000000);
}
ram_mask(fuc, 0x10f800, 0x00000030, (v0 ^ v1) << 4);
}
static int
nve0_ram_calc_gddr5(struct nouveau_fb *pfb, u32 freq)
{
struct nouveau_bios *bios = nouveau_bios(pfb);
struct nve0_ram *ram = (void *)pfb->ram;
struct nve0_ramfuc *fuc = &ram->fuc;
const u32 rammap = ram->base.rammap.data;
const u32 ramcfg = ram->base.ramcfg.data;
const u32 timing = ram->base.timing.data;
int vc = !(nv_ro08(bios, ramcfg + 0x02) & 0x08);
int mv = 1; /*XXX*/
u32 mask, data;
ram_mask(fuc, 0x10f808, 0x40000000, 0x40000000);
ram_wr32(fuc, 0x62c000, 0x0f0f0000);
/* MR1: turn termination on early, for some reason.. */
if ((ram->base.mr[1] & 0x03c) != 0x030)
ram_mask(fuc, mr[1], 0x03c, ram->base.mr[1] & 0x03c);
if (vc == 1 && ram_have(fuc, gpio2E)) {
u32 temp = ram_mask(fuc, gpio2E, 0x3000, fuc->r_func2E[1]);
if (temp != ram_rd32(fuc, gpio2E)) {
ram_wr32(fuc, gpiotrig, 1);
ram_nsec(fuc, 20000);
}
}
ram_mask(fuc, 0x10f200, 0x00000800, 0x00000000);
ram_mask(fuc, 0x10f914, 0x01020000, 0x000c0000);
ram_mask(fuc, 0x10f910, 0x01020000, 0x000c0000);
ram_wr32(fuc, 0x10f210, 0x00000000); /* REFRESH_AUTO = 0 */
ram_nsec(fuc, 1000);
ram_wr32(fuc, 0x10f310, 0x00000001); /* REFRESH */
ram_nsec(fuc, 1000);
ram_mask(fuc, 0x10f200, 0x80000000, 0x80000000);
ram_wr32(fuc, 0x10f314, 0x00000001); /* PRECHARGE */
ram_mask(fuc, 0x10f200, 0x80000000, 0x00000000);
ram_wr32(fuc, 0x10f090, 0x00000061);
ram_wr32(fuc, 0x10f090, 0xc000007f);
ram_nsec(fuc, 1000);
ram_wr32(fuc, 0x10f698, 0x00000000);
ram_wr32(fuc, 0x10f69c, 0x00000000);
/*XXX: there does appear to be some kind of condition here, simply
* modifying these bits in the vbios from the default pl0
* entries shows no change. however, the data does appear to
* be correct and may be required for the transition back
*/
mask = 0x800f07e0;
data = 0x00030000;
if (ram_rd32(fuc, 0x10f978) & 0x00800000)
data |= 0x00040000;
if (1) {
data |= 0x800807e0;
switch (nv_ro08(bios, ramcfg + 0x03) & 0xc0) {
case 0xc0: data &= ~0x00000040; break;
case 0x80: data &= ~0x00000100; break;
case 0x40: data &= ~0x80000000; break;
case 0x00: data &= ~0x00000400; break;
}
switch (nv_ro08(bios, ramcfg + 0x03) & 0x30) {
case 0x30: data &= ~0x00000020; break;
case 0x20: data &= ~0x00000080; break;
case 0x10: data &= ~0x00080000; break;
case 0x00: data &= ~0x00000200; break;
}
}
if (nv_ro08(bios, ramcfg + 0x02) & 0x80)
mask |= 0x03000000;
if (nv_ro08(bios, ramcfg + 0x02) & 0x40)
mask |= 0x00002000;
if (nv_ro08(bios, ramcfg + 0x07) & 0x10)
mask |= 0x00004000;
if (nv_ro08(bios, ramcfg + 0x07) & 0x08)
mask |= 0x00000003;
else {
mask |= 0x34000000;
if (ram_rd32(fuc, 0x10f978) & 0x00800000)
mask |= 0x40000000;
}
ram_mask(fuc, 0x10f824, mask, data);
ram_mask(fuc, 0x132040, 0x00010000, 0x00000000);
if (ram->from == 2 && ram->mode != 2) {
ram_mask(fuc, 0x10f808, 0x00080000, 0x00000000);
ram_mask(fuc, 0x10f200, 0x00008000, 0x00008000);
ram_mask(fuc, 0x10f800, 0x00000000, 0x00000004);
ram_mask(fuc, 0x10f830, 0x00008000, 0x01040010);
ram_mask(fuc, 0x10f830, 0x01000000, 0x00000000);
r1373f4_init(fuc);
ram_mask(fuc, 0x1373f0, 0x00000002, 0x00000001);
r1373f4_fini(fuc, ramcfg);
ram_mask(fuc, 0x10f830, 0x00c00000, 0x00240001);
} else
if (ram->from != 2 && ram->mode != 2) {
r1373f4_init(fuc);
r1373f4_fini(fuc, ramcfg);
}
if (ram_have(fuc, gpioMV)) {
u32 temp = ram_mask(fuc, gpioMV, 0x3000, fuc->r_funcMV[mv]);
if (temp != ram_rd32(fuc, gpioMV)) {
ram_wr32(fuc, gpiotrig, 1);
ram_nsec(fuc, 64000);
}
}
if ( (nv_ro08(bios, ramcfg + 0x02) & 0x40) ||
(nv_ro08(bios, ramcfg + 0x07) & 0x10)) {
ram_mask(fuc, 0x132040, 0x00010000, 0x00010000);
ram_nsec(fuc, 20000);
}
if (ram->from != 2 && ram->mode == 2) {
ram_mask(fuc, 0x10f800, 0x00000004, 0x00000000);
ram_mask(fuc, 0x1373f0, 0x00000000, 0x00000002);
ram_mask(fuc, 0x10f830, 0x00800001, 0x00408010);
r1373f4_init(fuc);
r1373f4_fini(fuc, ramcfg);
ram_mask(fuc, 0x10f808, 0x00000000, 0x00080000);
ram_mask(fuc, 0x10f200, 0x00808000, 0x00800000);
} else
if (ram->from == 2 && ram->mode == 2) {
ram_mask(fuc, 0x10f800, 0x00000004, 0x00000000);
r1373f4_init(fuc);
r1373f4_fini(fuc, ramcfg);
}
if (ram->mode != 2) /*XXX*/ {
if (nv_ro08(bios, ramcfg + 0x07) & 0x40)
ram_mask(fuc, 0x10f670, 0x80000000, 0x80000000);
}
data = (nv_ro08(bios, rammap + 0x11) & 0x0c) >> 2;
ram_wr32(fuc, 0x10f65c, 0x00000011 * data);
ram_wr32(fuc, 0x10f6b8, 0x01010101 * nv_ro08(bios, ramcfg + 0x09));
ram_wr32(fuc, 0x10f6bc, 0x01010101 * nv_ro08(bios, ramcfg + 0x09));
data = nv_ro08(bios, ramcfg + 0x04);
if (!(nv_ro08(bios, ramcfg + 0x07) & 0x08)) {
ram_wr32(fuc, 0x10f698, 0x01010101 * data);
ram_wr32(fuc, 0x10f69c, 0x01010101 * data);
}
if (ram->mode != 2) {
u32 temp = ram_rd32(fuc, 0x10f694) & ~0xff00ff00;
ram_wr32(fuc, 0x10f694, temp | (0x01000100 * data));
}
if (ram->mode == 2 && (nv_ro08(bios, ramcfg + 0x08) & 0x10))
data = 0x00000080;
else
data = 0x00000000;
ram_mask(fuc, 0x10f60c, 0x00000080, data);
mask = 0x00070000;
data = 0x00000000;
if (!(nv_ro08(bios, ramcfg + 0x02) & 0x80))
data |= 0x03000000;
if (!(nv_ro08(bios, ramcfg + 0x02) & 0x40))
data |= 0x00002000;
if (!(nv_ro08(bios, ramcfg + 0x07) & 0x10))
data |= 0x00004000;
if (!(nv_ro08(bios, ramcfg + 0x07) & 0x08))
data |= 0x00000003;
else
data |= 0x74000000;
ram_mask(fuc, 0x10f824, mask, data);
if (nv_ro08(bios, ramcfg + 0x01) & 0x08)
data = 0x00000000;
else
data = 0x00001000;
ram_mask(fuc, 0x10f200, 0x00001000, data);
if (ram_rd32(fuc, 0x10f670) & 0x80000000) {
ram_nsec(fuc, 10000);
ram_mask(fuc, 0x10f670, 0x80000000, 0x00000000);
}
if (nv_ro08(bios, ramcfg + 0x08) & 0x01)
data = 0x00100000;
else
data = 0x00000000;
ram_mask(fuc, 0x10f82c, 0x00100000, data);
data = 0x00000000;
if (nv_ro08(bios, ramcfg + 0x08) & 0x08)
data |= 0x00002000;
if (nv_ro08(bios, ramcfg + 0x08) & 0x04)
data |= 0x00001000;
if (nv_ro08(bios, ramcfg + 0x08) & 0x02)
data |= 0x00004000;
ram_mask(fuc, 0x10f830, 0x00007000, data);
/* PFB timing */
ram_mask(fuc, 0x10f248, 0xffffffff, nv_ro32(bios, timing + 0x28));
ram_mask(fuc, 0x10f290, 0xffffffff, nv_ro32(bios, timing + 0x00));
ram_mask(fuc, 0x10f294, 0xffffffff, nv_ro32(bios, timing + 0x04));
ram_mask(fuc, 0x10f298, 0xffffffff, nv_ro32(bios, timing + 0x08));
ram_mask(fuc, 0x10f29c, 0xffffffff, nv_ro32(bios, timing + 0x0c));
ram_mask(fuc, 0x10f2a0, 0xffffffff, nv_ro32(bios, timing + 0x10));
ram_mask(fuc, 0x10f2a4, 0xffffffff, nv_ro32(bios, timing + 0x14));
ram_mask(fuc, 0x10f2a8, 0xffffffff, nv_ro32(bios, timing + 0x18));
ram_mask(fuc, 0x10f2ac, 0xffffffff, nv_ro32(bios, timing + 0x1c));
ram_mask(fuc, 0x10f2cc, 0xffffffff, nv_ro32(bios, timing + 0x20));
ram_mask(fuc, 0x10f2e8, 0xffffffff, nv_ro32(bios, timing + 0x24));
data = (nv_ro08(bios, ramcfg + 0x02) & 0x03) << 8;
if (nv_ro08(bios, ramcfg + 0x01) & 0x10)
data |= 0x70000000;
ram_mask(fuc, 0x10f604, 0x70000300, data);
data = (nv_ro08(bios, timing + 0x30) & 0x07) << 28;
if (nv_ro08(bios, ramcfg + 0x01) & 0x01)
data |= 0x00000100;
ram_mask(fuc, 0x10f614, 0x70000000, data);
data = (nv_ro08(bios, timing + 0x30) & 0x07) << 28;
if (nv_ro08(bios, ramcfg + 0x01) & 0x02)
data |= 0x00000100;
ram_mask(fuc, 0x10f610, 0x70000000, data);
mask = 0x33f00000;
data = 0x00000000;
if (!(nv_ro08(bios, ramcfg + 0x01) & 0x04))
data |= 0x20200000;
if (!(nv_ro08(bios, ramcfg + 0x07) & 0x80))
data |= 0x12800000;
/*XXX: see note above about there probably being some condition
* for the 10f824 stuff that uses ramcfg 3...
*/
if ( (nv_ro08(bios, ramcfg + 0x03) & 0xf0)) {
if (nv_ro08(bios, rammap + 0x08) & 0x0c) {
if (!(nv_ro08(bios, ramcfg + 0x07) & 0x80))
mask |= 0x00000020;
else
data |= 0x00000020;
mask |= 0x00000004;
}
} else {
mask |= 0x40000020;
data |= 0x00000004;
}
ram_mask(fuc, 0x10f808, mask, data);
data = nv_ro08(bios, ramcfg + 0x03) & 0x0f;
ram_wr32(fuc, 0x10f870, 0x11111111 * data);
data = nv_ro08(bios, ramcfg + 0x02) & 0x03;
if (nv_ro08(bios, ramcfg + 0x01) & 0x10)
data |= 0x00000004;
if ((nv_rd32(bios, 0x100770) & 0x00000004) != (data & 0x00000004)) {
ram_wr32(fuc, 0x10f750, 0x04000009);
ram_wr32(fuc, 0x100710, 0x00000000);
ram_wait(fuc, 0x100710, 0x80000000, 0x80000000, 200000);
}
ram_mask(fuc, 0x100770, 0x00000007, data);
data = (nv_ro08(bios, timing + 0x30) & 0x07) << 8;
if (nv_ro08(bios, ramcfg + 0x01) & 0x01)
data |= 0x80000000;
ram_mask(fuc, 0x100778, 0x00000700, data);
data = nv_ro16(bios, timing + 0x2c);
ram_mask(fuc, 0x10f250, 0x000003f0, (data & 0x003f) << 4);
ram_mask(fuc, 0x10f24c, 0x7f000000, (data & 0x1fc0) << 18);
data = nv_ro08(bios, timing + 0x30);
ram_mask(fuc, 0x10f224, 0x001f0000, (data & 0xf8) << 13);
data = nv_ro16(bios, timing + 0x31);
ram_mask(fuc, 0x10fec4, 0x041e0f07, (data & 0x0800) << 15 |
(data & 0x0780) << 10 |
(data & 0x0078) << 5 |
(data & 0x0007));
ram_mask(fuc, 0x10fec8, 0x00000027, (data & 0x8000) >> 10 |
(data & 0x7000) >> 12);
ram_wr32(fuc, 0x10f090, 0x4000007e);
ram_nsec(fuc, 1000);
ram_wr32(fuc, 0x10f314, 0x00000001); /* PRECHARGE */
ram_wr32(fuc, 0x10f310, 0x00000001); /* REFRESH */
ram_nsec(fuc, 2000);
ram_wr32(fuc, 0x10f210, 0x80000000); /* REFRESH_AUTO = 1 */
if ((nv_ro08(bios, ramcfg + 0x08) & 0x10) && (ram->mode == 2) /*XXX*/) {
u32 temp = ram_mask(fuc, 0x10f294, 0xff000000, 0x24000000);
train(fuc, 0xa4010000); /*XXX*/
ram_nsec(fuc, 1000);
ram_wr32(fuc, 0x10f294, temp);
}
ram_mask(fuc, mr[3], 0xfff, ram->base.mr[3]);
ram_wr32(fuc, mr[0], ram->base.mr[0]);
ram_mask(fuc, mr[8], 0xfff, ram->base.mr[8]);
ram_nsec(fuc, 1000);
ram_mask(fuc, mr[1], 0xfff, ram->base.mr[1]);
ram_mask(fuc, mr[5], 0xfff, ram->base.mr[5]);
ram_mask(fuc, mr[6], 0xfff, ram->base.mr[6]);
ram_mask(fuc, mr[7], 0xfff, ram->base.mr[7]);
if (vc == 0 && ram_have(fuc, gpio2E)) {
u32 temp = ram_mask(fuc, gpio2E, 0x3000, fuc->r_func2E[0]);
if (temp != ram_rd32(fuc, gpio2E)) {
ram_wr32(fuc, gpiotrig, 1);
ram_nsec(fuc, 20000);
}
}
ram_mask(fuc, 0x10f200, 0x80000000, 0x80000000);
ram_wr32(fuc, 0x10f318, 0x00000001); /* NOP? */
ram_mask(fuc, 0x10f200, 0x80000000, 0x00000000);
ram_nsec(fuc, 1000);
data = ram_rd32(fuc, 0x10f978);
data &= ~0x00046144;
data |= 0x0000000b;
if (!(nv_ro08(bios, ramcfg + 0x07) & 0x08)) {
if (!(nv_ro08(bios, ramcfg + 0x07) & 0x04))
data |= 0x0000200c;
else
data |= 0x00000000;
} else {
data |= 0x00040044;
}
ram_wr32(fuc, 0x10f978, data);
if (ram->mode == 1) {
data = ram_rd32(fuc, 0x10f830) | 0x00000001;
ram_wr32(fuc, 0x10f830, data);
}
if (!(nv_ro08(bios, ramcfg + 0x07) & 0x08)) {
data = 0x88020000;
if ( (nv_ro08(bios, ramcfg + 0x07) & 0x04))
data |= 0x10000000;
if (!(nv_ro08(bios, rammap + 0x08) & 0x10))
data |= 0x00080000;
} else {
data = 0xa40e0000;
}
train(fuc, data);
ram_nsec(fuc, 1000);
if (ram->mode == 2) { /*XXX*/
ram_mask(fuc, 0x10f800, 0x00000004, 0x00000004);
}
/* MR5: (re)enable LP3 if necessary
* XXX: need to find the switch, keeping off for now
*/
ram_mask(fuc, mr[5], 0x00000004, 0x00000000);
if (ram->mode != 2) {
ram_mask(fuc, 0x10f830, 0x01000000, 0x01000000);
ram_mask(fuc, 0x10f830, 0x01000000, 0x00000000);
}
if (nv_ro08(bios, ramcfg + 0x07) & 0x02) {
ram_mask(fuc, 0x10f910, 0x80020000, 0x01000000);
ram_mask(fuc, 0x10f914, 0x80020000, 0x01000000);
}
ram_wr32(fuc, 0x62c000, 0x0f0f0f00);
if (nv_ro08(bios, rammap + 0x08) & 0x01)
data = 0x00000800;
else
data = 0x00000000;
ram_mask(fuc, 0x10f200, 0x00000800, data);
return 0;
}
/*******************************************************************************
* DDR3
******************************************************************************/
static int
nve0_ram_calc_sddr3(struct nouveau_fb *pfb, u32 freq)
{
struct nouveau_bios *bios = nouveau_bios(pfb);
struct nve0_ram *ram = (void *)pfb->ram;
struct nve0_ramfuc *fuc = &ram->fuc;
const u32 rcoef = (( ram->P1 << 16) | (ram->N1 << 8) | ram->M1);
const u32 runk0 = ram->fN1 << 16;
const u32 runk1 = ram->fN1;
const u32 rammap = ram->base.rammap.data;
const u32 ramcfg = ram->base.ramcfg.data;
const u32 timing = ram->base.timing.data;
int vc = !(nv_ro08(bios, ramcfg + 0x02) & 0x08);
int mv = 1; /*XXX*/
u32 mask, data;
ram_mask(fuc, 0x10f808, 0x40000000, 0x40000000);
ram_wr32(fuc, 0x62c000, 0x0f0f0000);
if (vc == 1 && ram_have(fuc, gpio2E)) {
u32 temp = ram_mask(fuc, gpio2E, 0x3000, fuc->r_func2E[1]);
if (temp != ram_rd32(fuc, gpio2E)) {
ram_wr32(fuc, gpiotrig, 1);
ram_nsec(fuc, 20000);
}
}
ram_mask(fuc, 0x10f200, 0x00000800, 0x00000000);
if ((nv_ro08(bios, ramcfg + 0x03) & 0xf0))
ram_mask(fuc, 0x10f808, 0x04000000, 0x04000000);
ram_wr32(fuc, 0x10f314, 0x00000001); /* PRECHARGE */
ram_wr32(fuc, 0x10f210, 0x00000000); /* REFRESH_AUTO = 0 */
ram_wr32(fuc, 0x10f310, 0x00000001); /* REFRESH */
ram_mask(fuc, 0x10f200, 0x80000000, 0x80000000);
ram_wr32(fuc, 0x10f310, 0x00000001); /* REFRESH */
ram_mask(fuc, 0x10f200, 0x80000000, 0x00000000);
ram_nsec(fuc, 1000);
ram_wr32(fuc, 0x10f090, 0x00000060);
ram_wr32(fuc, 0x10f090, 0xc000007e);
/*XXX: there does appear to be some kind of condition here, simply
* modifying these bits in the vbios from the default pl0
* entries shows no change. however, the data does appear to
* be correct and may be required for the transition back
*/
mask = 0x00010000;
data = 0x00010000;
if (1) {
mask |= 0x800807e0;
data |= 0x800807e0;
switch (nv_ro08(bios, ramcfg + 0x03) & 0xc0) {
case 0xc0: data &= ~0x00000040; break;
case 0x80: data &= ~0x00000100; break;
case 0x40: data &= ~0x80000000; break;
case 0x00: data &= ~0x00000400; break;
}
switch (nv_ro08(bios, ramcfg + 0x03) & 0x30) {
case 0x30: data &= ~0x00000020; break;
case 0x20: data &= ~0x00000080; break;
case 0x10: data &= ~0x00080000; break;
case 0x00: data &= ~0x00000200; break;
}
}
if (nv_ro08(bios, ramcfg + 0x02) & 0x80)
mask |= 0x03000000;
if (nv_ro08(bios, ramcfg + 0x02) & 0x40)
mask |= 0x00002000;
if (nv_ro08(bios, ramcfg + 0x07) & 0x10)
mask |= 0x00004000;
if (nv_ro08(bios, ramcfg + 0x07) & 0x08)
mask |= 0x00000003;
else
mask |= 0x14000000;
ram_mask(fuc, 0x10f824, mask, data);
ram_mask(fuc, 0x132040, 0x00010000, 0x00000000);
ram_mask(fuc, 0x1373f4, 0x00000000, 0x00010010);
data = ram_rd32(fuc, 0x1373ec) & ~0x00030000;
data |= (nv_ro08(bios, ramcfg + 0x03) & 0x30) << 12;
ram_wr32(fuc, 0x1373ec, data);
ram_mask(fuc, 0x1373f4, 0x00000003, 0x00000000);
ram_mask(fuc, 0x1373f4, 0x00000010, 0x00000000);
/* (re)program refpll, if required */
if ((ram_rd32(fuc, 0x132024) & 0xffffffff) != rcoef ||
(ram_rd32(fuc, 0x132034) & 0x0000ffff) != runk1) {
ram_mask(fuc, 0x132000, 0x00000001, 0x00000000);
ram_mask(fuc, 0x132020, 0x00000001, 0x00000000);
ram_wr32(fuc, 0x137320, 0x00000000);
ram_mask(fuc, 0x132030, 0xffff0000, runk0);
ram_mask(fuc, 0x132034, 0x0000ffff, runk1);
ram_wr32(fuc, 0x132024, rcoef);
ram_mask(fuc, 0x132028, 0x00080000, 0x00080000);
ram_mask(fuc, 0x132020, 0x00000001, 0x00000001);
ram_wait(fuc, 0x137390, 0x00020000, 0x00020000, 64000);
ram_mask(fuc, 0x132028, 0x00080000, 0x00000000);
}
ram_mask(fuc, 0x1373f4, 0x00000010, 0x00000010);
ram_mask(fuc, 0x1373f4, 0x00000003, 0x00000001);
ram_mask(fuc, 0x1373f4, 0x00010000, 0x00000000);
if (ram_have(fuc, gpioMV)) {
u32 temp = ram_mask(fuc, gpioMV, 0x3000, fuc->r_funcMV[mv]);
if (temp != ram_rd32(fuc, gpioMV)) {
ram_wr32(fuc, gpiotrig, 1);
ram_nsec(fuc, 64000);
}
}
if ( (nv_ro08(bios, ramcfg + 0x02) & 0x40) ||
(nv_ro08(bios, ramcfg + 0x07) & 0x10)) {
ram_mask(fuc, 0x132040, 0x00010000, 0x00010000);
ram_nsec(fuc, 20000);
}
if (ram->mode != 2) /*XXX*/ {
if (nv_ro08(bios, ramcfg + 0x07) & 0x40)
ram_mask(fuc, 0x10f670, 0x80000000, 0x80000000);
}
data = (nv_ro08(bios, rammap + 0x11) & 0x0c) >> 2;
ram_wr32(fuc, 0x10f65c, 0x00000011 * data);
ram_wr32(fuc, 0x10f6b8, 0x01010101 * nv_ro08(bios, ramcfg + 0x09));
ram_wr32(fuc, 0x10f6bc, 0x01010101 * nv_ro08(bios, ramcfg + 0x09));
mask = 0x00010000;
data = 0x00000000;
if (!(nv_ro08(bios, ramcfg + 0x02) & 0x80))
data |= 0x03000000;
if (!(nv_ro08(bios, ramcfg + 0x02) & 0x40))
data |= 0x00002000;
if (!(nv_ro08(bios, ramcfg + 0x07) & 0x10))
data |= 0x00004000;
if (!(nv_ro08(bios, ramcfg + 0x07) & 0x08))
data |= 0x00000003;
else
data |= 0x14000000;
ram_mask(fuc, 0x10f824, mask, data);
ram_nsec(fuc, 1000);
if (nv_ro08(bios, ramcfg + 0x08) & 0x01)
data = 0x00100000;
else
data = 0x00000000;
ram_mask(fuc, 0x10f82c, 0x00100000, data);
/* PFB timing */
ram_mask(fuc, 0x10f248, 0xffffffff, nv_ro32(bios, timing + 0x28));
ram_mask(fuc, 0x10f290, 0xffffffff, nv_ro32(bios, timing + 0x00));
ram_mask(fuc, 0x10f294, 0xffffffff, nv_ro32(bios, timing + 0x04));
ram_mask(fuc, 0x10f298, 0xffffffff, nv_ro32(bios, timing + 0x08));
ram_mask(fuc, 0x10f29c, 0xffffffff, nv_ro32(bios, timing + 0x0c));
ram_mask(fuc, 0x10f2a0, 0xffffffff, nv_ro32(bios, timing + 0x10));
ram_mask(fuc, 0x10f2a4, 0xffffffff, nv_ro32(bios, timing + 0x14));
ram_mask(fuc, 0x10f2a8, 0xffffffff, nv_ro32(bios, timing + 0x18));
ram_mask(fuc, 0x10f2ac, 0xffffffff, nv_ro32(bios, timing + 0x1c));
ram_mask(fuc, 0x10f2cc, 0xffffffff, nv_ro32(bios, timing + 0x20));
ram_mask(fuc, 0x10f2e8, 0xffffffff, nv_ro32(bios, timing + 0x24));
mask = 0x33f00000;
data = 0x00000000;
if (!(nv_ro08(bios, ramcfg + 0x01) & 0x04))
data |= 0x20200000;
if (!(nv_ro08(bios, ramcfg + 0x07) & 0x80))
data |= 0x12800000;
/*XXX: see note above about there probably being some condition
* for the 10f824 stuff that uses ramcfg 3...
*/
if ( (nv_ro08(bios, ramcfg + 0x03) & 0xf0)) {
if (nv_ro08(bios, rammap + 0x08) & 0x0c) {
if (!(nv_ro08(bios, ramcfg + 0x07) & 0x80))
mask |= 0x00000020;
else
data |= 0x00000020;
mask |= 0x08000004;
}
data |= 0x04000000;
} else {
mask |= 0x44000020;
data |= 0x08000004;
}
ram_mask(fuc, 0x10f808, mask, data);
data = nv_ro08(bios, ramcfg + 0x03) & 0x0f;
ram_wr32(fuc, 0x10f870, 0x11111111 * data);
data = nv_ro16(bios, timing + 0x2c);
ram_mask(fuc, 0x10f250, 0x000003f0, (data & 0x003f) << 4);
if (((nv_ro32(bios, timing + 0x2c) & 0x00001fc0) >> 6) >
((nv_ro32(bios, timing + 0x28) & 0x7f000000) >> 24))
data = (nv_ro32(bios, timing + 0x2c) & 0x00001fc0) >> 6;
else
data = (nv_ro32(bios, timing + 0x28) & 0x1f000000) >> 24;
ram_mask(fuc, 0x10f24c, 0x7f000000, data << 24);
data = nv_ro08(bios, timing + 0x30);
ram_mask(fuc, 0x10f224, 0x001f0000, (data & 0xf8) << 13);
ram_wr32(fuc, 0x10f090, 0x4000007f);
ram_nsec(fuc, 1000);
ram_wr32(fuc, 0x10f314, 0x00000001); /* PRECHARGE */
ram_wr32(fuc, 0x10f310, 0x00000001); /* REFRESH */
ram_wr32(fuc, 0x10f210, 0x80000000); /* REFRESH_AUTO = 1 */
ram_nsec(fuc, 1000);
ram_nuke(fuc, mr[0]);
ram_mask(fuc, mr[0], 0x100, 0x100);
ram_mask(fuc, mr[0], 0x100, 0x000);
ram_mask(fuc, mr[2], 0xfff, ram->base.mr[2]);
ram_wr32(fuc, mr[0], ram->base.mr[0]);
ram_nsec(fuc, 1000);
ram_nuke(fuc, mr[0]);
ram_mask(fuc, mr[0], 0x100, 0x100);
ram_mask(fuc, mr[0], 0x100, 0x000);
if (vc == 0 && ram_have(fuc, gpio2E)) {
u32 temp = ram_mask(fuc, gpio2E, 0x3000, fuc->r_func2E[0]);
if (temp != ram_rd32(fuc, gpio2E)) {
ram_wr32(fuc, gpiotrig, 1);
ram_nsec(fuc, 20000);
}
}
if (ram->mode != 2) {
ram_mask(fuc, 0x10f830, 0x01000000, 0x01000000);
ram_mask(fuc, 0x10f830, 0x01000000, 0x00000000);
}
ram_mask(fuc, 0x10f200, 0x80000000, 0x80000000);
ram_wr32(fuc, 0x10f318, 0x00000001); /* NOP? */
ram_mask(fuc, 0x10f200, 0x80000000, 0x00000000);
ram_nsec(fuc, 1000);
ram_wr32(fuc, 0x62c000, 0x0f0f0f00);
if (nv_ro08(bios, rammap + 0x08) & 0x01)
data = 0x00000800;
else
data = 0x00000000;
ram_mask(fuc, 0x10f200, 0x00000800, data);
return 0;
}
/*******************************************************************************
* main hooks
******************************************************************************/
static int
nve0_ram_calc(struct nouveau_fb *pfb, u32 freq)
{
struct nouveau_bios *bios = nouveau_bios(pfb);
struct nve0_ram *ram = (void *)pfb->ram;
struct nve0_ramfuc *fuc = &ram->fuc;
struct bit_entry M;
int ret, refclk, strap, i;
u32 data;
u8 cnt;
/* lookup memory config data relevant to the target frequency */
ram->base.rammap.data = nvbios_rammap_match(bios, freq / 1000,
&ram->base.rammap.version,
&ram->base.rammap.size, &cnt,
&ram->base.ramcfg.size);
if (!ram->base.rammap.data || ram->base.rammap.version != 0x11 ||
ram->base.rammap.size < 0x09) {
nv_error(pfb, "invalid/missing rammap entry\n");
return -EINVAL;
}
/* locate specific data set for the attached memory */
if (bit_entry(bios, 'M', &M) || M.version != 2 || M.length < 3) {
nv_error(pfb, "invalid/missing memory table\n");
return -EINVAL;
}
strap = (nv_rd32(pfb, 0x101000) & 0x0000003c) >> 2;
data = nv_ro16(bios, M.offset + 1);
if (data)
strap = nv_ro08(bios, data + strap);
if (strap >= cnt) {
nv_error(pfb, "invalid ramcfg strap\n");
return -EINVAL;
}
ram->base.ramcfg.version = ram->base.rammap.version;
ram->base.ramcfg.data = ram->base.rammap.data + ram->base.rammap.size +
(ram->base.ramcfg.size * strap);
if (!ram->base.ramcfg.data || ram->base.ramcfg.version != 0x11 ||
ram->base.ramcfg.size < 0x08) {
nv_error(pfb, "invalid/missing ramcfg entry\n");
return -EINVAL;
}
/* lookup memory timings, if bios says they're present */
strap = nv_ro08(bios, ram->base.ramcfg.data + 0x00);
if (strap != 0xff) {
ram->base.timing.data =
nvbios_timing_entry(bios, strap,
&ram->base.timing.version,
&ram->base.timing.size);
if (!ram->base.timing.data ||
ram->base.timing.version != 0x20 ||
ram->base.timing.size < 0x33) {
nv_error(pfb, "invalid/missing timing entry\n");
return -EINVAL;
}
} else {
ram->base.timing.data = 0;
}
ret = ram_init(fuc, pfb);
if (ret)
return ret;
ram->mode = (freq > fuc->refpll.vco1.max_freq) ? 2 : 1;
ram->from = ram_rd32(fuc, 0x1373f4) & 0x0000000f;
/* XXX: this is *not* what nvidia do. on fermi nvidia generally
* select, based on some unknown condition, one of the two possible
* reference frequencies listed in the vbios table for mempll and
* program refpll to that frequency.
*
* so far, i've seen very weird values being chosen by nvidia on
* kepler boards, no idea how/why they're chosen.
*/
refclk = freq;
if (ram->mode == 2)
refclk = fuc->mempll.refclk;
/* calculate refpll coefficients */
ret = nva3_pll_calc(nv_subdev(pfb), &fuc->refpll, refclk, &ram->N1,
&ram->fN1, &ram->M1, &ram->P1);
fuc->mempll.refclk = ret;
if (ret <= 0) {
nv_error(pfb, "unable to calc refpll\n");
return -EINVAL;
}
/* calculate mempll coefficients, if we're using it */
if (ram->mode == 2) {
/* post-divider doesn't work... the reg takes the values but
* appears to completely ignore it. there *is* a bit at
* bit 28 that appears to divide the clock by 2 if set.
*/
fuc->mempll.min_p = 1;
fuc->mempll.max_p = 2;
ret = nva3_pll_calc(nv_subdev(pfb), &fuc->mempll, freq,
&ram->N2, NULL, &ram->M2, &ram->P2);
if (ret <= 0) {
nv_error(pfb, "unable to calc mempll\n");
return -EINVAL;
}
}
for (i = 0; i < ARRAY_SIZE(fuc->r_mr); i++) {
if (ram_have(fuc, mr[i]))
ram->base.mr[i] = ram_rd32(fuc, mr[i]);
}
switch (ram->base.type) {
case NV_MEM_TYPE_DDR3:
ret = nouveau_sddr3_calc(&ram->base);
if (ret == 0)
ret = nve0_ram_calc_sddr3(pfb, freq);
break;
case NV_MEM_TYPE_GDDR5:
ret = nouveau_gddr5_calc(&ram->base);
if (ret == 0)
ret = nve0_ram_calc_gddr5(pfb, freq);
break;
default:
ret = -ENOSYS;
break;
}
return ret;
}
static int
nve0_ram_prog(struct nouveau_fb *pfb)
{
struct nouveau_device *device = nv_device(pfb);
struct nve0_ram *ram = (void *)pfb->ram;
struct nve0_ramfuc *fuc = &ram->fuc;
ram_exec(fuc, nouveau_boolopt(device->cfgopt, "NvMemExec", false));
return 0;
}
static void
nve0_ram_tidy(struct nouveau_fb *pfb)
{
struct nve0_ram *ram = (void *)pfb->ram;
struct nve0_ramfuc *fuc = &ram->fuc;
ram_exec(fuc, false);
}
static int
nve0_ram_init(struct nouveau_object *object)
{
struct nouveau_fb *pfb = (void *)object->parent;
struct nve0_ram *ram = (void *)object;
struct nouveau_bios *bios = nouveau_bios(pfb);
static const u8 train0[] = {
0x00, 0xff, 0xff, 0x00, 0xff, 0x00,
0x00, 0xff, 0xff, 0x00, 0xff, 0x00,
};
static const u32 train1[] = {
0x00000000, 0xffffffff,
0x55555555, 0xaaaaaaaa,
0x33333333, 0xcccccccc,
0xf0f0f0f0, 0x0f0f0f0f,
0x00ff00ff, 0xff00ff00,
0x0000ffff, 0xffff0000,
};
u8 ver, hdr, cnt, len, snr, ssz;
u32 data, save;
int ret, i;
ret = nouveau_ram_init(&ram->base);
if (ret)
return ret;
/* run a bunch of tables from rammap table. there's actually
* individual pointers for each rammap entry too, but, nvidia
* seem to just run the last two entries' scripts early on in
* their init, and never again.. we'll just run 'em all once
* for now.
*
* i strongly suspect that each script is for a separate mode
* (likely selected by 0x10f65c's lower bits?), and the
* binary driver skips the one that's already been setup by
* the init tables.
*/
data = nvbios_rammap_table(bios, &ver, &hdr, &cnt, &len, &snr, &ssz);
if (!data || hdr < 0x15)
return -EINVAL;
cnt = nv_ro08(bios, data + 0x14); /* guess at count */
data = nv_ro32(bios, data + 0x10); /* guess u32... */
save = nv_rd32(pfb, 0x10f65c);
for (i = 0; i < cnt; i++) {
nv_mask(pfb, 0x10f65c, 0x000000f0, i << 4);
nvbios_exec(&(struct nvbios_init) {
.subdev = nv_subdev(pfb),
.bios = bios,
.offset = nv_ro32(bios, data), /* guess u32 */
.execute = 1,
});
data += 4;
}
nv_wr32(pfb, 0x10f65c, save);
switch (ram->base.type) {
case NV_MEM_TYPE_GDDR5:
for (i = 0; i < 0x30; i++) {
nv_wr32(pfb, 0x10f968, 0x00000000 | (i << 8));
nv_wr32(pfb, 0x10f920, 0x00000000 | train0[i % 12]);
nv_wr32(pfb, 0x10f918, train1[i % 12]);
nv_wr32(pfb, 0x10f920, 0x00000100 | train0[i % 12]);
nv_wr32(pfb, 0x10f918, train1[i % 12]);
nv_wr32(pfb, 0x10f96c, 0x00000000 | (i << 8));
nv_wr32(pfb, 0x10f924, 0x00000000 | train0[i % 12]);
nv_wr32(pfb, 0x10f91c, train1[i % 12]);
nv_wr32(pfb, 0x10f924, 0x00000100 | train0[i % 12]);
nv_wr32(pfb, 0x10f91c, train1[i % 12]);
}
for (i = 0; i < 0x100; i++) {
nv_wr32(pfb, 0x10f968, i);
nv_wr32(pfb, 0x10f900, train1[2 + (i & 1)]);
}
for (i = 0; i < 0x100; i++) {
nv_wr32(pfb, 0x10f96c, i);
nv_wr32(pfb, 0x10f900, train1[2 + (i & 1)]);
}
break;
default:
break;
}
return 0;
}
static int
nve0_ram_ctor(struct nouveau_object *parent, struct nouveau_object *engine,
struct nouveau_oclass *oclass, void *data, u32 size,
struct nouveau_object **pobject)
{
struct nouveau_fb *pfb = nouveau_fb(parent);
struct nouveau_bios *bios = nouveau_bios(pfb);
struct nouveau_gpio *gpio = nouveau_gpio(pfb);
struct dcb_gpio_func func;
struct nve0_ram *ram;
int ret;
ret = nvc0_ram_create(parent, engine, oclass, &ram);
*pobject = nv_object(ram);
if (ret)
return ret;
switch (ram->base.type) {
case NV_MEM_TYPE_DDR3:
case NV_MEM_TYPE_GDDR5:
ram->base.calc = nve0_ram_calc;
ram->base.prog = nve0_ram_prog;
ram->base.tidy = nve0_ram_tidy;
break;
default:
nv_warn(pfb, "reclocking of this RAM type is unsupported\n");
break;
}
// parse bios data for both pll's
ret = nvbios_pll_parse(bios, 0x0c, &ram->fuc.refpll);
if (ret) {
nv_error(pfb, "mclk refpll data not found\n");
return ret;
}
ret = nvbios_pll_parse(bios, 0x04, &ram->fuc.mempll);
if (ret) {
nv_error(pfb, "mclk pll data not found\n");
return ret;
}
ret = gpio->find(gpio, 0, 0x18, DCB_GPIO_UNUSED, &func);
if (ret == 0) {
ram->fuc.r_gpioMV = ramfuc_reg(0x00d610 + (func.line * 0x04));
ram->fuc.r_funcMV[0] = (func.log[0] ^ 2) << 12;
ram->fuc.r_funcMV[1] = (func.log[1] ^ 2) << 12;
}
ret = gpio->find(gpio, 0, 0x2e, DCB_GPIO_UNUSED, &func);
if (ret == 0) {
ram->fuc.r_gpio2E = ramfuc_reg(0x00d610 + (func.line * 0x04));
ram->fuc.r_func2E[0] = (func.log[0] ^ 2) << 12;
ram->fuc.r_func2E[1] = (func.log[1] ^ 2) << 12;
}
ram->fuc.r_gpiotrig = ramfuc_reg(0x00d604);
ram->fuc.r_0x132020 = ramfuc_reg(0x132020);
ram->fuc.r_0x132028 = ramfuc_reg(0x132028);
ram->fuc.r_0x132024 = ramfuc_reg(0x132024);
ram->fuc.r_0x132030 = ramfuc_reg(0x132030);
ram->fuc.r_0x132034 = ramfuc_reg(0x132034);
ram->fuc.r_0x132000 = ramfuc_reg(0x132000);
ram->fuc.r_0x132004 = ramfuc_reg(0x132004);
ram->fuc.r_0x132040 = ramfuc_reg(0x132040);
ram->fuc.r_0x10f248 = ramfuc_reg(0x10f248);
ram->fuc.r_0x10f290 = ramfuc_reg(0x10f290);
ram->fuc.r_0x10f294 = ramfuc_reg(0x10f294);
ram->fuc.r_0x10f298 = ramfuc_reg(0x10f298);
ram->fuc.r_0x10f29c = ramfuc_reg(0x10f29c);
ram->fuc.r_0x10f2a0 = ramfuc_reg(0x10f2a0);
ram->fuc.r_0x10f2a4 = ramfuc_reg(0x10f2a4);
ram->fuc.r_0x10f2a8 = ramfuc_reg(0x10f2a8);
ram->fuc.r_0x10f2ac = ramfuc_reg(0x10f2ac);
ram->fuc.r_0x10f2cc = ramfuc_reg(0x10f2cc);
ram->fuc.r_0x10f2e8 = ramfuc_reg(0x10f2e8);
ram->fuc.r_0x10f250 = ramfuc_reg(0x10f250);
ram->fuc.r_0x10f24c = ramfuc_reg(0x10f24c);
ram->fuc.r_0x10fec4 = ramfuc_reg(0x10fec4);
ram->fuc.r_0x10fec8 = ramfuc_reg(0x10fec8);
ram->fuc.r_0x10f604 = ramfuc_reg(0x10f604);
ram->fuc.r_0x10f614 = ramfuc_reg(0x10f614);
ram->fuc.r_0x10f610 = ramfuc_reg(0x10f610);
ram->fuc.r_0x100770 = ramfuc_reg(0x100770);
ram->fuc.r_0x100778 = ramfuc_reg(0x100778);
ram->fuc.r_0x10f224 = ramfuc_reg(0x10f224);
ram->fuc.r_0x10f870 = ramfuc_reg(0x10f870);
ram->fuc.r_0x10f698 = ramfuc_reg(0x10f698);
ram->fuc.r_0x10f694 = ramfuc_reg(0x10f694);
ram->fuc.r_0x10f6b8 = ramfuc_reg(0x10f6b8);
ram->fuc.r_0x10f808 = ramfuc_reg(0x10f808);
ram->fuc.r_0x10f670 = ramfuc_reg(0x10f670);
ram->fuc.r_0x10f60c = ramfuc_reg(0x10f60c);
ram->fuc.r_0x10f830 = ramfuc_reg(0x10f830);
ram->fuc.r_0x1373ec = ramfuc_reg(0x1373ec);
ram->fuc.r_0x10f800 = ramfuc_reg(0x10f800);
ram->fuc.r_0x10f82c = ramfuc_reg(0x10f82c);
ram->fuc.r_0x10f978 = ramfuc_reg(0x10f978);
ram->fuc.r_0x10f910 = ramfuc_reg(0x10f910);
ram->fuc.r_0x10f914 = ramfuc_reg(0x10f914);
switch (ram->base.type) {
case NV_MEM_TYPE_GDDR5:
ram->fuc.r_mr[0] = ramfuc_reg(0x10f300);
ram->fuc.r_mr[1] = ramfuc_reg(0x10f330);
ram->fuc.r_mr[2] = ramfuc_reg(0x10f334);
ram->fuc.r_mr[3] = ramfuc_reg(0x10f338);
ram->fuc.r_mr[4] = ramfuc_reg(0x10f33c);
ram->fuc.r_mr[5] = ramfuc_reg(0x10f340);
ram->fuc.r_mr[6] = ramfuc_reg(0x10f344);
ram->fuc.r_mr[7] = ramfuc_reg(0x10f348);
ram->fuc.r_mr[8] = ramfuc_reg(0x10f354);
ram->fuc.r_mr[15] = ramfuc_reg(0x10f34c);
break;
case NV_MEM_TYPE_DDR3:
ram->fuc.r_mr[0] = ramfuc_reg(0x10f300);
ram->fuc.r_mr[2] = ramfuc_reg(0x10f320);
break;
default:
break;
}
ram->fuc.r_0x62c000 = ramfuc_reg(0x62c000);
ram->fuc.r_0x10f200 = ramfuc_reg(0x10f200);
ram->fuc.r_0x10f210 = ramfuc_reg(0x10f210);
ram->fuc.r_0x10f310 = ramfuc_reg(0x10f310);
ram->fuc.r_0x10f314 = ramfuc_reg(0x10f314);
ram->fuc.r_0x10f318 = ramfuc_reg(0x10f318);
ram->fuc.r_0x10f090 = ramfuc_reg(0x10f090);
ram->fuc.r_0x10f69c = ramfuc_reg(0x10f69c);
ram->fuc.r_0x10f824 = ramfuc_reg(0x10f824);
ram->fuc.r_0x1373f0 = ramfuc_reg(0x1373f0);
ram->fuc.r_0x1373f4 = ramfuc_reg(0x1373f4);
ram->fuc.r_0x137320 = ramfuc_reg(0x137320);
ram->fuc.r_0x10f65c = ramfuc_reg(0x10f65c);
ram->fuc.r_0x10f6bc = ramfuc_reg(0x10f6bc);
ram->fuc.r_0x100710 = ramfuc_reg(0x100710);
ram->fuc.r_0x10f750 = ramfuc_reg(0x10f750);
return 0;
}
struct nouveau_oclass
nve0_ram_oclass = {
.handle = 0,
.ofuncs = &(struct nouveau_ofuncs) {
.ctor = nve0_ram_ctor,
.dtor = _nouveau_ram_dtor,
.init = nve0_ram_init,
.fini = _nouveau_ram_fini,
}
};
#ifndef __NVKM_FBRAM_SEQ_H__
#define __NVKM_FBRAM_SEQ_H__
#include <subdev/bus.h>
#include <subdev/bus/hwsq.h>
#define ram_init(s,p) hwsq_init(&(s)->base, (p))
#define ram_exec(s,e) hwsq_exec(&(s)->base, (e))
#define ram_have(s,r) ((s)->r_##r.addr != 0x000000)
#define ram_rd32(s,r) hwsq_rd32(&(s)->base, &(s)->r_##r)
#define ram_wr32(s,r,d) hwsq_wr32(&(s)->base, &(s)->r_##r, (d))
#define ram_nuke(s,r) hwsq_nuke(&(s)->base, &(s)->r_##r)
#define ram_mask(s,r,m,d) hwsq_mask(&(s)->base, &(s)->r_##r, (m), (d))
#define ram_setf(s,f,d) hwsq_setf(&(s)->base, (f), (d))
#define ram_wait(s,f,d) hwsq_wait(&(s)->base, (f), (d))
#define ram_nsec(s,n) hwsq_nsec(&(s)->base, (n))
#endif
/*
* Copyright 2013 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs <bskeggs@redhat.com>
*/
#include <subdev/bios.h>
#include "priv.h"
struct ramxlat {
int id;
u8 enc;
};
static inline int
ramxlat(const struct ramxlat *xlat, int id)
{
while (xlat->id >= 0) {
if (xlat->id == id)
return xlat->enc;
xlat++;
}
return -EINVAL;
}
static const struct ramxlat
ramddr3_cl[] = {
{ 5, 2 }, { 6, 4 }, { 7, 6 }, { 8, 8 }, { 9, 10 }, { 10, 12 },
{ 11, 14 },
/* the below are mentioned in some, but not all, ddr3 docs */
{ 12, 1 }, { 13, 3 }, { 14, 5 },
{ -1 }
};
static const struct ramxlat
ramddr3_wr[] = {
{ 5, 1 }, { 6, 2 }, { 7, 3 }, { 8, 4 }, { 10, 5 }, { 12, 6 },
/* the below are mentioned in some, but not all, ddr3 docs */
{ 14, 7 }, { 16, 0 },
{ -1 }
};
static const struct ramxlat
ramddr3_cwl[] = {
{ 5, 0 }, { 6, 1 }, { 7, 2 }, { 8, 3 },
/* the below are mentioned in some, but not all, ddr3 docs */
{ 9, 4 },
{ -1 }
};
int
nouveau_sddr3_calc(struct nouveau_ram *ram)
{
struct nouveau_bios *bios = nouveau_bios(ram);
int WL, CL, WR;
switch (!!ram->timing.data * ram->timing.version) {
case 0x20:
WL = (nv_ro16(bios, ram->timing.data + 0x04) & 0x0f80) >> 7;
CL = nv_ro08(bios, ram->timing.data + 0x04) & 0x1f;
WR = nv_ro08(bios, ram->timing.data + 0x0a) & 0x7f;
break;
default:
return -ENOSYS;
}
WL = ramxlat(ramddr3_cwl, WL);
CL = ramxlat(ramddr3_cl, CL);
WR = ramxlat(ramddr3_wr, WR);
if (WL < 0 || CL < 0 || WR < 0)
return -EINVAL;
ram->mr[0] &= ~0xe74;
ram->mr[0] |= (WR & 0x07) << 9;
ram->mr[0] |= (CL & 0x0e) << 3;
ram->mr[0] |= (CL & 0x01) << 2;
ram->mr[2] &= ~0x038;
ram->mr[2] |= (WL & 0x07) << 3;
return 0;
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册