diff --git a/drivers/net/wireless/ath5k/ath5k.h b/drivers/net/wireless/ath5k/ath5k.h index 0dc2c7321c8b69c6a45f79b607459f17b2ff47c7..0b616e72fe051436a59b822b51d486f834a9f343 100644 --- a/drivers/net/wireless/ath5k/ath5k.h +++ b/drivers/net/wireless/ath5k/ath5k.h @@ -204,9 +204,9 @@ #define AR5K_TUNE_CWMAX_11B 1023 #define AR5K_TUNE_CWMAX_XR 7 #define AR5K_TUNE_NOISE_FLOOR -72 -#define AR5K_TUNE_MAX_TXPOWER 60 -#define AR5K_TUNE_DEFAULT_TXPOWER 30 -#define AR5K_TUNE_TPC_TXPOWER true +#define AR5K_TUNE_MAX_TXPOWER 63 +#define AR5K_TUNE_DEFAULT_TXPOWER 25 +#define AR5K_TUNE_TPC_TXPOWER false #define AR5K_TUNE_ANT_DIVERSITY true #define AR5K_TUNE_HWTXTRIES 4 @@ -551,11 +551,11 @@ enum ath5k_pkt_type { */ #define AR5K_TXPOWER_OFDM(_r, _v) ( \ ((0 & 1) << ((_v) + 6)) | \ - (((ah->ah_txpower.txp_rates[(_r)]) & 0x3f) << (_v)) \ + (((ah->ah_txpower.txp_rates_power_table[(_r)]) & 0x3f) << (_v)) \ ) #define AR5K_TXPOWER_CCK(_r, _v) ( \ - (ah->ah_txpower.txp_rates[(_r)] & 0x3f) << (_v) \ + (ah->ah_txpower.txp_rates_power_table[(_r)] & 0x3f) << (_v) \ ) /* @@ -1085,13 +1085,25 @@ struct ath5k_hw { struct ath5k_gain ah_gain; u8 ah_offset[AR5K_MAX_RF_BANKS]; + struct { - u16 txp_pcdac[AR5K_EEPROM_POWER_TABLE_SIZE]; - u16 txp_rates[AR5K_MAX_RATES]; - s16 txp_min; - s16 txp_max; + /* Temporary tables used for interpolation */ + u8 tmpL[AR5K_EEPROM_N_PD_GAINS] + [AR5K_EEPROM_POWER_TABLE_SIZE]; + u8 tmpR[AR5K_EEPROM_N_PD_GAINS] + [AR5K_EEPROM_POWER_TABLE_SIZE]; + u8 txp_pd_table[AR5K_EEPROM_POWER_TABLE_SIZE * 2]; + u16 txp_rates_power_table[AR5K_MAX_RATES]; + u8 txp_min_idx; bool txp_tpc; + /* Values in 0.25dB units */ + s16 txp_min_pwr; + s16 txp_max_pwr; + s16 txp_offset; s16 txp_ofdm; + /* Values in dB units */ + s16 txp_cck_ofdm_pwr_delta; + s16 txp_cck_ofdm_gainf_delta; } ah_txpower; struct { @@ -1161,6 +1173,7 @@ extern void ath5k_hw_update_mib_counters(struct ath5k_hw *ah, struct ieee80211_l /* EEPROM access functions */ extern int ath5k_eeprom_init(struct ath5k_hw *ah); +extern void ath5k_eeprom_detach(struct ath5k_hw *ah); extern int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac); extern bool ath5k_eeprom_is_hb63(struct ath5k_hw *ah); @@ -1256,8 +1269,8 @@ extern void ath5k_hw_set_def_antenna(struct ath5k_hw *ah, unsigned int ant); extern unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah); extern int ath5k_hw_phy_disable(struct ath5k_hw *ah); /* TX power setup */ -extern int ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel, unsigned int txpower); -extern int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, unsigned int power); +extern int ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel, u8 ee_mode, u8 txpower); +extern int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 ee_mode, u8 txpower); /* * Functions used internaly diff --git a/drivers/net/wireless/ath5k/attach.c b/drivers/net/wireless/ath5k/attach.c index 656cb9dc833b8690d99170b0e9ca35accb17098a..70d376c63aac4d4ba746dc899333bbcee606bff1 100644 --- a/drivers/net/wireless/ath5k/attach.c +++ b/drivers/net/wireless/ath5k/attach.c @@ -341,6 +341,8 @@ void ath5k_hw_detach(struct ath5k_hw *ah) if (ah->ah_rf_banks != NULL) kfree(ah->ah_rf_banks); + ath5k_eeprom_detach(ah); + /* assume interrupts are down */ kfree(ah); } diff --git a/drivers/net/wireless/ath5k/base.c b/drivers/net/wireless/ath5k/base.c index ef9825fa4ec85ff60f43dfe00d9bc23a50772e49..f28b86c5d346dd967e53cb3c3d06fed91184220b 100644 --- a/drivers/net/wireless/ath5k/base.c +++ b/drivers/net/wireless/ath5k/base.c @@ -1209,6 +1209,9 @@ ath5k_txbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf) pktlen = skb->len; + /* FIXME: If we are in g mode and rate is a CCK rate + * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta + * from tx power (value is in dB units already) */ if (info->control.hw_key) { keyidx = info->control.hw_key->hw_key_idx; pktlen += info->control.hw_key->icv_len; @@ -2037,6 +2040,9 @@ ath5k_beacon_setup(struct ath5k_softc *sc, struct ath5k_buf *bf) antenna = sc->bsent & 4 ? 2 : 1; } + /* FIXME: If we are in g mode and rate is a CCK rate + * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta + * from tx power (value is in dB units already) */ ds->ds_data = bf->skbaddr; ret = ah->ah_setup_tx_desc(ah, ds, skb->len, ieee80211_get_hdrlen_from_skb(skb), @@ -2601,12 +2607,6 @@ ath5k_reset(struct ath5k_softc *sc, bool stop, bool change_channel) goto err; } - /* - * This is needed only to setup initial state - * but it's best done after a reset. - */ - ath5k_hw_set_txpower_limit(sc->ah, 0); - ret = ath5k_rx_start(sc); if (ret) { ATH5K_ERR(sc, "can't start recv logic\n"); diff --git a/drivers/net/wireless/ath5k/desc.c b/drivers/net/wireless/ath5k/desc.c index b40a9287a39a8a3be2fd8888c2f5dd8fde484511..dc30a2b70a6b41861e9471df551dd1ba4fb62b4e 100644 --- a/drivers/net/wireless/ath5k/desc.c +++ b/drivers/net/wireless/ath5k/desc.c @@ -194,6 +194,10 @@ static int ath5k_hw_setup_4word_tx_desc(struct ath5k_hw *ah, return -EINVAL; } + tx_power += ah->ah_txpower.txp_offset; + if (tx_power > AR5K_TUNE_MAX_TXPOWER) + tx_power = AR5K_TUNE_MAX_TXPOWER; + /* Clear descriptor */ memset(&desc->ud.ds_tx5212, 0, sizeof(struct ath5k_hw_5212_tx_desc)); diff --git a/drivers/net/wireless/ath5k/phy.c b/drivers/net/wireless/ath5k/phy.c index 81f5bebc48b13d2a40074664af148e4f162ef1d2..9e2faae5ae942c81d5a857d2b9c528138370cbfa 100644 --- a/drivers/net/wireless/ath5k/phy.c +++ b/drivers/net/wireless/ath5k/phy.c @@ -4,6 +4,7 @@ * Copyright (c) 2004-2007 Reyk Floeter * Copyright (c) 2006-2009 Nick Kossifidis * Copyright (c) 2007-2008 Jiri Slaby + * Copyright (c) 2008-2009 Felix Fietkau * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above @@ -183,7 +184,9 @@ static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah) if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE) return; - ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_max, + /* Send the packet with 2dB below max power as + * patent doc suggest */ + ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_max_pwr - 4, AR5K_PHY_PAPD_PROBE_TXPOWER) | AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE); @@ -1433,93 +1436,1120 @@ unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah) return false; /*XXX: What do we return for 5210 ?*/ } + +/****************\ +* TX power setup * +\****************/ + +/* + * Helper functions + */ + +/* + * Do linear interpolation between two given (x, y) points + */ +static s16 +ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right, + s16 y_left, s16 y_right) +{ + s16 ratio, result; + + /* Avoid divide by zero and skip interpolation + * if we have the same point */ + if ((x_left == x_right) || (y_left == y_right)) + return y_left; + + /* + * Since we use ints and not fps, we need to scale up in + * order to get a sane ratio value (or else we 'll eg. get + * always 1 instead of 1.25, 1.75 etc). We scale up by 100 + * to have some accuracy both for 0.5 and 0.25 steps. + */ + ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left)); + + /* Now scale down to be in range */ + result = y_left + (ratio * (target - x_left) / 100); + + return result; +} + +/* + * Find vertical boundary (min pwr) for the linear PCDAC curve. + * + * Since we have the top of the curve and we draw the line below + * until we reach 1 (1 pcdac step) we need to know which point + * (x value) that is so that we don't go below y axis and have negative + * pcdac values when creating the curve, or fill the table with zeroes. + */ +static s16 +ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR, + const s16 *pwrL, const s16 *pwrR) +{ + s8 tmp; + s16 min_pwrL, min_pwrR; + s16 pwr_i = pwrL[0]; + + do { + pwr_i--; + tmp = (s8) ath5k_get_interpolated_value(pwr_i, + pwrL[0], pwrL[1], + stepL[0], stepL[1]); + + } while (tmp > 1); + + min_pwrL = pwr_i; + + pwr_i = pwrR[0]; + do { + pwr_i--; + tmp = (s8) ath5k_get_interpolated_value(pwr_i, + pwrR[0], pwrR[1], + stepR[0], stepR[1]); + + } while (tmp > 1); + + min_pwrR = pwr_i; + + /* Keep the right boundary so that it works for both curves */ + return max(min_pwrL, min_pwrR); +} + +/* + * Interpolate (pwr,vpd) points to create a Power to PDADC or a + * Power to PCDAC curve. + * + * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC + * steps (offsets) on y axis. Power can go up to 31.5dB and max + * PCDAC/PDADC step for each curve is 64 but we can write more than + * one curves on hw so we can go up to 128 (which is the max step we + * can write on the final table). + * + * We write y values (PCDAC/PDADC steps) on hw. + */ +static void +ath5k_create_power_curve(s16 pmin, s16 pmax, + const s16 *pwr, const u8 *vpd, + u8 num_points, + u8 *vpd_table, u8 type) +{ + u8 idx[2] = { 0, 1 }; + s16 pwr_i = 2*pmin; + int i; + + if (num_points < 2) + return; + + /* We want the whole line, so adjust boundaries + * to cover the entire power range. Note that + * power values are already 0.25dB so no need + * to multiply pwr_i by 2 */ + if (type == AR5K_PWRTABLE_LINEAR_PCDAC) { + pwr_i = pmin; + pmin = 0; + pmax = 63; + } + + /* Find surrounding turning points (TPs) + * and interpolate between them */ + for (i = 0; (i <= (u16) (pmax - pmin)) && + (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) { + + /* We passed the right TP, move to the next set of TPs + * if we pass the last TP, extrapolate above using the last + * two TPs for ratio */ + if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) { + idx[0]++; + idx[1]++; + } + + vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i, + pwr[idx[0]], pwr[idx[1]], + vpd[idx[0]], vpd[idx[1]]); + + /* Increase by 0.5dB + * (0.25 dB units) */ + pwr_i += 2; + } +} + +/* + * Get the surrounding per-channel power calibration piers + * for a given frequency so that we can interpolate between + * them and come up with an apropriate dataset for our current + * channel. + */ +static void +ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah, + struct ieee80211_channel *channel, + struct ath5k_chan_pcal_info **pcinfo_l, + struct ath5k_chan_pcal_info **pcinfo_r) +{ + struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; + struct ath5k_chan_pcal_info *pcinfo; + u8 idx_l, idx_r; + u8 mode, max, i; + u32 target = channel->center_freq; + + idx_l = 0; + idx_r = 0; + + if (!(channel->hw_value & CHANNEL_OFDM)) { + pcinfo = ee->ee_pwr_cal_b; + mode = AR5K_EEPROM_MODE_11B; + } else if (channel->hw_value & CHANNEL_2GHZ) { + pcinfo = ee->ee_pwr_cal_g; + mode = AR5K_EEPROM_MODE_11G; + } else { + pcinfo = ee->ee_pwr_cal_a; + mode = AR5K_EEPROM_MODE_11A; + } + max = ee->ee_n_piers[mode] - 1; + + /* Frequency is below our calibrated + * range. Use the lowest power curve + * we have */ + if (target < pcinfo[0].freq) { + idx_l = idx_r = 0; + goto done; + } + + /* Frequency is above our calibrated + * range. Use the highest power curve + * we have */ + if (target > pcinfo[max].freq) { + idx_l = idx_r = max; + goto done; + } + + /* Frequency is inside our calibrated + * channel range. Pick the surrounding + * calibration piers so that we can + * interpolate */ + for (i = 0; i <= max; i++) { + + /* Frequency matches one of our calibration + * piers, no need to interpolate, just use + * that calibration pier */ + if (pcinfo[i].freq == target) { + idx_l = idx_r = i; + goto done; + } + + /* We found a calibration pier that's above + * frequency, use this pier and the previous + * one to interpolate */ + if (target < pcinfo[i].freq) { + idx_r = i; + idx_l = idx_r - 1; + goto done; + } + } + +done: + *pcinfo_l = &pcinfo[idx_l]; + *pcinfo_r = &pcinfo[idx_r]; + + return; +} + +/* + * Get the surrounding per-rate power calibration data + * for a given frequency and interpolate between power + * values to set max target power supported by hw for + * each rate. + */ +static void +ath5k_get_rate_pcal_data(struct ath5k_hw *ah, + struct ieee80211_channel *channel, + struct ath5k_rate_pcal_info *rates) +{ + struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; + struct ath5k_rate_pcal_info *rpinfo; + u8 idx_l, idx_r; + u8 mode, max, i; + u32 target = channel->center_freq; + + idx_l = 0; + idx_r = 0; + + if (!(channel->hw_value & CHANNEL_OFDM)) { + rpinfo = ee->ee_rate_tpwr_b; + mode = AR5K_EEPROM_MODE_11B; + } else if (channel->hw_value & CHANNEL_2GHZ) { + rpinfo = ee->ee_rate_tpwr_g; + mode = AR5K_EEPROM_MODE_11G; + } else { + rpinfo = ee->ee_rate_tpwr_a; + mode = AR5K_EEPROM_MODE_11A; + } + max = ee->ee_rate_target_pwr_num[mode] - 1; + + /* Get the surrounding calibration + * piers - same as above */ + if (target < rpinfo[0].freq) { + idx_l = idx_r = 0; + goto done; + } + + if (target > rpinfo[max].freq) { + idx_l = idx_r = max; + goto done; + } + + for (i = 0; i <= max; i++) { + + if (rpinfo[i].freq == target) { + idx_l = idx_r = i; + goto done; + } + + if (target < rpinfo[i].freq) { + idx_r = i; + idx_l = idx_r - 1; + goto done; + } + } + +done: + /* Now interpolate power value, based on the frequency */ + rates->freq = target; + + rates->target_power_6to24 = + ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, + rpinfo[idx_r].freq, + rpinfo[idx_l].target_power_6to24, + rpinfo[idx_r].target_power_6to24); + + rates->target_power_36 = + ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, + rpinfo[idx_r].freq, + rpinfo[idx_l].target_power_36, + rpinfo[idx_r].target_power_36); + + rates->target_power_48 = + ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, + rpinfo[idx_r].freq, + rpinfo[idx_l].target_power_48, + rpinfo[idx_r].target_power_48); + + rates->target_power_54 = + ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, + rpinfo[idx_r].freq, + rpinfo[idx_l].target_power_54, + rpinfo[idx_r].target_power_54); +} + +/* + * Get the max edge power for this channel if + * we have such data from EEPROM's Conformance Test + * Limits (CTL), and limit max power if needed. + * + * FIXME: Only works for world regulatory domains + */ +static void +ath5k_get_max_ctl_power(struct ath5k_hw *ah, + struct ieee80211_channel *channel) +{ + struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; + struct ath5k_edge_power *rep = ee->ee_ctl_pwr; + u8 *ctl_val = ee->ee_ctl; + s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4; + s16 edge_pwr = 0; + u8 rep_idx; + u8 i, ctl_mode; + u8 ctl_idx = 0xFF; + u32 target = channel->center_freq; + + /* Find out a CTL for our mode that's not mapped + * on a specific reg domain. + * + * TODO: Map our current reg domain to one of the 3 available + * reg domain ids so that we can support more CTLs. */ + switch (channel->hw_value & CHANNEL_MODES) { + case CHANNEL_A: + ctl_mode = AR5K_CTL_11A | AR5K_CTL_NO_REGDOMAIN; + break; + case CHANNEL_G: + ctl_mode = AR5K_CTL_11G | AR5K_CTL_NO_REGDOMAIN; + break; + case CHANNEL_B: + ctl_mode = AR5K_CTL_11B | AR5K_CTL_NO_REGDOMAIN; + break; + case CHANNEL_T: + ctl_mode = AR5K_CTL_TURBO | AR5K_CTL_NO_REGDOMAIN; + break; + case CHANNEL_TG: + ctl_mode = AR5K_CTL_TURBOG | AR5K_CTL_NO_REGDOMAIN; + break; + case CHANNEL_XR: + /* Fall through */ + default: + return; + } + + for (i = 0; i < ee->ee_ctls; i++) { + if (ctl_val[i] == ctl_mode) { + ctl_idx = i; + break; + } + } + + /* If we have a CTL dataset available grab it and find the + * edge power for our frequency */ + if (ctl_idx == 0xFF) + return; + + /* Edge powers are sorted by frequency from lower + * to higher. Each CTL corresponds to 8 edge power + * measurements. */ + rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES; + + /* Don't do boundaries check because we + * might have more that one bands defined + * for this mode */ + + /* Get the edge power that's closer to our + * frequency */ + for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) { + rep_idx += i; + if (target <= rep[rep_idx].freq) + edge_pwr = (s16) rep[rep_idx].edge; + } + + if (edge_pwr) + ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr); +} + + +/* + * Power to PCDAC table functions + */ + /* - * TX power setup + * Fill Power to PCDAC table on RF5111 + * + * No further processing is needed for RF5111, the only thing we have to + * do is fill the values below and above calibration range since eeprom data + * may not cover the entire PCDAC table. */ +static void +ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min, + s16 *table_max) +{ + u8 *pcdac_out = ah->ah_txpower.txp_pd_table; + u8 *pcdac_tmp = ah->ah_txpower.tmpL[0]; + u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i; + s16 min_pwr, max_pwr; + + /* Get table boundaries */ + min_pwr = table_min[0]; + pcdac_0 = pcdac_tmp[0]; + + max_pwr = table_max[0]; + pcdac_n = pcdac_tmp[table_max[0] - table_min[0]]; + + /* Extrapolate below minimum using pcdac_0 */ + pcdac_i = 0; + for (i = 0; i < min_pwr; i++) + pcdac_out[pcdac_i++] = pcdac_0; + + /* Copy values from pcdac_tmp */ + pwr_idx = min_pwr; + for (i = 0 ; pwr_idx <= max_pwr && + pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) { + pcdac_out[pcdac_i++] = pcdac_tmp[i]; + pwr_idx++; + } + + /* Extrapolate above maximum */ + while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE) + pcdac_out[pcdac_i++] = pcdac_n; + +} /* - * Initialize the tx power table (not fully implemented) + * Combine available XPD Curves and fill Linear Power to PCDAC table + * on RF5112 + * + * RFX112 can have up to 2 curves (one for low txpower range and one for + * higher txpower range). We need to put them both on pcdac_out and place + * them in the correct location. In case we only have one curve available + * just fit it on pcdac_out (it's supposed to cover the entire range of + * available pwr levels since it's always the higher power curve). Extrapolate + * below and above final table if needed. */ -static void ath5k_txpower_table(struct ath5k_hw *ah, - struct ieee80211_channel *channel, s16 max_power) +static void +ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min, + s16 *table_max, u8 pdcurves) { - unsigned int i, min, max, n; - u16 txpower, *rates; - - rates = ah->ah_txpower.txp_rates; - - txpower = AR5K_TUNE_DEFAULT_TXPOWER * 2; - if (max_power > txpower) - txpower = max_power > AR5K_TUNE_MAX_TXPOWER ? - AR5K_TUNE_MAX_TXPOWER : max_power; - - for (i = 0; i < AR5K_MAX_RATES; i++) - rates[i] = txpower; - - /* XXX setup target powers by rate */ - - ah->ah_txpower.txp_min = rates[7]; - ah->ah_txpower.txp_max = rates[0]; - ah->ah_txpower.txp_ofdm = rates[0]; - - /* Calculate the power table */ - n = ARRAY_SIZE(ah->ah_txpower.txp_pcdac); - min = AR5K_EEPROM_PCDAC_START; - max = AR5K_EEPROM_PCDAC_STOP; - for (i = 0; i < n; i += AR5K_EEPROM_PCDAC_STEP) - ah->ah_txpower.txp_pcdac[i] = -#ifdef notyet - min + ((i * (max - min)) / n); -#else - min; + u8 *pcdac_out = ah->ah_txpower.txp_pd_table; + u8 *pcdac_low_pwr; + u8 *pcdac_high_pwr; + u8 *pcdac_tmp; + u8 pwr; + s16 max_pwr_idx; + s16 min_pwr_idx; + s16 mid_pwr_idx = 0; + /* Edge flag turs on the 7nth bit on the PCDAC + * to delcare the higher power curve (force values + * to be greater than 64). If we only have one curve + * we don't need to set this, if we have 2 curves and + * fill the table backwards this can also be used to + * switch from higher power curve to lower power curve */ + u8 edge_flag; + int i; + + /* When we have only one curve available + * that's the higher power curve. If we have + * two curves the first is the high power curve + * and the next is the low power curve. */ + if (pdcurves > 1) { + pcdac_low_pwr = ah->ah_txpower.tmpL[1]; + pcdac_high_pwr = ah->ah_txpower.tmpL[0]; + mid_pwr_idx = table_max[1] - table_min[1] - 1; + max_pwr_idx = (table_max[0] - table_min[0]) / 2; + + /* If table size goes beyond 31.5dB, keep the + * upper 31.5dB range when setting tx power. + * Note: 126 = 31.5 dB in quarter dB steps */ + if (table_max[0] - table_min[1] > 126) + min_pwr_idx = table_max[0] - 126; + else + min_pwr_idx = table_min[1]; + + /* Since we fill table backwards + * start from high power curve */ + pcdac_tmp = pcdac_high_pwr; + + edge_flag = 0x40; +#if 0 + /* If both min and max power limits are in lower + * power curve's range, only use the low power curve. + * TODO: min/max levels are related to target + * power values requested from driver/user + * XXX: Is this really needed ? */ + if (min_pwr < table_max[1] && + max_pwr < table_max[1]) { + edge_flag = 0; + pcdac_tmp = pcdac_low_pwr; + max_pwr_idx = (table_max[1] - table_min[1])/2; + } #endif + } else { + pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */ + pcdac_high_pwr = ah->ah_txpower.tmpL[0]; + min_pwr_idx = table_min[0]; + max_pwr_idx = (table_max[0] - table_min[0]) / 2; + pcdac_tmp = pcdac_high_pwr; + edge_flag = 0; + } + + /* This is used when setting tx power*/ + ah->ah_txpower.txp_min_idx = min_pwr_idx/2; + + /* Fill Power to PCDAC table backwards */ + pwr = max_pwr_idx; + for (i = 63; i >= 0; i--) { + /* Entering lower power range, reset + * edge flag and set pcdac_tmp to lower + * power curve.*/ + if (edge_flag == 0x40 && + (2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) { + edge_flag = 0x00; + pcdac_tmp = pcdac_low_pwr; + pwr = mid_pwr_idx/2; + } + + /* Don't go below 1, extrapolate below if we have + * already swithced to the lower power curve -or + * we only have one curve and edge_flag is zero + * anyway */ + if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) { + while (i >= 0) { + pcdac_out[i] = pcdac_out[i + 1]; + i--; + } + break; + } + + pcdac_out[i] = pcdac_tmp[pwr] | edge_flag; + + /* Extrapolate above if pcdac is greater than + * 126 -this can happen because we OR pcdac_out + * value with edge_flag on high power curve */ + if (pcdac_out[i] > 126) + pcdac_out[i] = 126; + + /* Decrease by a 0.5dB step */ + pwr--; + } } +/* Write PCDAC values on hw */ +static void +ath5k_setup_pcdac_table(struct ath5k_hw *ah) +{ + u8 *pcdac_out = ah->ah_txpower.txp_pd_table; + int i; + + /* + * Write TX power values + */ + for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) { + ath5k_hw_reg_write(ah, + (((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) | + (((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16), + AR5K_PHY_PCDAC_TXPOWER(i)); + } +} + + /* - * Set transmition power + * Power to PDADC table functions */ -int /*O.K. - txpower_table is unimplemented so this doesn't work*/ -ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel, - unsigned int txpower) + +/* + * Set the gain boundaries and create final Power to PDADC table + * + * We can have up to 4 pd curves, we need to do a simmilar process + * as we do for RF5112. This time we don't have an edge_flag but we + * set the gain boundaries on a separate register. + */ +static void +ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah, + s16 *pwr_min, s16 *pwr_max, u8 pdcurves) { - bool tpc = ah->ah_txpower.txp_tpc; - unsigned int i; + u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS]; + u8 *pdadc_out = ah->ah_txpower.txp_pd_table; + u8 *pdadc_tmp; + s16 pdadc_0; + u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size; + u8 pd_gain_overlap; + + /* Note: Register value is initialized on initvals + * there is no feedback from hw. + * XXX: What about pd_gain_overlap from EEPROM ? */ + pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) & + AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP; + + /* Create final PDADC table */ + for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) { + pdadc_tmp = ah->ah_txpower.tmpL[pdg]; + + if (pdg == pdcurves - 1) + /* 2 dB boundary stretch for last + * (higher power) curve */ + gain_boundaries[pdg] = pwr_max[pdg] + 4; + else + /* Set gain boundary in the middle + * between this curve and the next one */ + gain_boundaries[pdg] = + (pwr_max[pdg] + pwr_min[pdg + 1]) / 2; + + /* Sanity check in case our 2 db stretch got out of + * range. */ + if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER) + gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER; + + /* For the first curve (lower power) + * start from 0 dB */ + if (pdg == 0) + pdadc_0 = 0; + else + /* For the other curves use the gain overlap */ + pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) - + pd_gain_overlap; - ATH5K_TRACE(ah->ah_sc); - if (txpower > AR5K_TUNE_MAX_TXPOWER) { - ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower); - return -EINVAL; + /* Force each power step to be at least 0.5 dB */ + if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1) + pwr_step = pdadc_tmp[1] - pdadc_tmp[0]; + else + pwr_step = 1; + + /* If pdadc_0 is negative, we need to extrapolate + * below this pdgain by a number of pwr_steps */ + while ((pdadc_0 < 0) && (pdadc_i < 128)) { + s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step; + pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp; + pdadc_0++; + } + + /* Set last pwr level, using gain boundaries */ + pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg]; + /* Limit it to be inside pwr range */ + table_size = pwr_max[pdg] - pwr_min[pdg]; + max_idx = (pdadc_n < table_size) ? pdadc_n : table_size; + + /* Fill pdadc_out table */ + while (pdadc_0 < max_idx) + pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++]; + + /* Need to extrapolate above this pdgain? */ + if (pdadc_n <= max_idx) + continue; + + /* Force each power step to be at least 0.5 dB */ + if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1) + pwr_step = pdadc_tmp[table_size - 1] - + pdadc_tmp[table_size - 2]; + else + pwr_step = 1; + + /* Extrapolate above */ + while ((pdadc_0 < (s16) pdadc_n) && + (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) { + s16 tmp = pdadc_tmp[table_size - 1] + + (pdadc_0 - max_idx) * pwr_step; + pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp; + pdadc_0++; + } } + while (pdg < AR5K_EEPROM_N_PD_GAINS) { + gain_boundaries[pdg] = gain_boundaries[pdg - 1]; + pdg++; + } + + while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) { + pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1]; + pdadc_i++; + } + + /* Set gain boundaries */ + ath5k_hw_reg_write(ah, + AR5K_REG_SM(pd_gain_overlap, + AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) | + AR5K_REG_SM(gain_boundaries[0], + AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) | + AR5K_REG_SM(gain_boundaries[1], + AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) | + AR5K_REG_SM(gain_boundaries[2], + AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) | + AR5K_REG_SM(gain_boundaries[3], + AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4), + AR5K_PHY_TPC_RG5); + + /* Used for setting rate power table */ + ah->ah_txpower.txp_min_idx = pwr_min[0]; + +} + +/* Write PDADC values on hw */ +static void +ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah, + u8 pdcurves, u8 *pdg_to_idx) +{ + u8 *pdadc_out = ah->ah_txpower.txp_pd_table; + u32 reg; + u8 i; + + /* Select the right pdgain curves */ + + /* Clear current settings */ + reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1); + reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 | + AR5K_PHY_TPC_RG1_PDGAIN_2 | + AR5K_PHY_TPC_RG1_PDGAIN_3 | + AR5K_PHY_TPC_RG1_NUM_PD_GAIN); + /* - * RF2413 for some reason can't - * transmit anything if we call - * this funtion, so we skip it - * until we fix txpower. + * Use pd_gains curve from eeprom * - * XXX: Assume same for RF2425 - * to be safe. + * This overrides the default setting from initvals + * in case some vendors (e.g. Zcomax) don't use the default + * curves. If we don't honor their settings we 'll get a + * 5dB (1 * gain overlap ?) drop. */ - if ((ah->ah_radio == AR5K_RF2413) || (ah->ah_radio == AR5K_RF2425)) - return 0; + reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN); - /* Reset TX power values */ - memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower)); - ah->ah_txpower.txp_tpc = tpc; - - /* Initialize TX power table */ - ath5k_txpower_table(ah, channel, txpower); + switch (pdcurves) { + case 3: + reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3); + /* Fall through */ + case 2: + reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2); + /* Fall through */ + case 1: + reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1); + break; + } + ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1); /* * Write TX power values */ for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) { ath5k_hw_reg_write(ah, - ((((ah->ah_txpower.txp_pcdac[(i << 1) + 1] << 8) | 0xff) & 0xffff) << 16) | - (((ah->ah_txpower.txp_pcdac[(i << 1) ] << 8) | 0xff) & 0xffff), - AR5K_PHY_PCDAC_TXPOWER(i)); + ((pdadc_out[4*i + 0] & 0xff) << 0) | + ((pdadc_out[4*i + 1] & 0xff) << 8) | + ((pdadc_out[4*i + 2] & 0xff) << 16) | + ((pdadc_out[4*i + 3] & 0xff) << 24), + AR5K_PHY_PDADC_TXPOWER(i)); + } +} + + +/* + * Common code for PCDAC/PDADC tables + */ + +/* + * This is the main function that uses all of the above + * to set PCDAC/PDADC table on hw for the current channel. + * This table is used for tx power calibration on the basband, + * without it we get weird tx power levels and in some cases + * distorted spectral mask + */ +static int +ath5k_setup_channel_powertable(struct ath5k_hw *ah, + struct ieee80211_channel *channel, + u8 ee_mode, u8 type) +{ + struct ath5k_pdgain_info *pdg_L, *pdg_R; + struct ath5k_chan_pcal_info *pcinfo_L; + struct ath5k_chan_pcal_info *pcinfo_R; + struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; + u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode]; + s16 table_min[AR5K_EEPROM_N_PD_GAINS]; + s16 table_max[AR5K_EEPROM_N_PD_GAINS]; + u8 *tmpL; + u8 *tmpR; + u32 target = channel->center_freq; + int pdg, i; + + /* Get surounding freq piers for this channel */ + ath5k_get_chan_pcal_surrounding_piers(ah, channel, + &pcinfo_L, + &pcinfo_R); + + /* Loop over pd gain curves on + * surounding freq piers by index */ + for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) { + + /* Fill curves in reverse order + * from lower power (max gain) + * to higher power. Use curve -> idx + * backmaping we did on eeprom init */ + u8 idx = pdg_curve_to_idx[pdg]; + + /* Grab the needed curves by index */ + pdg_L = &pcinfo_L->pd_curves[idx]; + pdg_R = &pcinfo_R->pd_curves[idx]; + + /* Initialize the temp tables */ + tmpL = ah->ah_txpower.tmpL[pdg]; + tmpR = ah->ah_txpower.tmpR[pdg]; + + /* Set curve's x boundaries and create + * curves so that they cover the same + * range (if we don't do that one table + * will have values on some range and the + * other one won't have any so interpolation + * will fail) */ + table_min[pdg] = min(pdg_L->pd_pwr[0], + pdg_R->pd_pwr[0]) / 2; + + table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1], + pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2; + + /* Now create the curves on surrounding channels + * and interpolate if needed to get the final + * curve for this gain on this channel */ + switch (type) { + case AR5K_PWRTABLE_LINEAR_PCDAC: + /* Override min/max so that we don't loose + * accuracy (don't divide by 2) */ + table_min[pdg] = min(pdg_L->pd_pwr[0], + pdg_R->pd_pwr[0]); + + table_max[pdg] = + max(pdg_L->pd_pwr[pdg_L->pd_points - 1], + pdg_R->pd_pwr[pdg_R->pd_points - 1]); + + /* Override minimum so that we don't get + * out of bounds while extrapolating + * below. Don't do this when we have 2 + * curves and we are on the high power curve + * because table_min is ok in this case */ + if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) { + + table_min[pdg] = + ath5k_get_linear_pcdac_min(pdg_L->pd_step, + pdg_R->pd_step, + pdg_L->pd_pwr, + pdg_R->pd_pwr); + + /* Don't go too low because we will + * miss the upper part of the curve. + * Note: 126 = 31.5dB (max power supported) + * in 0.25dB units */ + if (table_max[pdg] - table_min[pdg] > 126) + table_min[pdg] = table_max[pdg] - 126; + } + + /* Fall through */ + case AR5K_PWRTABLE_PWR_TO_PCDAC: + case AR5K_PWRTABLE_PWR_TO_PDADC: + + ath5k_create_power_curve(table_min[pdg], + table_max[pdg], + pdg_L->pd_pwr, + pdg_L->pd_step, + pdg_L->pd_points, tmpL, type); + + /* We are in a calibration + * pier, no need to interpolate + * between freq piers */ + if (pcinfo_L == pcinfo_R) + continue; + + ath5k_create_power_curve(table_min[pdg], + table_max[pdg], + pdg_R->pd_pwr, + pdg_R->pd_step, + pdg_R->pd_points, tmpR, type); + break; + default: + return -EINVAL; + } + + /* Interpolate between curves + * of surounding freq piers to + * get the final curve for this + * pd gain. Re-use tmpL for interpolation + * output */ + for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) && + (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) { + tmpL[i] = (u8) ath5k_get_interpolated_value(target, + (s16) pcinfo_L->freq, + (s16) pcinfo_R->freq, + (s16) tmpL[i], + (s16) tmpR[i]); + } } + /* Now we have a set of curves for this + * channel on tmpL (x range is table_max - table_min + * and y values are tmpL[pdg][]) sorted in the same + * order as EEPROM (because we've used the backmaping). + * So for RF5112 it's from higher power to lower power + * and for RF2413 it's from lower power to higher power. + * For RF5111 we only have one curve. */ + + /* Fill min and max power levels for this + * channel by interpolating the values on + * surounding channels to complete the dataset */ + ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target, + (s16) pcinfo_L->freq, + (s16) pcinfo_R->freq, + pcinfo_L->min_pwr, pcinfo_R->min_pwr); + + ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target, + (s16) pcinfo_L->freq, + (s16) pcinfo_R->freq, + pcinfo_L->max_pwr, pcinfo_R->max_pwr); + + /* We are ready to go, fill PCDAC/PDADC + * table and write settings on hardware */ + switch (type) { + case AR5K_PWRTABLE_LINEAR_PCDAC: + /* For RF5112 we can have one or two curves + * and each curve covers a certain power lvl + * range so we need to do some more processing */ + ath5k_combine_linear_pcdac_curves(ah, table_min, table_max, + ee->ee_pd_gains[ee_mode]); + + /* Set txp.offset so that we can + * match max power value with max + * table index */ + ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2); + + /* Write settings on hw */ + ath5k_setup_pcdac_table(ah); + break; + case AR5K_PWRTABLE_PWR_TO_PCDAC: + /* We are done for RF5111 since it has only + * one curve, just fit the curve on the table */ + ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max); + + /* No rate powertable adjustment for RF5111 */ + ah->ah_txpower.txp_min_idx = 0; + ah->ah_txpower.txp_offset = 0; + + /* Write settings on hw */ + ath5k_setup_pcdac_table(ah); + break; + case AR5K_PWRTABLE_PWR_TO_PDADC: + /* Set PDADC boundaries and fill + * final PDADC table */ + ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max, + ee->ee_pd_gains[ee_mode]); + + /* Write settings on hw */ + ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx); + + /* Set txp.offset, note that table_min + * can be negative */ + ah->ah_txpower.txp_offset = table_min[0]; + break; + default: + return -EINVAL; + } + + return 0; +} + + +/* + * Per-rate tx power setting + * + * This is the code that sets the desired tx power (below + * maximum) on hw for each rate (we also have TPC that sets + * power per packet). We do that by providing an index on the + * PCDAC/PDADC table we set up. + */ + +/* + * Set rate power table + * + * For now we only limit txpower based on maximum tx power + * supported by hw (what's inside rate_info). We need to limit + * this even more, based on regulatory domain etc. + * + * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps) + * and is indexed as follows: + * rates[0] - rates[7] -> OFDM rates + * rates[8] - rates[14] -> CCK rates + * rates[15] -> XR rates (they all have the same power) + */ +static void +ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr, + struct ath5k_rate_pcal_info *rate_info, + u8 ee_mode) +{ + unsigned int i; + u16 *rates; + + /* max_pwr is power level we got from driver/user in 0.5dB + * units, switch to 0.25dB units so we can compare */ + max_pwr *= 2; + max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2; + + /* apply rate limits */ + rates = ah->ah_txpower.txp_rates_power_table; + + /* OFDM rates 6 to 24Mb/s */ + for (i = 0; i < 5; i++) + rates[i] = min(max_pwr, rate_info->target_power_6to24); + + /* Rest OFDM rates */ + rates[5] = min(rates[0], rate_info->target_power_36); + rates[6] = min(rates[0], rate_info->target_power_48); + rates[7] = min(rates[0], rate_info->target_power_54); + + /* CCK rates */ + /* 1L */ + rates[8] = min(rates[0], rate_info->target_power_6to24); + /* 2L */ + rates[9] = min(rates[0], rate_info->target_power_36); + /* 2S */ + rates[10] = min(rates[0], rate_info->target_power_36); + /* 5L */ + rates[11] = min(rates[0], rate_info->target_power_48); + /* 5S */ + rates[12] = min(rates[0], rate_info->target_power_48); + /* 11L */ + rates[13] = min(rates[0], rate_info->target_power_54); + /* 11S */ + rates[14] = min(rates[0], rate_info->target_power_54); + + /* XR rates */ + rates[15] = min(rates[0], rate_info->target_power_6to24); + + /* CCK rates have different peak to average ratio + * so we have to tweak their power so that gainf + * correction works ok. For this we use OFDM to + * CCK delta from eeprom */ + if ((ee_mode == AR5K_EEPROM_MODE_11G) && + (ah->ah_phy_revision < AR5K_SREV_PHY_5212A)) + for (i = 8; i <= 15; i++) + rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta; + + ah->ah_txpower.txp_min_pwr = rates[7]; + ah->ah_txpower.txp_max_pwr = rates[0]; + ah->ah_txpower.txp_ofdm = rates[7]; +} + + +/* + * Set transmition power + */ +int +ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel, + u8 ee_mode, u8 txpower) +{ + struct ath5k_rate_pcal_info rate_info; + u8 type; + int ret; + + ATH5K_TRACE(ah->ah_sc); + if (txpower > AR5K_TUNE_MAX_TXPOWER) { + ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower); + return -EINVAL; + } + if (txpower == 0) + txpower = AR5K_TUNE_DEFAULT_TXPOWER; + + /* Reset TX power values */ + memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower)); + ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER; + ah->ah_txpower.txp_min_pwr = 0; + ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER; + + /* Initialize TX power table */ + switch (ah->ah_radio) { + case AR5K_RF5111: + type = AR5K_PWRTABLE_PWR_TO_PCDAC; + break; + case AR5K_RF5112: + type = AR5K_PWRTABLE_LINEAR_PCDAC; + break; + case AR5K_RF2413: + case AR5K_RF5413: + case AR5K_RF2316: + case AR5K_RF2317: + case AR5K_RF2425: + type = AR5K_PWRTABLE_PWR_TO_PDADC; + break; + default: + return -EINVAL; + } + + /* FIXME: Only on channel/mode change */ + ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type); + if (ret) + return ret; + + /* Limit max power if we have a CTL available */ + ath5k_get_max_ctl_power(ah, channel); + + /* FIXME: Tx power limit for this regdomain + * XXX: Mac80211/CRDA will do that anyway ? */ + + /* FIXME: Antenna reduction stuff */ + + /* FIXME: Limit power on turbo modes */ + + /* FIXME: TPC scale reduction */ + + /* Get surounding channels for per-rate power table + * calibration */ + ath5k_get_rate_pcal_data(ah, channel, &rate_info); + + /* Setup rate power table */ + ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode); + + /* Write rate power table on hw */ ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) | AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) | AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1); @@ -1536,26 +2566,34 @@ ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel, AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) | AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4); - if (ah->ah_txpower.txp_tpc) + /* FIXME: TPC support */ + if (ah->ah_txpower.txp_tpc) { ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE | AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX); - else + + ath5k_hw_reg_write(ah, + AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) | + AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) | + AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP), + AR5K_TPC); + } else { ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX | AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX); + } return 0; } -int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, unsigned int power) +int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 mode, u8 txpower) { /*Just a try M.F.*/ struct ieee80211_channel *channel = &ah->ah_current_channel; ATH5K_TRACE(ah->ah_sc); ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER, - "changing txpower to %d\n", power); + "changing txpower to %d\n", txpower); - return ath5k_hw_txpower(ah, channel, power); + return ath5k_hw_txpower(ah, channel, mode, txpower); } #undef _ATH5K_PHY diff --git a/drivers/net/wireless/ath5k/reg.h b/drivers/net/wireless/ath5k/reg.h index 2dc008e102268baf945fe2e8b064c99c5e7e7233..7070d1543cdc54359107b72ffe7032dbe16cf327 100644 --- a/drivers/net/wireless/ath5k/reg.h +++ b/drivers/net/wireless/ath5k/reg.h @@ -1553,6 +1553,19 @@ /*===5212 Specific PCU registers===*/ +/* + * Transmit power control register + */ +#define AR5K_TPC 0x80e8 +#define AR5K_TPC_ACK 0x0000003f /* ack frames */ +#define AR5K_TPC_ACK_S 0 +#define AR5K_TPC_CTS 0x00003f00 /* cts frames */ +#define AR5K_TPC_CTS_S 8 +#define AR5K_TPC_CHIRP 0x003f0000 /* chirp frames */ +#define AR5K_TPC_CHIRP_S 16 +#define AR5K_TPC_DOPPLER 0x0f000000 /* doppler chirp span */ +#define AR5K_TPC_DOPPLER_S 24 + /* * XR (eXtended Range) mode register */ @@ -2550,6 +2563,12 @@ #define AR5K_PHY_TPC_RG1 0xa258 #define AR5K_PHY_TPC_RG1_NUM_PD_GAIN 0x0000c000 #define AR5K_PHY_TPC_RG1_NUM_PD_GAIN_S 14 +#define AR5K_PHY_TPC_RG1_PDGAIN_1 0x00030000 +#define AR5K_PHY_TPC_RG1_PDGAIN_1_S 16 +#define AR5K_PHY_TPC_RG1_PDGAIN_2 0x000c0000 +#define AR5K_PHY_TPC_RG1_PDGAIN_2_S 18 +#define AR5K_PHY_TPC_RG1_PDGAIN_3 0x00300000 +#define AR5K_PHY_TPC_RG1_PDGAIN_3_S 20 #define AR5K_PHY_TPC_RG5 0xa26C #define AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP 0x0000000F diff --git a/drivers/net/wireless/ath5k/reset.c b/drivers/net/wireless/ath5k/reset.c index 685dc213edae01e8772b7f2fad6d7d612e3546ca..7a17d31b2fd9f762a2bd8870639e7e0ed8b3723c 100644 --- a/drivers/net/wireless/ath5k/reset.c +++ b/drivers/net/wireless/ath5k/reset.c @@ -664,29 +664,35 @@ static void ath5k_hw_commit_eeprom_settings(struct ath5k_hw *ah, struct ieee80211_channel *channel, u8 *ant, u8 ee_mode) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; + s16 cck_ofdm_pwr_delta; - /* Set CCK to OFDM power delta */ - if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) { - int16_t cck_ofdm_pwr_delta; - - /* Adjust power delta for channel 14 */ - if (channel->center_freq == 2484) - cck_ofdm_pwr_delta = - ((ee->ee_cck_ofdm_power_delta - - ee->ee_scaled_cck_delta) * 2) / 10; - else - cck_ofdm_pwr_delta = - (ee->ee_cck_ofdm_power_delta * 2) / 10; + /* Adjust power delta for channel 14 */ + if (channel->center_freq == 2484) + cck_ofdm_pwr_delta = + ((ee->ee_cck_ofdm_power_delta - + ee->ee_scaled_cck_delta) * 2) / 10; + else + cck_ofdm_pwr_delta = + (ee->ee_cck_ofdm_power_delta * 2) / 10; + /* Set CCK to OFDM power delta on tx power + * adjustment register */ + if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) { if (channel->hw_value == CHANNEL_G) ath5k_hw_reg_write(ah, - AR5K_REG_SM((ee->ee_cck_ofdm_power_delta * -1), + AR5K_REG_SM((ee->ee_cck_ofdm_gain_delta * -1), AR5K_PHY_TX_PWR_ADJ_CCK_GAIN_DELTA) | AR5K_REG_SM((cck_ofdm_pwr_delta * -1), AR5K_PHY_TX_PWR_ADJ_CCK_PCDAC_INDEX), AR5K_PHY_TX_PWR_ADJ); else ath5k_hw_reg_write(ah, 0, AR5K_PHY_TX_PWR_ADJ); + } else { + /* For older revs we scale power on sw during tx power + * setup */ + ah->ah_txpower.txp_cck_ofdm_pwr_delta = cck_ofdm_pwr_delta; + ah->ah_txpower.txp_cck_ofdm_gainf_delta = + ee->ee_cck_ofdm_gain_delta; } /* Set antenna idle switch table */ @@ -994,7 +1000,8 @@ int ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode, /* * Set TX power (FIXME) */ - ret = ath5k_hw_txpower(ah, channel, AR5K_TUNE_DEFAULT_TXPOWER); + ret = ath5k_hw_txpower(ah, channel, ee_mode, + AR5K_TUNE_DEFAULT_TXPOWER); if (ret) return ret;