diff --git a/Documentation/RCU/Design/Data-Structures/BigTreeClassicRCU.svg b/Documentation/RCU/Design/Data-Structures/BigTreeClassicRCU.svg new file mode 100644 index 0000000000000000000000000000000000000000..727e270b11e4e3b5871aecd1084d2c1b4585e056 --- /dev/null +++ b/Documentation/RCU/Design/Data-Structures/BigTreeClassicRCU.svg @@ -0,0 +1,474 @@ + + + + + + + + diff --git a/Documentation/RCU/Design/Data-Structures/BigTreeClassicRCUBH.svg b/Documentation/RCU/Design/Data-Structures/BigTreeClassicRCUBH.svg new file mode 100644 index 0000000000000000000000000000000000000000..9bbb1944f962d5a8c22861492f136b9e5431f9a9 --- /dev/null +++ b/Documentation/RCU/Design/Data-Structures/BigTreeClassicRCUBH.svg @@ -0,0 +1,499 @@ + + + + + + + + diff --git a/Documentation/RCU/Design/Data-Structures/BigTreeClassicRCUBHdyntick.svg b/Documentation/RCU/Design/Data-Structures/BigTreeClassicRCUBHdyntick.svg new file mode 100644 index 0000000000000000000000000000000000000000..21ba7823479d4f031612c2bd28af839bdf779487 --- /dev/null +++ b/Documentation/RCU/Design/Data-Structures/BigTreeClassicRCUBHdyntick.svg @@ -0,0 +1,695 @@ + + + + + + + + diff --git a/Documentation/RCU/Design/Data-Structures/BigTreePreemptRCUBHdyntick.svg b/Documentation/RCU/Design/Data-Structures/BigTreePreemptRCUBHdyntick.svg new file mode 100644 index 0000000000000000000000000000000000000000..15adcac036c73351c81bf8fdf38e505a21a057a0 --- /dev/null +++ b/Documentation/RCU/Design/Data-Structures/BigTreePreemptRCUBHdyntick.svg @@ -0,0 +1,741 @@ + + + + + + + + diff --git a/Documentation/RCU/Design/Data-Structures/BigTreePreemptRCUBHdyntickCB.svg b/Documentation/RCU/Design/Data-Structures/BigTreePreemptRCUBHdyntickCB.svg new file mode 100644 index 0000000000000000000000000000000000000000..bbc3801470d095a95be916503fd5799f52229ef6 --- /dev/null +++ b/Documentation/RCU/Design/Data-Structures/BigTreePreemptRCUBHdyntickCB.svg @@ -0,0 +1,858 @@ + + + + + + + + diff --git a/Documentation/RCU/Design/Data-Structures/Data-Structures.html b/Documentation/RCU/Design/Data-Structures/Data-Structures.html new file mode 100644 index 0000000000000000000000000000000000000000..7eb47ac25ad772bdc25b812e016982d974752f8c --- /dev/null +++ b/Documentation/RCU/Design/Data-Structures/Data-Structures.html @@ -0,0 +1,1333 @@ + + +
January 27, 2016
+This article was contributed by Paul E. McKenney
+ +RCU is for all intents and purposes a large state machine, and its +data structures maintain the state in such a way as to allow RCU readers +to execute extremely quickly, while also processing the RCU grace periods +requested by updaters in an efficient and extremely scalable fashion. +The efficiency and scalability of RCU updaters is provided primarily +by a combining tree, as shown below: + +
+ +
This diagram shows an enclosing rcu_state structure +containing a tree of rcu_node structures. +Each leaf node of the rcu_node tree has up to 16 +rcu_data structures associated with it, so that there +are NR_CPUS number of rcu_data structures, +one for each possible CPU. +This structure is adjusted at boot time, if needed, to handle the +common case where nr_cpu_ids is much less than +NR_CPUs. +For example, a number of Linux distributions set NR_CPUs=4096, +which results in a three-level rcu_node tree. +If the actual hardware has only 16 CPUs, RCU will adjust itself +at boot time, resulting in an rcu_node tree with only a single node. + +
The purpose of this combining tree is to allow per-CPU events +such as quiescent states, dyntick-idle transitions, +and CPU hotplug operations to be processed efficiently +and scalably. +Quiescent states are recorded by the per-CPU rcu_data structures, +and other events are recorded by the leaf-level rcu_node +structures. +All of these events are combined at each level of the tree until finally +grace periods are completed at the tree's root rcu_node +structure. +A grace period can be completed at the root once every CPU +(or, in the case of CONFIG_PREEMPT_RCU, task) +has passed through a quiescent state. +Once a grace period has completed, record of that fact is propagated +back down the tree. + +
As can be seen from the diagram, on a 64-bit system +a two-level tree with 64 leaves can accommodate 1,024 CPUs, with a fanout +of 64 at the root and a fanout of 16 at the leaves. + +
Quick Quiz: |
---|
+ Why isn't the fanout at the leaves also 64? + |
Answer: |
+ Because there are more types of events that affect the leaf-level
+ rcu_node structures than further up the tree.
+ Therefore, if the leaf rcu_node structures have fanout of
+ 64, the contention on these structures' ->structures
+ becomes excessive.
+ Experimentation on a wide variety of systems has shown that a fanout
+ of 16 works well for the leaves of the rcu_node tree.
+
+
+ Of course, further experience with + systems having hundreds or thousands of CPUs may demonstrate + that the fanout for the non-leaf rcu_node structures + must also be reduced. + Such reduction can be easily carried out when and if it proves + necessary. + In the meantime, if you are using such a system and running into + contention problems on the non-leaf rcu_node structures, + you may use the CONFIG_RCU_FANOUT kernel configuration + parameter to reduce the non-leaf fanout as needed. + + + Kernels built for systems with + strong NUMA characteristics might also need to adjust + CONFIG_RCU_FANOUT so that the domains of the + rcu_node structures align with hardware boundaries. + However, there has thus far been no need for this. + |
If your system has more than 1,024 CPUs (or more than 512 CPUs on +a 32-bit system), then RCU will automatically add more levels to the +tree. +For example, if you are crazy enough to build a 64-bit system with 65,536 +CPUs, RCU would configure the rcu_node tree as follows: + +
+ +
RCU currently permits up to a four-level tree, which on a 64-bit system +accommodates up to 4,194,304 CPUs, though only a mere 524,288 CPUs for +32-bit systems. +On the other hand, you can set CONFIG_RCU_FANOUT to be +as small as 2 if you wish, which would permit only 16 CPUs, which +is useful for testing. + +
This multi-level combining tree allows us to get most of the +performance and scalability +benefits of partitioning, even though RCU grace-period detection is +inherently a global operation. +The trick here is that only the last CPU to report a quiescent state +into a given rcu_node structure need advance to the rcu_node +structure at the next level up the tree. +This means that at the leaf-level rcu_node structure, only +one access out of sixteen will progress up the tree. +For the internal rcu_node structures, the situation is even +more extreme: Only one access out of sixty-four will progress up +the tree. +Because the vast majority of the CPUs do not progress up the tree, +the lock contention remains roughly constant up the tree. +No matter how many CPUs there are in the system, at most 64 quiescent-state +reports per grace period will progress all the way to the root +rcu_node structure, thus ensuring that the lock contention +on that root rcu_node structure remains acceptably low. + +
In effect, the combining tree acts like a big shock absorber, +keeping lock contention under control at all tree levels regardless +of the level of loading on the system. + +
The Linux kernel actually supports multiple flavors of RCU +running concurrently, so RCU builds separate data structures for each +flavor. +For example, for CONFIG_TREE_RCU=y kernels, RCU provides +rcu_sched and rcu_bh, as shown below: + +
+ +
Energy efficiency is increasingly important, and for that +reason the Linux kernel provides CONFIG_NO_HZ_IDLE, which +turns off the scheduling-clock interrupts on idle CPUs, which in +turn allows those CPUs to attain deeper sleep states and to consume +less energy. +CPUs whose scheduling-clock interrupts have been turned off are +said to be in dyntick-idle mode. +RCU must handle dyntick-idle CPUs specially +because RCU would otherwise wake up each CPU on every grace period, +which would defeat the whole purpose of CONFIG_NO_HZ_IDLE. +RCU uses the rcu_dynticks structure to track +which CPUs are in dyntick idle mode, as shown below: + +
+ +
However, if a CPU is in dyntick-idle mode, it is in that mode +for all flavors of RCU. +Therefore, a single rcu_dynticks structure is allocated per +CPU, and all of a given CPU's rcu_data structures share +that rcu_dynticks, as shown in the figure. + +
Kernels built with CONFIG_PREEMPT_RCU support +rcu_preempt in addition to rcu_sched and rcu_bh, as shown below: + +
+ +
RCU updaters wait for normal grace periods by registering +RCU callbacks, either directly via call_rcu() and +friends (namely call_rcu_bh() and call_rcu_sched()), +there being a separate interface per flavor of RCU) +or indirectly via synchronize_rcu() and friends. +RCU callbacks are represented by rcu_head structures, +which are queued on rcu_data structures while they are +waiting for a grace period to elapse, as shown in the following figure: + +
+ +
This figure shows how TREE_RCU's and +PREEMPT_RCU's major data structures are related. +Lesser data structures will be introduced with the algorithms that +make use of them. + +
Note that each of the data structures in the above figure has +its own synchronization: + +
It is important to note that different data structures can have +very different ideas about the state of RCU at any given time. +For but one example, awareness of the start or end of a given RCU +grace period propagates slowly through the data structures. +This slow propagation is absolutely necessary for RCU to have good +read-side performance. +If this balkanized implementation seems foreign to you, one useful +trick is to consider each instance of these data structures to be +a different person, each having the usual slightly different +view of reality. + +
The general role of each of these data structures is as +follows: + +
If all you wanted from this article was a general notion of how +RCU's data structures are related, you are done. +Otherwise, each of the following sections give more details on +the rcu_state, rcu_node, rcu_data, +and rcu_dynticks data structures. + +
The rcu_state structure is the base structure that +represents a flavor of RCU. +This structure forms the interconnection between the +rcu_node and rcu_data structures, +tracks grace periods, contains the lock used to +synchronize with CPU-hotplug events, +and maintains state used to force quiescent states when +grace periods extend too long, + +
A few of the rcu_state structure's fields are discussed, +singly and in groups, in the following sections. +The more specialized fields are covered in the discussion of their +use. + +
+ 1 struct rcu_node node[NUM_RCU_NODES]; + 2 struct rcu_node *level[NUM_RCU_LVLS + 1]; + 3 struct rcu_data __percpu *rda; ++ +
Quick Quiz: |
---|
+ Wait a minute! + You said that the rcu_node structures formed a tree, + but they are declared as a flat array! + What gives? + |
Answer: |
+ The tree is laid out in the array.
+ The first node In the array is the head, the next set of nodes in the
+ array are children of the head node, and so on until the last set of
+ nodes in the array are the leaves.
+
+
+ See the following diagrams to see how + this works. + |
The rcu_node tree is embedded into the +->node[] array as shown in the following figure: + +
+ +
One interesting consequence of this mapping is that a +breadth-first traversal of the tree is implemented as a simple +linear scan of the array, which is in fact what the +rcu_for_each_node_breadth_first() macro does. +This macro is used at the beginning and ends of grace periods. + +
Each entry of the ->level array references +the first rcu_node structure on the corresponding level +of the tree, for example, as shown below: + +
+ +
The zeroth element of the array references the root +rcu_node structure, the first element references the +first child of the root rcu_node, and finally the second +element references the first leaf rcu_node structure. + +
For whatever it is worth, if you draw the tree to be tree-shaped +rather than array-shaped, it is easy to draw a planar representation: + +
+ +
Finally, the ->rda field references a per-CPU +pointer to the corresponding CPU's rcu_data structure. + +
All of these fields are constant once initialization is complete, +and therefore need no protection. + +
This portion of the rcu_state structure is declared +as follows: + +
+ 1 unsigned long gpnum; + 2 unsigned long completed; ++ +
RCU grace periods are numbered, and +the ->gpnum field contains the number of the grace +period that started most recently. +The ->completed field contains the number of the +grace period that completed most recently. +If the two fields are equal, the RCU grace period that most recently +started has already completed, and therefore the corresponding +flavor of RCU is idle. +If ->gpnum is one greater than ->completed, +then ->gpnum gives the number of the current RCU +grace period, which has not yet completed. +Any other combination of values indicates that something is broken. +These two fields are protected by the root rcu_node's +->lock field. + +
There are ->gpnum and ->completed fields +in the rcu_node and rcu_data structures +as well. +The fields in the rcu_state structure represent the +most current values, and those of the other structures are compared +in order to detect the start of a new grace period in a distributed +fashion. +The values flow from rcu_state to rcu_node +(down the tree from the root to the leaves) to rcu_data. + +
This portion of the rcu_state structure is declared +as follows: + +
+ 1 unsigned long gp_max; + 2 char abbr; + 3 char *name; ++ +
The ->gp_max field tracks the duration of the longest +grace period in jiffies. +It is protected by the root rcu_node's ->lock. + +
The ->name field points to the name of the RCU flavor +(for example, “rcu_sched”), and is constant. +The ->abbr field contains a one-character abbreviation, +for example, “s” for RCU-sched. + +
The rcu_node structures form the combining +tree that propagates quiescent-state +information from the leaves to the root and also that propagates +grace-period information from the root down to the leaves. +They provides local copies of the grace-period state in order +to allow this information to be accessed in a synchronized +manner without suffering the scalability limitations that +would otherwise be imposed by global locking. +In CONFIG_PREEMPT_RCU kernels, they manage the lists +of tasks that have blocked while in their current +RCU read-side critical section. +In CONFIG_PREEMPT_RCU with +CONFIG_RCU_BOOST, they manage the +per-rcu_node priority-boosting +kernel threads (kthreads) and state. +Finally, they record CPU-hotplug state in order to determine +which CPUs should be ignored during a given grace period. + +
The rcu_node structure's fields are discussed, +singly and in groups, in the following sections. + +
This portion of the rcu_node structure is declared +as follows: + +
+ 1 struct rcu_node *parent; + 2 u8 level; + 3 u8 grpnum; + 4 unsigned long grpmask; + 5 int grplo; + 6 int grphi; ++ +
The ->parent pointer references the rcu_node +one level up in the tree, and is NULL for the root +rcu_node. +The RCU implementation makes heavy use of this field to push quiescent +states up the tree. +The ->level field gives the level in the tree, with +the root being at level zero, its children at level one, and so on. +The ->grpnum field gives this node's position within +the children of its parent, so this number can range between 0 and 31 +on 32-bit systems and between 0 and 63 on 64-bit systems. +The ->level and ->grpnum fields are +used only during initialization and for tracing. +The ->grpmask field is the bitmask counterpart of +->grpnum, and therefore always has exactly one bit set. +This mask is used to clear the bit corresponding to this rcu_node +structure in its parent's bitmasks, which are described later. +Finally, the ->grplo and ->grphi fields +contain the lowest and highest numbered CPU served by this +rcu_node structure, respectively. + +
All of these fields are constant, and thus do not require any +synchronization. + +
This field of the rcu_node structure is declared +as follows: + +
+ 1 raw_spinlock_t lock; ++ +
This field is used to protect the remaining fields in this structure, +unless otherwise stated. +That said, all of the fields in this structure can be accessed without +locking for tracing purposes. +Yes, this can result in confusing traces, but better some tracing confusion +than to be heisenbugged out of existence. + +
This portion of the rcu_node structure is declared +as follows: + +
+ 1 unsigned long gpnum; + 2 unsigned long completed; ++ +
These fields are the counterparts of the fields of the same name in +the rcu_state structure. +They each may lag up to one behind their rcu_state +counterparts. +If a given rcu_node structure's ->gpnum and +->complete fields are equal, then this rcu_node +structure believes that RCU is idle. +Otherwise, as with the rcu_state structure, +the ->gpnum field will be one greater than the +->complete fields, with ->gpnum +indicating which grace period this rcu_node believes +is still being waited for. + +
The >gpnum field of each rcu_node +structure is updated at the beginning +of each grace period, and the ->completed fields are +updated at the end of each grace period. + +
These fields manage the propagation of quiescent states up the +combining tree. + +
This portion of the rcu_node structure has fields +as follows: + +
+ 1 unsigned long qsmask; + 2 unsigned long expmask; + 3 unsigned long qsmaskinit; + 4 unsigned long expmaskinit; ++ +
The ->qsmask field tracks which of this +rcu_node structure's children still need to report +quiescent states for the current normal grace period. +Such children will have a value of 1 in their corresponding bit. +Note that the leaf rcu_node structures should be +thought of as having rcu_data structures as their +children. +Similarly, the ->expmask field tracks which +of this rcu_node structure's children still need to report +quiescent states for the current expedited grace period. +An expedited grace period has +the same conceptual properties as a normal grace period, but the +expedited implementation accepts extreme CPU overhead to obtain +much lower grace-period latency, for example, consuming a few +tens of microseconds worth of CPU time to reduce grace-period +duration from milliseconds to tens of microseconds. +The ->qsmaskinit field tracks which of this +rcu_node structure's children cover for at least +one online CPU. +This mask is used to initialize ->qsmask, +and ->expmaskinit is used to initialize +->expmask and the beginning of the +normal and expedited grace periods, respectively. + +
Quick Quiz: |
---|
+ Why are these bitmasks protected by locking? + Come on, haven't you heard of atomic instructions??? + |
Answer: |
+ Lockless grace-period computation! Such a tantalizing possibility!
+
+
+ But consider the following sequence of events: + + +
So the locking is absolutely required in + order to coordinate + clearing of the bits with the grace-period numbers in + ->gpnum and ->completed. + |
PREEMPT_RCU allows tasks to be preempted in the +midst of their RCU read-side critical sections, and these tasks +must be tracked explicitly. +The details of exactly why and how they are tracked will be covered +in a separate article on RCU read-side processing. +For now, it is enough to know that the rcu_node +structure tracks them. + +
+ 1 struct list_head blkd_tasks; + 2 struct list_head *gp_tasks; + 3 struct list_head *exp_tasks; + 4 bool wait_blkd_tasks; ++ +
The ->blkd_tasks field is a list header for +the list of blocked and preempted tasks. +As tasks undergo context switches within RCU read-side critical +sections, their task_struct structures are enqueued +(via the task_struct's ->rcu_node_entry +field) onto the head of the ->blkd_tasks list for the +leaf rcu_node structure corresponding to the CPU +on which the outgoing context switch executed. +As these tasks later exit their RCU read-side critical sections, +they remove themselves from the list. +This list is therefore in reverse time order, so that if one of the tasks +is blocking the current grace period, all subsequent tasks must +also be blocking that same grace period. +Therefore, a single pointer into this list suffices to track +all tasks blocking a given grace period. +That pointer is stored in ->gp_tasks for normal +grace periods and in ->exp_tasks for expedited +grace periods. +These last two fields are NULL if either there is +no grace period in flight or if there are no blocked tasks +preventing that grace period from completing. +If either of these two pointers is referencing a task that +removes itself from the ->blkd_tasks list, +then that task must advance the pointer to the next task on +the list, or set the pointer to NULL if there +are no subsequent tasks on the list. + +
For example, suppose that tasks T1, T2, and T3 are +all hard-affinitied to the largest-numbered CPU in the system. +Then if task T1 blocked in an RCU read-side +critical section, then an expedited grace period started, +then task T2 blocked in an RCU read-side critical section, +then a normal grace period started, and finally task 3 blocked +in an RCU read-side critical section, then the state of the +last leaf rcu_node structure's blocked-task list +would be as shown below: + +
+ +
Task T1 is blocking both grace periods, task T2 is +blocking only the normal grace period, and task T3 is blocking +neither grace period. +Note that these tasks will not remove themselves from this list +immediately upon resuming execution. +They will instead remain on the list until they execute the outermost +rcu_read_unlock() that ends their RCU read-side critical +section. + +
+The ->wait_blkd_tasks field indicates whether or not +the current grace period is waiting on a blocked task. + +
The rcu_node array is sized via a series of +C-preprocessor expressions as follows: + +
+ 1 #ifdef CONFIG_RCU_FANOUT + 2 #define RCU_FANOUT CONFIG_RCU_FANOUT + 3 #else + 4 # ifdef CONFIG_64BIT + 5 # define RCU_FANOUT 64 + 6 # else + 7 # define RCU_FANOUT 32 + 8 # endif + 9 #endif +10 +11 #ifdef CONFIG_RCU_FANOUT_LEAF +12 #define RCU_FANOUT_LEAF CONFIG_RCU_FANOUT_LEAF +13 #else +14 # ifdef CONFIG_64BIT +15 # define RCU_FANOUT_LEAF 64 +16 # else +17 # define RCU_FANOUT_LEAF 32 +18 # endif +19 #endif +20 +21 #define RCU_FANOUT_1 (RCU_FANOUT_LEAF) +22 #define RCU_FANOUT_2 (RCU_FANOUT_1 * RCU_FANOUT) +23 #define RCU_FANOUT_3 (RCU_FANOUT_2 * RCU_FANOUT) +24 #define RCU_FANOUT_4 (RCU_FANOUT_3 * RCU_FANOUT) +25 +26 #if NR_CPUS <= RCU_FANOUT_1 +27 # define RCU_NUM_LVLS 1 +28 # define NUM_RCU_LVL_0 1 +29 # define NUM_RCU_NODES NUM_RCU_LVL_0 +30 # define NUM_RCU_LVL_INIT { NUM_RCU_LVL_0 } +31 # define RCU_NODE_NAME_INIT { "rcu_node_0" } +32 # define RCU_FQS_NAME_INIT { "rcu_node_fqs_0" } +33 # define RCU_EXP_NAME_INIT { "rcu_node_exp_0" } +34 #elif NR_CPUS <= RCU_FANOUT_2 +35 # define RCU_NUM_LVLS 2 +36 # define NUM_RCU_LVL_0 1 +37 # define NUM_RCU_LVL_1 DIV_ROUND_UP(NR_CPUS, RCU_FANOUT_1) +38 # define NUM_RCU_NODES (NUM_RCU_LVL_0 + NUM_RCU_LVL_1) +39 # define NUM_RCU_LVL_INIT { NUM_RCU_LVL_0, NUM_RCU_LVL_1 } +40 # define RCU_NODE_NAME_INIT { "rcu_node_0", "rcu_node_1" } +41 # define RCU_FQS_NAME_INIT { "rcu_node_fqs_0", "rcu_node_fqs_1" } +42 # define RCU_EXP_NAME_INIT { "rcu_node_exp_0", "rcu_node_exp_1" } +43 #elif NR_CPUS <= RCU_FANOUT_3 +44 # define RCU_NUM_LVLS 3 +45 # define NUM_RCU_LVL_0 1 +46 # define NUM_RCU_LVL_1 DIV_ROUND_UP(NR_CPUS, RCU_FANOUT_2) +47 # define NUM_RCU_LVL_2 DIV_ROUND_UP(NR_CPUS, RCU_FANOUT_1) +48 # define NUM_RCU_NODES (NUM_RCU_LVL_0 + NUM_RCU_LVL_1 + NUM_RCU_LVL_2) +49 # define NUM_RCU_LVL_INIT { NUM_RCU_LVL_0, NUM_RCU_LVL_1, NUM_RCU_LVL_2 } +50 # define RCU_NODE_NAME_INIT { "rcu_node_0", "rcu_node_1", "rcu_node_2" } +51 # define RCU_FQS_NAME_INIT { "rcu_node_fqs_0", "rcu_node_fqs_1", "rcu_node_fqs_2" } +52 # define RCU_EXP_NAME_INIT { "rcu_node_exp_0", "rcu_node_exp_1", "rcu_node_exp_2" } +53 #elif NR_CPUS <= RCU_FANOUT_4 +54 # define RCU_NUM_LVLS 4 +55 # define NUM_RCU_LVL_0 1 +56 # define NUM_RCU_LVL_1 DIV_ROUND_UP(NR_CPUS, RCU_FANOUT_3) +57 # define NUM_RCU_LVL_2 DIV_ROUND_UP(NR_CPUS, RCU_FANOUT_2) +58 # define NUM_RCU_LVL_3 DIV_ROUND_UP(NR_CPUS, RCU_FANOUT_1) +59 # define NUM_RCU_NODES (NUM_RCU_LVL_0 + NUM_RCU_LVL_1 + NUM_RCU_LVL_2 + NUM_RCU_LVL_3) +60 # define NUM_RCU_LVL_INIT { NUM_RCU_LVL_0, NUM_RCU_LVL_1, NUM_RCU_LVL_2, NUM_RCU_LVL_3 } +61 # define RCU_NODE_NAME_INIT { "rcu_node_0", "rcu_node_1", "rcu_node_2", "rcu_node_3" } +62 # define RCU_FQS_NAME_INIT { "rcu_node_fqs_0", "rcu_node_fqs_1", "rcu_node_fqs_2", "rcu_node_fqs_3" } +63 # define RCU_EXP_NAME_INIT { "rcu_node_exp_0", "rcu_node_exp_1", "rcu_node_exp_2", "rcu_node_exp_3" } +64 #else +65 # error "CONFIG_RCU_FANOUT insufficient for NR_CPUS" +66 #endif ++ +
The maximum number of levels in the rcu_node structure +is currently limited to four, as specified by lines 21-24 +and the structure of the subsequent “if” statement. +For 32-bit systems, this allows 16*32*32*32=524,288 CPUs, which +should be sufficient for the next few years at least. +For 64-bit systems, 16*64*64*64=4,194,304 CPUs is allowed, which +should see us through the next decade or so. +This four-level tree also allows kernels built with +CONFIG_RCU_FANOUT=8 to support up to 4096 CPUs, +which might be useful in very large systems having eight CPUs per +socket (but please note that no one has yet shown any measurable +performance degradation due to misaligned socket and rcu_node +boundaries). +In addition, building kernels with a full four levels of rcu_node +tree permits better testing of RCU's combining-tree code. + +
The RCU_FANOUT symbol controls how many children +are permitted at each non-leaf level of the rcu_node tree. +If the CONFIG_RCU_FANOUT Kconfig option is not specified, +it is set based on the word size of the system, which is also +the Kconfig default. + +
The RCU_FANOUT_LEAF symbol controls how many CPUs are +handled by each leaf rcu_node structure. +Experience has shown that allowing a given leaf rcu_node +structure to handle 64 CPUs, as permitted by the number of bits in +the ->qsmask field on a 64-bit system, results in +excessive contention for the leaf rcu_node structures' +->lock fields. +The number of CPUs per leaf rcu_node structure is therefore +limited to 16 given the default value of CONFIG_RCU_FANOUT_LEAF. +If CONFIG_RCU_FANOUT_LEAF is unspecified, the value +selected is based on the word size of the system, just as for +CONFIG_RCU_FANOUT. +Lines 11-19 perform this computation. + +
Lines 21-24 compute the maximum number of CPUs supported by +a single-level (which contains a single rcu_node structure), +two-level, three-level, and four-level rcu_node tree, +respectively, given the fanout specified by RCU_FANOUT +and RCU_FANOUT_LEAF. +These numbers of CPUs are retained in the +RCU_FANOUT_1, +RCU_FANOUT_2, +RCU_FANOUT_3, and +RCU_FANOUT_4 +C-preprocessor variables, respectively. + +
These variables are used to control the C-preprocessor #if +statement spanning lines 26-66 that computes the number of +rcu_node structures required for each level of the tree, +as well as the number of levels required. +The number of levels is placed in the NUM_RCU_LVLS +C-preprocessor variable by lines 27, 35, 44, and 54. +The number of rcu_node structures for the topmost level +of the tree is always exactly one, and this value is unconditionally +placed into NUM_RCU_LVL_0 by lines 28, 36, 45, and 55. +The rest of the levels (if any) of the rcu_node tree +are computed by dividing the maximum number of CPUs by the +fanout supported by the number of levels from the current level down, +rounding up. This computation is performed by lines 37, +46-47, and 56-58. +Lines 31-33, 40-42, 50-52, and 62-63 create initializers +for lockdep lock-class names. +Finally, lines 64-66 produce an error if the maximum number of +CPUs is too large for the specified fanout. + +
The rcu_data maintains the per-CPU state for the +corresponding flavor of RCU. +The fields in this structure may be accessed only from the corresponding +CPU (and from tracing) unless otherwise stated. +This structure is the +focus of quiescent-state detection and RCU callback queuing. +It also tracks its relationship to the corresponding leaf +rcu_node structure to allow more-efficient +propagation of quiescent states up the rcu_node +combining tree. +Like the rcu_node structure, it provides a local +copy of the grace-period information to allow for-free +synchronized +access to this information from the corresponding CPU. +Finally, this structure records past dyntick-idle state +for the corresponding CPU and also tracks statistics. + +
The rcu_data structure's fields are discussed, +singly and in groups, in the following sections. + +
This portion of the rcu_data structure is declared +as follows: + +
+ 1 int cpu; + 2 struct rcu_state *rsp; + 3 struct rcu_node *mynode; + 4 struct rcu_dynticks *dynticks; + 5 unsigned long grpmask; + 6 bool beenonline; ++ +
The ->cpu field contains the number of the +corresponding CPU, the ->rsp pointer references +the corresponding rcu_state structure (and is most frequently +used to locate the name of the corresponding flavor of RCU for tracing), +and the ->mynode field references the corresponding +rcu_node structure. +The ->mynode is used to propagate quiescent states +up the combining tree. +
The ->dynticks pointer references the +rcu_dynticks structure corresponding to this +CPU. +Recall that a single per-CPU instance of the rcu_dynticks +structure is shared among all flavors of RCU. +These first four fields are constant and therefore require not +synchronization. + +
The ->grpmask field indicates the bit in +the ->mynode->qsmask corresponding to this +rcu_data structure, and is also used when propagating +quiescent states. +The ->beenonline flag is set whenever the corresponding +CPU comes online, which means that the debugfs tracing need not dump +out any rcu_data structure for which this flag is not set. + +
This portion of the rcu_data structure is declared +as follows: + +
+ 1 unsigned long completed; + 2 unsigned long gpnum; + 3 bool cpu_no_qs; + 4 bool core_needs_qs; + 5 bool gpwrap; + 6 unsigned long rcu_qs_ctr_snap; ++ +
The completed and gpnum +fields are the counterparts of the fields of the same name +in the rcu_state and rcu_node structures. +They may each lag up to one behind their rcu_node +counterparts, but in CONFIG_NO_HZ_IDLE and +CONFIG_NO_HZ_FULL kernels can lag +arbitrarily far behind for CPUs in dyntick-idle mode (but these counters +will catch up upon exit from dyntick-idle mode). +If a given rcu_data structure's ->gpnum and +->complete fields are equal, then this rcu_data +structure believes that RCU is idle. +Otherwise, as with the rcu_state and rcu_node +structure, +the ->gpnum field will be one greater than the +->complete fields, with ->gpnum +indicating which grace period this rcu_data believes +is still being waited for. + +
Quick Quiz: |
---|
+ All this replication of the grace period numbers can only cause + massive confusion. + Why not just keep a global pair of counters and be done with it??? + |
Answer: |
+ Because if there was only a single global pair of grace-period + numbers, there would need to be a single global lock to allow + safely accessing and updating them. + And if we are not going to have a single global lock, we need + to carefully manage the numbers on a per-node basis. + Recall from the answer to a previous Quick Quiz that the consequences + of applying a previously sampled quiescent state to the wrong + grace period are quite severe. + |
The ->cpu_no_qs flag indicates that the +CPU has not yet passed through a quiescent state, +while the ->core_needs_qs flag indicates that the +RCU core needs a quiescent state from the corresponding CPU. +The ->gpwrap field indicates that the corresponding +CPU has remained idle for so long that the completed +and gpnum counters are in danger of overflow, which +will cause the CPU to disregard the values of its counters on +its next exit from idle. +Finally, the rcu_qs_ctr_snap field is used to detect +cases where a given operation has resulted in a quiescent state +for all flavors of RCU, for example, cond_resched_rcu_qs(). + +
In the absence of CPU-hotplug events, RCU callbacks are invoked by +the same CPU that registered them. +This is strictly a cache-locality optimization: callbacks can and +do get invoked on CPUs other than the one that registered them. +After all, if the CPU that registered a given callback has gone +offline before the callback can be invoked, there really is no other +choice. + +
This portion of the rcu_data structure is declared +as follows: + +
+ 1 struct rcu_head *nxtlist; + 2 struct rcu_head **nxttail[RCU_NEXT_SIZE]; + 3 unsigned long nxtcompleted[RCU_NEXT_SIZE]; + 4 long qlen_lazy; + 5 long qlen; + 6 long qlen_last_fqs_check; + 7 unsigned long n_force_qs_snap; + 8 unsigned long n_cbs_invoked; + 9 unsigned long n_cbs_orphaned; +10 unsigned long n_cbs_adopted; +11 long blimit; ++ +
The ->nxtlist pointer and the +->nxttail[] array form a four-segment list with +older callbacks near the head and newer ones near the tail. +Each segment contains callbacks with the corresponding relationship +to the current grace period. +The pointer out of the end of each of the four segments is referenced +by the element of the ->nxttail[] array indexed by +RCU_DONE_TAIL (for callbacks handled by a prior grace period), +RCU_WAIT_TAIL (for callbacks waiting on the current grace period), +RCU_NEXT_READY_TAIL (for callbacks that will wait on the next +grace period), and +RCU_NEXT_TAIL (for callbacks that are not yet associated +with a specific grace period) +respectively, as shown in the following figure. + +
+ +
In this figure, the ->nxtlist pointer references the +first +RCU callback in the list. +The ->nxttail[RCU_DONE_TAIL] array element references +the ->nxtlist pointer itself, indicating that none +of the callbacks is ready to invoke. +The ->nxttail[RCU_WAIT_TAIL] array element references callback +CB 2's ->next pointer, which indicates that +CB 1 and CB 2 are both waiting on the current grace period. +The ->nxttail[RCU_NEXT_READY_TAIL] array element +references the same RCU callback that ->nxttail[RCU_WAIT_TAIL] +does, which indicates that there are no callbacks waiting on the next +RCU grace period. +The ->nxttail[RCU_NEXT_TAIL] array element references +CB 4's ->next pointer, indicating that all the +remaining RCU callbacks have not yet been assigned to an RCU grace +period. +Note that the ->nxttail[RCU_NEXT_TAIL] array element +always references the last RCU callback's ->next pointer +unless the callback list is empty, in which case it references +the ->nxtlist pointer. + +
CPUs advance their callbacks from the +RCU_NEXT_TAIL to the RCU_NEXT_READY_TAIL to the +RCU_WAIT_TAIL to the RCU_DONE_TAIL list segments +as grace periods advance. +The CPU advances the callbacks in its rcu_data structure +whenever it notices that another RCU grace period has completed. +The CPU detects the completion of an RCU grace period by noticing +that the value of its rcu_data structure's +->completed field differs from that of its leaf +rcu_node structure. +Recall that each rcu_node structure's +->completed field is updated at the end of each +grace period. + +
The ->nxtcompleted[] array records grace-period +numbers corresponding to the list segments. +This allows CPUs that go idle for extended periods to determine +which of their callbacks are ready to be invoked after reawakening. + +
The ->qlen counter contains the number of +callbacks in ->nxtlist, and the +->qlen_lazy contains the number of those callbacks that +are known to only free memory, and whose invocation can therefore +be safely deferred. +The ->qlen_last_fqs_check and +->n_force_qs_snap coordinate the forcing of quiescent +states from call_rcu() and friends when callback +lists grow excessively long. + +
The ->n_cbs_invoked, +->n_cbs_orphaned, and ->n_cbs_adopted +fields count the number of callbacks invoked, +sent to other CPUs when this CPU goes offline, +and received from other CPUs when those other CPUs go offline. +Finally, the ->blimit counter is the maximum number of +RCU callbacks that may be invoked at a given time. + +
This portion of the rcu_data structure is declared +as follows: + +
+ 1 int dynticks_snap; + 2 unsigned long dynticks_fqs; ++ +The ->dynticks_snap field is used to take a snapshot +of the corresponding CPU's dyntick-idle state when forcing +quiescent states, and is therefore accessed from other CPUs. +Finally, the ->dynticks_fqs field is used to +count the number of times this CPU is determined to be in +dyntick-idle state, and is used for tracing and debugging purposes. + +
The rcu_dynticks maintains the per-CPU dyntick-idle state +for the corresponding CPU. +Unlike the other structures, rcu_dynticks is not +replicated over the different flavors of RCU. +The fields in this structure may be accessed only from the corresponding +CPU (and from tracing) unless otherwise stated. +Its fields are as follows: + +
+ 1 int dynticks_nesting; + 2 int dynticks_nmi_nesting; + 3 atomic_t dynticks; ++ +
The ->dynticks_nesting field counts the +nesting depth of normal interrupts. +In addition, this counter is incremented when exiting dyntick-idle +mode and decremented when entering it. +This counter can therefore be thought of as counting the number +of reasons why this CPU cannot be permitted to enter dyntick-idle +mode, aside from non-maskable interrupts (NMIs). +NMIs are counted by the ->dynticks_nmi_nesting +field, except that NMIs that interrupt non-dyntick-idle execution +are not counted. + +
Finally, the ->dynticks field counts the corresponding +CPU's transitions to and from dyntick-idle mode, so that this counter +has an even value when the CPU is in dyntick-idle mode and an odd +value otherwise. + +
Quick Quiz: |
---|
+ Why not just count all NMIs? + Wouldn't that be simpler and less error prone? + |
Answer: |
+ It seems simpler only until you think hard about how to go about + updating the rcu_dynticks structure's + ->dynticks field. + |
Additional fields are present for some special-purpose +builds, and are discussed separately. + +
Each rcu_head structure represents an RCU callback. +These structures are normally embedded within RCU-protected data +structures whose algorithms use asynchronous grace periods. +In contrast, when using algorithms that block waiting for RCU grace periods, +RCU users need not provide rcu_head structures. + +
The rcu_head structure has fields as follows: + +
+ 1 struct rcu_head *next; + 2 void (*func)(struct rcu_head *head); ++ +
The ->next field is used +to link the rcu_head structures together in the +lists within the rcu_data structures. +The ->func field is a pointer to the function +to be called when the callback is ready to be invoked, and +this function is passed a pointer to the rcu_head +structure. +However, kfree_rcu() uses the ->func +field to record the offset of the rcu_head +structure within the enclosing RCU-protected data structure. + +
Both of these fields are used internally by RCU. +From the viewpoint of RCU users, this structure is an +opaque “cookie”. + +
Quick Quiz: |
---|
+ Given that the callback function ->func + is passed a pointer to the rcu_head structure, + how is that function supposed to find the beginning of the + enclosing RCU-protected data structure? + |
Answer: |
+ In actual practice, there is a separate callback function per + type of RCU-protected data structure. + The callback function can therefore use the container_of() + macro in the Linux kernel (or other pointer-manipulation facilities + in other software environments) to find the beginning of the + enclosing structure. + |
The CONFIG_PREEMPT_RCU implementation uses some +additional fields in the task_struct structure: + +
+ 1 #ifdef CONFIG_PREEMPT_RCU + 2 int rcu_read_lock_nesting; + 3 union rcu_special rcu_read_unlock_special; + 4 struct list_head rcu_node_entry; + 5 struct rcu_node *rcu_blocked_node; + 6 #endif /* #ifdef CONFIG_PREEMPT_RCU */ + 7 #ifdef CONFIG_TASKS_RCU + 8 unsigned long rcu_tasks_nvcsw; + 9 bool rcu_tasks_holdout; +10 struct list_head rcu_tasks_holdout_list; +11 int rcu_tasks_idle_cpu; +12 #endif /* #ifdef CONFIG_TASKS_RCU */ ++ +
The ->rcu_read_lock_nesting field records the +nesting level for RCU read-side critical sections, and +the ->rcu_read_unlock_special field is a bitmask +that records special conditions that require rcu_read_unlock() +to do additional work. +The ->rcu_node_entry field is used to form lists of +tasks that have blocked within preemptible-RCU read-side critical +sections and the ->rcu_blocked_node field references +the rcu_node structure whose list this task is a member of, +or NULL if it is not blocked within a preemptible-RCU +read-side critical section. + +
The ->rcu_tasks_nvcsw field tracks the number of +voluntary context switches that this task had undergone at the +beginning of the current tasks-RCU grace period, +->rcu_tasks_holdout is set if the current tasks-RCU +grace period is waiting on this task, ->rcu_tasks_holdout_list +is a list element enqueuing this task on the holdout list, +and ->rcu_tasks_idle_cpu tracks which CPU this +idle task is running, but only if the task is currently running, +that is, if the CPU is currently idle. + +
The following listing shows the +rcu_get_root(), rcu_for_each_node_breadth_first, +rcu_for_each_nonleaf_node_breadth_first(), and +rcu_for_each_leaf_node() function and macros: + +
+ 1 static struct rcu_node *rcu_get_root(struct rcu_state *rsp) + 2 { + 3 return &rsp->node[0]; + 4 } + 5 + 6 #define rcu_for_each_node_breadth_first(rsp, rnp) \ + 7 for ((rnp) = &(rsp)->node[0]; \ + 8 (rnp) < &(rsp)->node[NUM_RCU_NODES]; (rnp)++) + 9 + 10 #define rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) \ + 11 for ((rnp) = &(rsp)->node[0]; \ + 12 (rnp) < (rsp)->level[NUM_RCU_LVLS - 1]; (rnp)++) + 13 + 14 #define rcu_for_each_leaf_node(rsp, rnp) \ + 15 for ((rnp) = (rsp)->level[NUM_RCU_LVLS - 1]; \ + 16 (rnp) < &(rsp)->node[NUM_RCU_NODES]; (rnp)++) ++ +
The rcu_get_root() simply returns a pointer to the +first element of the specified rcu_state structure's +->node[] array, which is the root rcu_node +structure. + +
As noted earlier, the rcu_for_each_node_breadth_first() +macro takes advantage of the layout of the rcu_node +structures in the rcu_state structure's +->node[] array, performing a breadth-first traversal by +simply traversing the array in order. +The rcu_for_each_nonleaf_node_breadth_first() macro operates +similarly, but traverses only the first part of the array, thus excluding +the leaf rcu_node structures. +Finally, the rcu_for_each_leaf_node() macro traverses only +the last part of the array, thus traversing only the leaf +rcu_node structures. + +
Quick Quiz: |
---|
+ What do rcu_for_each_nonleaf_node_breadth_first() and + rcu_for_each_leaf_node() do if the rcu_node tree + contains only a single node? + |
Answer: |
+ In the single-node case, + rcu_for_each_nonleaf_node_breadth_first() is a no-op + and rcu_for_each_leaf_node() traverses the single node. + |
This work represents the view of the author and does not necessarily +represent the view of IBM. + +
Linux is a registered trademark of Linus Torvalds. + +
Other company, product, and service names may be trademarks or +service marks of others. + + diff --git a/Documentation/RCU/Design/Data-Structures/HugeTreeClassicRCU.svg b/Documentation/RCU/Design/Data-Structures/HugeTreeClassicRCU.svg new file mode 100644 index 0000000000000000000000000000000000000000..2bf12b46820602fb8076d22aee6158a090e124ac --- /dev/null +++ b/Documentation/RCU/Design/Data-Structures/HugeTreeClassicRCU.svg @@ -0,0 +1,939 @@ + + + + + + + + diff --git a/Documentation/RCU/Design/Data-Structures/TreeLevel.svg b/Documentation/RCU/Design/Data-Structures/TreeLevel.svg new file mode 100644 index 0000000000000000000000000000000000000000..7a7eb3bac95cc9c30521025baaba446891d095ab --- /dev/null +++ b/Documentation/RCU/Design/Data-Structures/TreeLevel.svg @@ -0,0 +1,828 @@ + + + + + + + + diff --git a/Documentation/RCU/Design/Data-Structures/TreeMapping.svg b/Documentation/RCU/Design/Data-Structures/TreeMapping.svg new file mode 100644 index 0000000000000000000000000000000000000000..729cfa9e6cdb8ed1c3c923e362273168ebdf2d8f --- /dev/null +++ b/Documentation/RCU/Design/Data-Structures/TreeMapping.svg @@ -0,0 +1,305 @@ + + + + + + + + diff --git a/Documentation/RCU/Design/Data-Structures/TreeMappingLevel.svg b/Documentation/RCU/Design/Data-Structures/TreeMappingLevel.svg new file mode 100644 index 0000000000000000000000000000000000000000..5b416a4b8453f69b27b78dd5bd4384e3ab91ac01 --- /dev/null +++ b/Documentation/RCU/Design/Data-Structures/TreeMappingLevel.svg @@ -0,0 +1,380 @@ + + + + + + + + diff --git a/Documentation/RCU/Design/Data-Structures/blkd_task.svg b/Documentation/RCU/Design/Data-Structures/blkd_task.svg new file mode 100644 index 0000000000000000000000000000000000000000..00e810bb84194ae5b73a4dbe4bc0aa2ced0046df --- /dev/null +++ b/Documentation/RCU/Design/Data-Structures/blkd_task.svg @@ -0,0 +1,843 @@ + + + + + + + + diff --git a/Documentation/RCU/Design/Data-Structures/nxtlist.svg b/Documentation/RCU/Design/Data-Structures/nxtlist.svg new file mode 100644 index 0000000000000000000000000000000000000000..abc4cc73a0977195317d7a0397f1f5e7c52f35b3 --- /dev/null +++ b/Documentation/RCU/Design/Data-Structures/nxtlist.svg @@ -0,0 +1,396 @@ + + + + + + + + diff --git a/Documentation/RCU/Design/Requirements/2013-08-is-it-dead.png b/Documentation/RCU/Design/Requirements/2013-08-is-it-dead.png deleted file mode 100644 index 7496a55e4e7b41becdb658a2bd34765fbe80013f..0000000000000000000000000000000000000000 Binary files a/Documentation/RCU/Design/Requirements/2013-08-is-it-dead.png and /dev/null differ diff --git a/Documentation/RCU/Design/Requirements/RCUApplicability.svg b/Documentation/RCU/Design/Requirements/RCUApplicability.svg deleted file mode 100644 index ebcbeee391ed7babdce76130c60977f76ca10832..0000000000000000000000000000000000000000 --- a/Documentation/RCU/Design/Requirements/RCUApplicability.svg +++ /dev/null @@ -1,237 +0,0 @@ - - - - - - - - diff --git a/Documentation/RCU/Design/Requirements/Requirements.html b/Documentation/RCU/Design/Requirements/Requirements.html index a725f9900ec8962a43dfb888f71f1a2b05efabf0..e7e24b3e86e29e2c721c447c237de890b11e7062 100644 --- a/Documentation/RCU/Design/Requirements/Requirements.html +++ b/Documentation/RCU/Design/Requirements/Requirements.html @@ -1,5 +1,3 @@ - - @@ -65,8 +63,8 @@ All that aside, here are the categories of currently known RCU requirements:
This is followed by a summary, -which is in turn followed by the inevitable -answers to the quick quizzes. +however, the answers to each quick quiz immediately follows the quiz. +Select the big white space with your mouse to see the answer.
Quick Quiz 1:
-Wait a minute!
-You said that updaters can make useful forward progress concurrently
-with readers, but pre-existing readers will block
-synchronize_rcu()!!!
-Just who are you trying to fool???
-
Answer
+
Quick Quiz: |
---|
+ Wait a minute! + You said that updaters can make useful forward progress concurrently + with readers, but pre-existing readers will block + synchronize_rcu()!!! + Just who are you trying to fool??? + |
Answer: |
+ First, if updaters do not wish to be blocked by readers, they can use + call_rcu() or kfree_rcu(), which will + be discussed later. + Second, even when using synchronize_rcu(), the other + update-side code does run concurrently with readers, whether + pre-existing or not. + |
This scenario resembles one of the first uses of RCU in @@ -210,9 +222,20 @@ to guarantee that do_something() never runs concurrently with recovery(), but with little or no synchronization overhead in do_something_dlm(). -
Quick Quiz 2:
-Why is the synchronize_rcu() on line 28 needed?
-
Answer
+
Quick Quiz: |
---|
+ Why is the synchronize_rcu() on line 28 needed? + |
Answer: |
+ Without that extra grace period, memory reordering could result in + do_something_dlm() executing do_something() + concurrently with the last bits of recovery(). + |
In order to avoid fatal problems such as deadlocks, @@ -332,12 +355,27 @@ It also prevents any number of “interesting” compiler optimizations, for example, the use of gp as a scratch location immediately preceding the assignment. -
Quick Quiz 3:
-But rcu_assign_pointer() does nothing to prevent the
-two assignments to p->a and p->b
-from being reordered.
-Can't that also cause problems?
-
Answer
+
Quick Quiz: |
---|
+ But rcu_assign_pointer() does nothing to prevent the + two assignments to p->a and p->b + from being reordered. + Can't that also cause problems? + |
Answer: |
+ No, it cannot. + The readers cannot see either of these two fields until + the assignment to gp, by which time both fields are + fully initialized. + So reordering the assignments + to p->a and p->b cannot possibly + cause any problems. + |
It is tempting to assume that the reader need not do anything special @@ -494,11 +532,42 @@ The rcu_access_pointer() on line 6 is similar to code protected by the corresponding update-side lock. -
Quick Quiz 4:
-Without the rcu_dereference() or the
-rcu_access_pointer(), what destructive optimizations
-might the compiler make use of?
-
Answer
+
Quick Quiz: |
---|
+ Without the rcu_dereference() or the + rcu_access_pointer(), what destructive optimizations + might the compiler make use of? + |
Answer: |
+ Let's start with what happens to do_something_gp()
+ if it fails to use rcu_dereference().
+ It could reuse a value formerly fetched from this same pointer.
+ It could also fetch the pointer from gp in a byte-at-a-time
+ manner, resulting in load tearing, in turn resulting a bytewise
+ mash-up of two distince pointer values.
+ It might even use value-speculation optimizations, where it makes
+ a wrong guess, but by the time it gets around to checking the
+ value, an update has changed the pointer to match the wrong guess.
+ Too bad about any dereferences that returned pre-initialization garbage
+ in the meantime!
+
+
+ + For remove_gp_synchronous(), as long as all modifications + to gp are carried out while holding gp_lock, + the above optimizations are harmless. + However, + with CONFIG_SPARSE_RCU_POINTER=y, + sparse will complain if you + define gp with __rcu and then + access it without using + either rcu_access_pointer() or rcu_dereference(). + |
In short, RCU's publish-subscribe guarantee is provided by the combination @@ -571,17 +640,156 @@ systems with more than one CPU: synchronize_rcu() migrates in the meantime. -
Quick Quiz 5:
-Given that multiple CPUs can start RCU read-side critical sections
-at any time without any ordering whatsoever, how can RCU possibly tell whether
-or not a given RCU read-side critical section starts before a
-given instance of synchronize_rcu()?
-
Answer
-
-
Quick Quiz 6:
-The first and second guarantees require unbelievably strict ordering!
-Are all these memory barriers really required?
-
Answer
+
Quick Quiz: |
---|
+ Given that multiple CPUs can start RCU read-side critical sections + at any time without any ordering whatsoever, how can RCU possibly + tell whether or not a given RCU read-side critical section starts + before a given instance of synchronize_rcu()? + |
Answer: |
+ If RCU cannot tell whether or not a given + RCU read-side critical section starts before a + given instance of synchronize_rcu(), + then it must assume that the RCU read-side critical section + started first. + In other words, a given instance of synchronize_rcu() + can avoid waiting on a given RCU read-side critical section only + if it can prove that synchronize_rcu() started first. + |
Quick Quiz: |
---|
+ The first and second guarantees require unbelievably strict ordering! + Are all these memory barriers really required? + |
Answer: |
+ Yes, they really are required.
+ To see why the first guarantee is required, consider the following
+ sequence of events:
+
+
+
+ Therefore, there absolutely must be a full memory barrier between the + end of the RCU read-side critical section and the end of the + grace period. + + + + The sequence of events demonstrating the necessity of the second rule + is roughly similar: + + +
+ And similarly, without a memory barrier between the beginning of the + grace period and the beginning of the RCU read-side critical section, + CPU 1 might end up accessing the freelist. + + + + The “as if” rule of course applies, so that any + implementation that acts as if the appropriate memory barriers + were in place is a correct implementation. + That said, it is much easier to fool yourself into believing + that you have adhered to the as-if rule than it is to actually + adhere to it! + |
Quick Quiz: |
---|
+ You claim that rcu_read_lock() and rcu_read_unlock() + generate absolutely no code in some kernel builds. + This means that the compiler might arbitrarily rearrange consecutive + RCU read-side critical sections. + Given such rearrangement, if a given RCU read-side critical section + is done, how can you be sure that all prior RCU read-side critical + sections are done? + Won't the compiler rearrangements make that impossible to determine? + |
Answer: |
+ In cases where rcu_read_lock() and rcu_read_unlock()
+ generate absolutely no code, RCU infers quiescent states only at
+ special locations, for example, within the scheduler.
+ Because calls to schedule() had better prevent calling-code
+ accesses to shared variables from being rearranged across the call to
+ schedule(), if RCU detects the end of a given RCU read-side
+ critical section, it will necessarily detect the end of all prior
+ RCU read-side critical sections, no matter how aggressively the
+ compiler scrambles the code.
+
+
+ + Again, this all assumes that the compiler cannot scramble code across + calls to the scheduler, out of interrupt handlers, into the idle loop, + into user-mode code, and so on. + But if your kernel build allows that sort of scrambling, you have broken + far more than just RCU! + |
Note that these memory-barrier requirements do not replace the fundamental @@ -626,9 +834,19 @@ inconvenience can be avoided through use of the call_rcu() and kfree_rcu() API members described later in this document. -
Quick Quiz 7:
-But how does the upgrade-to-write operation exclude other readers?
-
Answer
+
Quick Quiz: |
---|
+ But how does the upgrade-to-write operation exclude other readers? + |
Answer: |
+ It doesn't, just like normal RCU updates, which also do not exclude + RCU readers. + |
This guarantee allows lookup code to be shared between read-side @@ -714,9 +932,20 @@ to do significant reordering. This is by design: Any significant ordering constraints would slow down these fast-path APIs. -
Quick Quiz 8:
-Can't the compiler also reorder this code?
-
Answer
+
Quick Quiz: |
---|
+ Can't the compiler also reorder this code? + |
Answer: |
+ No, the volatile casts in READ_ONCE() and + WRITE_ONCE() prevent the compiler from reordering in + this particular case. + |
Quick Quiz 9:
-Suppose that synchronize_rcu() did wait until all readers had completed.
-Would the updater be able to rely on this?
-
Answer
+
Quick Quiz: |
---|
+ Suppose that synchronize_rcu() did wait until all + readers had completed instead of waiting only on + pre-existing readers. + For how long would the updater be able to rely on there + being no readers? + |
Answer: |
+ For no time at all. + Even if synchronize_rcu() were to wait until + all readers had completed, a new reader might start immediately after + synchronize_rcu() completed. + Therefore, the code following + synchronize_rcu() can never rely on there being + no readers. + |
Quick Quiz 10:
-How long a sequence of grace periods, each separated by an RCU read-side
-critical section, would be required to partition the RCU read-side
-critical sections at the beginning and end of the chain?
-
Answer
+
Quick Quiz: |
---|
+ How long a sequence of grace periods, each separated by an RCU + read-side critical section, would be required to partition the RCU + read-side critical sections at the beginning and end of the chain? + |
Answer: |
+ In theory, an infinite number. + In practice, an unknown number that is sensitive to both implementation + details and timing considerations. + Therefore, even in practice, RCU users must abide by the + theoretical rather than the practical answer. + |
-RCU is and always has been intended primarily for read-mostly situations, as -illustrated by the following figure. -This means that RCU's read-side primitives are optimized, often at the +RCU is and always has been intended primarily for read-mostly situations, +which means that RCU's read-side primitives are optimized, often at the expense of its update-side primitives. +Experience thus far is captured by the following list of situations: -
+This focus on read-mostly situations means that RCU must interoperate @@ -1127,9 +1402,43 @@ synchronization primitives be legal within RCU read-side critical sections, including spinlocks, sequence locks, atomic operations, reference counters, and memory barriers. -
Quick Quiz 11:
-What about sleeping locks?
-
Answer
+
Quick Quiz: |
---|
+ What about sleeping locks? + |
Answer: |
+ These are forbidden within Linux-kernel RCU read-side critical
+ sections because it is not legal to place a quiescent state
+ (in this case, voluntary context switch) within an RCU read-side
+ critical section.
+ However, sleeping locks may be used within userspace RCU read-side
+ critical sections, and also within Linux-kernel sleepable RCU
+ (SRCU)
+ read-side critical sections.
+ In addition, the -rt patchset turns spinlocks into a
+ sleeping locks so that the corresponding critical sections
+ can be preempted, which also means that these sleeplockified
+ spinlocks (but not other sleeping locks!) may be acquire within
+ -rt-Linux-kernel RCU read-side critical sections.
+
+
+ + Note that it is legal for a normal RCU read-side + critical section to conditionally acquire a sleeping locks + (as in mutex_trylock()), but only as long as it does + not loop indefinitely attempting to conditionally acquire that + sleeping locks. + The key point is that things like mutex_trylock() + either return with the mutex held, or return an error indication if + the mutex was not immediately available. + Either way, mutex_trylock() returns immediately without + sleeping. + |
It often comes as a surprise that many algorithms do not require a @@ -1160,10 +1469,7 @@ some period of time, so the exact wait period is a judgment call. One of our pair of veternarians might wait 30 seconds before pronouncing the cat dead, while the other might insist on waiting a full minute. The two veternarians would then disagree on the state of the cat during -the final 30 seconds of the minute following the last heartbeat, as -fancifully illustrated below: - -
+the final 30 seconds of the minute following the last heartbeat.Interestingly enough, this same situation applies to hardware. @@ -1343,7 +1649,8 @@ situations where neither synchronize_rcu() nor synchronize_rcu_expedited() would be legal, including within preempt-disable code, local_bh_disable() code, interrupt-disable code, and interrupt handlers. -However, even call_rcu() is illegal within NMI handlers. +However, even call_rcu() is illegal within NMI handlers +and from idle and offline CPUs. The callback function (remove_gp_cb() in this case) will be executed within softirq (software interrupt) environment within the Linux kernel, @@ -1354,12 +1661,27 @@ write an RCU callback function that takes too long. Long-running operations should be relegated to separate threads or (in the Linux kernel) workqueues. -
Quick Quiz 12:
-Why does line 19 use rcu_access_pointer()?
-After all, call_rcu() on line 25 stores into the
-structure, which would interact badly with concurrent insertions.
-Doesn't this mean that rcu_dereference() is required?
-
Answer
+
Quick Quiz: |
---|
+ Why does line 19 use rcu_access_pointer()? + After all, call_rcu() on line 25 stores into the + structure, which would interact badly with concurrent insertions. + Doesn't this mean that rcu_dereference() is required? + |
Answer: |
+ Presumably the ->gp_lock acquired on line 18 excludes + any changes, including any insertions that rcu_dereference() + would protect against. + Therefore, any insertions will be delayed until after + ->gp_lock + is released on line 25, which in turn means that + rcu_access_pointer() suffices. + |
However, all that remove_gp_cb() is doing is @@ -1406,14 +1728,31 @@ This was due to the fact that RCU was not heavily used within DYNIX/ptx, so the very few places that needed something like synchronize_rcu() simply open-coded it. -
Quick Quiz 13:
-Earlier it was claimed that call_rcu() and
-kfree_rcu() allowed updaters to avoid being blocked
-by readers.
-But how can that be correct, given that the invocation of the callback
-and the freeing of the memory (respectively) must still wait for
-a grace period to elapse?
-
Answer
+
Quick Quiz: |
---|
+ Earlier it was claimed that call_rcu() and + kfree_rcu() allowed updaters to avoid being blocked + by readers. + But how can that be correct, given that the invocation of the callback + and the freeing of the memory (respectively) must still wait for + a grace period to elapse? + |
Answer: |
+ We could define things this way, but keep in mind that this sort of + definition would say that updates in garbage-collected languages + cannot complete until the next time the garbage collector runs, + which does not seem at all reasonable. + The key point is that in most cases, an updater using either + call_rcu() or kfree_rcu() can proceed to the + next update as soon as it has invoked call_rcu() or + kfree_rcu(), without having to wait for a subsequent + grace period. + |
But what if the updater must wait for the completion of code to be @@ -1838,11 +2177,26 @@ kthreads to be spawned. Therefore, invoking synchronize_rcu() during scheduler initialization can result in deadlock. -
Quick Quiz 14:
-So what happens with synchronize_rcu() during
-scheduler initialization for CONFIG_PREEMPT=n
-kernels?
-
Answer
+
Quick Quiz: |
---|
+ So what happens with synchronize_rcu() during + scheduler initialization for CONFIG_PREEMPT=n + kernels? + |
Answer: |
+ In CONFIG_PREEMPT=n kernel, synchronize_rcu() + maps directly to synchronize_sched(). + Therefore, synchronize_rcu() works normally throughout + boot in CONFIG_PREEMPT=n kernels. + However, your code must also work in CONFIG_PREEMPT=y kernels, + so it is still necessary to avoid invoking synchronize_rcu() + during scheduler initialization. + |
I learned of these boot-time requirements as a result of a series of @@ -2170,6 +2524,14 @@ up to and including systems with 4096 CPUs. This real-time requirement motivated the grace-period kthread, which also simplified handling of a number of race conditions. +
+RCU must avoid degrading real-time response for CPU-bound threads, whether +executing in usermode (which is one use case for +CONFIG_NO_HZ_FULL=y) or in the kernel. +That said, CPU-bound loops in the kernel must execute +cond_resched_rcu_qs() at least once per few tens of milliseconds +in order to avoid receiving an IPI from RCU. +
Finally, RCU's status as a synchronization primitive means that any RCU failure can result in arbitrary memory corruption that can be @@ -2223,6 +2585,8 @@ described in a separate section.
+Perhaps you have an RCU protected data structure that is accessed from +RCU read-side critical sections, from softirq handlers, and from +hardware interrupt handlers. +That is three flavors of RCU, the normal flavor, the bottom-half flavor, +and the sched flavor. +How to wait for a compound grace period? + +
+The best approach is usually to “just say no!” and +insert rcu_read_lock() and rcu_read_unlock() +around each RCU read-side critical section, regardless of what +environment it happens to be in. +But suppose that some of the RCU read-side critical sections are +on extremely hot code paths, and that use of CONFIG_PREEMPT=n +is not a viable option, so that rcu_read_lock() and +rcu_read_unlock() are not free. +What then? + +
+You could wait on all three grace periods in succession, as follows: + +
++ ++ 1 synchronize_rcu(); + 2 synchronize_rcu_bh(); + 3 synchronize_sched(); ++
+This works, but triples the update-side latency penalty. +In cases where this is not acceptable, synchronize_rcu_mult() +may be used to wait on all three flavors of grace period concurrently: + +
++ ++ 1 synchronize_rcu_mult(call_rcu, call_rcu_bh, call_rcu_sched); ++
+But what if it is necessary to also wait on SRCU? +This can be done as follows: + +
++ ++ 1 static void call_my_srcu(struct rcu_head *head, + 2 void (*func)(struct rcu_head *head)) + 3 { + 4 call_srcu(&my_srcu, head, func); + 5 } + 6 + 7 synchronize_rcu_mult(call_rcu, call_rcu_bh, call_rcu_sched, call_my_srcu); ++
+If you needed to wait on multiple different flavors of SRCU +(but why???), you would need to create a wrapper function resembling +call_my_srcu() for each SRCU flavor. + +
Quick Quiz: |
---|
+ But what if I need to wait for multiple RCU flavors, but I also need + the grace periods to be expedited? + |
Answer: |
+ If you are using expedited grace periods, there should be less penalty + for waiting on them in succession. + But if that is nevertheless a problem, you can use workqueues + or multiple kthreads to wait on the various expedited grace + periods concurrently. + |
+Again, it is usually better to adjust the RCU read-side critical sections +to use a single flavor of RCU, but when this is not feasible, you can use +synchronize_rcu_mult(). +
@@ -2569,329 +3021,4 @@ and is provided under the terms of the Creative Commons Attribution-Share Alike 3.0 United States license. -
Quick Quiz 1: -Wait a minute! -You said that updaters can make useful forward progress concurrently -with readers, but pre-existing readers will block -synchronize_rcu()!!! -Just who are you trying to fool??? - - -
Answer: -First, if updaters do not wish to be blocked by readers, they can use -call_rcu() or kfree_rcu(), which will -be discussed later. -Second, even when using synchronize_rcu(), the other -update-side code does run concurrently with readers, whether pre-existing -or not. - - -
Back to Quick Quiz 1. - - -
Quick Quiz 2: -Why is the synchronize_rcu() on line 28 needed? - - -
Answer: -Without that extra grace period, memory reordering could result in -do_something_dlm() executing do_something() -concurrently with the last bits of recovery(). - - -
Back to Quick Quiz 2. - - -
Quick Quiz 3: -But rcu_assign_pointer() does nothing to prevent the -two assignments to p->a and p->b -from being reordered. -Can't that also cause problems? - - -
Answer: -No, it cannot. -The readers cannot see either of these two fields until -the assignment to gp, by which time both fields are -fully initialized. -So reordering the assignments -to p->a and p->b cannot possibly -cause any problems. - - -
Back to Quick Quiz 3. - - -
Quick Quiz 4: -Without the rcu_dereference() or the -rcu_access_pointer(), what destructive optimizations -might the compiler make use of? - - -
Answer: -Let's start with what happens to do_something_gp() -if it fails to use rcu_dereference(). -It could reuse a value formerly fetched from this same pointer. -It could also fetch the pointer from gp in a byte-at-a-time -manner, resulting in load tearing, in turn resulting a bytewise -mash-up of two distince pointer values. -It might even use value-speculation optimizations, where it makes a wrong -guess, but by the time it gets around to checking the value, an update -has changed the pointer to match the wrong guess. -Too bad about any dereferences that returned pre-initialization garbage -in the meantime! - -
-For remove_gp_synchronous(), as long as all modifications -to gp are carried out while holding gp_lock, -the above optimizations are harmless. -However, -with CONFIG_SPARSE_RCU_POINTER=y, -sparse will complain if you -define gp with __rcu and then -access it without using -either rcu_access_pointer() or rcu_dereference(). - - -
Back to Quick Quiz 4. - - -
Quick Quiz 5: -Given that multiple CPUs can start RCU read-side critical sections -at any time without any ordering whatsoever, how can RCU possibly tell whether -or not a given RCU read-side critical section starts before a -given instance of synchronize_rcu()? - - -
Answer: -If RCU cannot tell whether or not a given -RCU read-side critical section starts before a -given instance of synchronize_rcu(), -then it must assume that the RCU read-side critical section -started first. -In other words, a given instance of synchronize_rcu() -can avoid waiting on a given RCU read-side critical section only -if it can prove that synchronize_rcu() started first. - - -
Back to Quick Quiz 5. - - -
Quick Quiz 6: -The first and second guarantees require unbelievably strict ordering! -Are all these memory barriers really required? - - -
Answer: -Yes, they really are required. -To see why the first guarantee is required, consider the following -sequence of events: - -
-Therefore, there absolutely must be a full memory barrier between the -end of the RCU read-side critical section and the end of the -grace period. - -
-The sequence of events demonstrating the necessity of the second rule -is roughly similar: - -
-And similarly, without a memory barrier between the beginning of the -grace period and the beginning of the RCU read-side critical section, -CPU 1 might end up accessing the freelist. - -
-The “as if” rule of course applies, so that any implementation -that acts as if the appropriate memory barriers were in place is a -correct implementation. -That said, it is much easier to fool yourself into believing that you have -adhered to the as-if rule than it is to actually adhere to it! - - -
Back to Quick Quiz 6. - - -
Quick Quiz 7: -But how does the upgrade-to-write operation exclude other readers? - - -
Answer: -It doesn't, just like normal RCU updates, which also do not exclude -RCU readers. - - -
Back to Quick Quiz 7. - - -
Quick Quiz 8: -Can't the compiler also reorder this code? - - -
Answer: -No, the volatile casts in READ_ONCE() and -WRITE_ONCE() prevent the compiler from reordering in -this particular case. - - -
Back to Quick Quiz 8. - - -
Quick Quiz 9: -Suppose that synchronize_rcu() did wait until all readers had completed. -Would the updater be able to rely on this? - - -
Answer: -No. -Even if synchronize_rcu() were to wait until -all readers had completed, a new reader might start immediately after -synchronize_rcu() completed. -Therefore, the code following -synchronize_rcu() cannot rely on there being no readers -in any case. - - -
Back to Quick Quiz 9. - - -
Quick Quiz 10: -How long a sequence of grace periods, each separated by an RCU read-side -critical section, would be required to partition the RCU read-side -critical sections at the beginning and end of the chain? - - -
Answer: -In theory, an infinite number. -In practice, an unknown number that is sensitive to both implementation -details and timing considerations. -Therefore, even in practice, RCU users must abide by the theoretical rather -than the practical answer. - - -
Back to Quick Quiz 10. - - -
Quick Quiz 11: -What about sleeping locks? - - -
Answer: -These are forbidden within Linux-kernel RCU read-side critical sections -because it is not legal to place a quiescent state (in this case, -voluntary context switch) within an RCU read-side critical section. -However, sleeping locks may be used within userspace RCU read-side critical -sections, and also within Linux-kernel sleepable RCU -(SRCU) -read-side critical sections. -In addition, the -rt patchset turns spinlocks into a sleeping locks so -that the corresponding critical sections can be preempted, which -also means that these sleeplockified spinlocks (but not other sleeping locks!) -may be acquire within -rt-Linux-kernel RCU read-side critical sections. - -
-Note that it is legal for a normal RCU read-side critical section -to conditionally acquire a sleeping locks (as in mutex_trylock()), -but only as long as it does not loop indefinitely attempting to -conditionally acquire that sleeping locks. -The key point is that things like mutex_trylock() -either return with the mutex held, or return an error indication if -the mutex was not immediately available. -Either way, mutex_trylock() returns immediately without sleeping. - - -
Back to Quick Quiz 11. - - -
Quick Quiz 12: -Why does line 19 use rcu_access_pointer()? -After all, call_rcu() on line 25 stores into the -structure, which would interact badly with concurrent insertions. -Doesn't this mean that rcu_dereference() is required? - - -
Answer: -Presumably the ->gp_lock acquired on line 18 excludes -any changes, including any insertions that rcu_dereference() -would protect against. -Therefore, any insertions will be delayed until after ->gp_lock -is released on line 25, which in turn means that -rcu_access_pointer() suffices. - - -
Back to Quick Quiz 12. - - -
Quick Quiz 13: -Earlier it was claimed that call_rcu() and -kfree_rcu() allowed updaters to avoid being blocked -by readers. -But how can that be correct, given that the invocation of the callback -and the freeing of the memory (respectively) must still wait for -a grace period to elapse? - - -
Answer: -We could define things this way, but keep in mind that this sort of -definition would say that updates in garbage-collected languages -cannot complete until the next time the garbage collector runs, -which does not seem at all reasonable. -The key point is that in most cases, an updater using either -call_rcu() or kfree_rcu() can proceed to the -next update as soon as it has invoked call_rcu() or -kfree_rcu(), without having to wait for a subsequent -grace period. - - -
Back to Quick Quiz 13. - - -
Quick Quiz 14: -So what happens with synchronize_rcu() during -scheduler initialization for CONFIG_PREEMPT=n -kernels? - - -
Answer: -In CONFIG_PREEMPT=n kernel, synchronize_rcu() -maps directly to synchronize_sched(). -Therefore, synchronize_rcu() works normally throughout -boot in CONFIG_PREEMPT=n kernels. -However, your code must also work in CONFIG_PREEMPT=y kernels, -so it is still necessary to avoid invoking synchronize_rcu() -during scheduler initialization. - - -