提交 5f07aa75 编写于 作者: B Benjamin Herrenschmidt

Merge commit 'paulus-perf/master' into next

...@@ -141,6 +141,7 @@ config PPC ...@@ -141,6 +141,7 @@ config PPC
select GENERIC_ATOMIC64 if PPC32 select GENERIC_ATOMIC64 if PPC32
select HAVE_PERF_EVENTS select HAVE_PERF_EVENTS
select HAVE_REGS_AND_STACK_ACCESS_API select HAVE_REGS_AND_STACK_ACCESS_API
select HAVE_HW_BREAKPOINT if PERF_EVENTS && PPC_BOOK3S_64
config EARLY_PRINTK config EARLY_PRINTK
bool bool
......
...@@ -30,6 +30,7 @@ ...@@ -30,6 +30,7 @@
#define PPC_STLCX stringify_in_c(stdcx.) #define PPC_STLCX stringify_in_c(stdcx.)
#define PPC_CNTLZL stringify_in_c(cntlzd) #define PPC_CNTLZL stringify_in_c(cntlzd)
#define PPC_LR_STKOFF 16 #define PPC_LR_STKOFF 16
#define PPC_MIN_STKFRM 112
/* Move to CR, single-entry optimized version. Only available /* Move to CR, single-entry optimized version. Only available
* on POWER4 and later. * on POWER4 and later.
...@@ -55,6 +56,7 @@ ...@@ -55,6 +56,7 @@
#define PPC_CNTLZL stringify_in_c(cntlzw) #define PPC_CNTLZL stringify_in_c(cntlzw)
#define PPC_MTOCRF stringify_in_c(mtcrf) #define PPC_MTOCRF stringify_in_c(mtcrf)
#define PPC_LR_STKOFF 4 #define PPC_LR_STKOFF 4
#define PPC_MIN_STKFRM 16
#endif #endif
......
...@@ -517,6 +517,10 @@ static inline int cpu_has_feature(unsigned long feature) ...@@ -517,6 +517,10 @@ static inline int cpu_has_feature(unsigned long feature)
& feature); & feature);
} }
#ifdef CONFIG_HAVE_HW_BREAKPOINT
#define HBP_NUM 1
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
#endif /* !__ASSEMBLY__ */ #endif /* !__ASSEMBLY__ */
#endif /* __KERNEL__ */ #endif /* __KERNEL__ */
......
/*
* PowerPC BookIII S hardware breakpoint definitions
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright 2010, IBM Corporation.
* Author: K.Prasad <prasad@linux.vnet.ibm.com>
*
*/
#ifndef _PPC_BOOK3S_64_HW_BREAKPOINT_H
#define _PPC_BOOK3S_64_HW_BREAKPOINT_H
#ifdef __KERNEL__
#ifdef CONFIG_HAVE_HW_BREAKPOINT
struct arch_hw_breakpoint {
bool extraneous_interrupt;
u8 len; /* length of the target data symbol */
int type;
unsigned long address;
};
#include <linux/kdebug.h>
#include <asm/reg.h>
#include <asm/system.h>
struct perf_event;
struct pmu;
struct perf_sample_data;
#define HW_BREAKPOINT_ALIGN 0x7
/* Maximum permissible length of any HW Breakpoint */
#define HW_BREAKPOINT_LEN 0x8
extern int hw_breakpoint_slots(int type);
extern int arch_bp_generic_fields(int type, int *gen_bp_type);
extern int arch_check_bp_in_kernelspace(struct perf_event *bp);
extern int arch_validate_hwbkpt_settings(struct perf_event *bp);
extern int hw_breakpoint_exceptions_notify(struct notifier_block *unused,
unsigned long val, void *data);
int arch_install_hw_breakpoint(struct perf_event *bp);
void arch_uninstall_hw_breakpoint(struct perf_event *bp);
void hw_breakpoint_pmu_read(struct perf_event *bp);
extern void flush_ptrace_hw_breakpoint(struct task_struct *tsk);
extern struct pmu perf_ops_bp;
extern void ptrace_triggered(struct perf_event *bp, int nmi,
struct perf_sample_data *data, struct pt_regs *regs);
static inline void hw_breakpoint_disable(void)
{
set_dabr(0);
}
extern void thread_change_pc(struct task_struct *tsk, struct pt_regs *regs);
#else /* CONFIG_HAVE_HW_BREAKPOINT */
static inline void hw_breakpoint_disable(void) { }
static inline void thread_change_pc(struct task_struct *tsk,
struct pt_regs *regs) { }
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
#endif /* __KERNEL__ */
#endif /* _PPC_BOOK3S_64_HW_BREAKPOINT_H */
...@@ -52,13 +52,17 @@ ...@@ -52,13 +52,17 @@
#define PPC_INST_WAIT 0x7c00007c #define PPC_INST_WAIT 0x7c00007c
#define PPC_INST_TLBIVAX 0x7c000624 #define PPC_INST_TLBIVAX 0x7c000624
#define PPC_INST_TLBSRX_DOT 0x7c0006a5 #define PPC_INST_TLBSRX_DOT 0x7c0006a5
#define PPC_INST_XXLOR 0xf0000510
/* macros to insert fields into opcodes */ /* macros to insert fields into opcodes */
#define __PPC_RA(a) (((a) & 0x1f) << 16) #define __PPC_RA(a) (((a) & 0x1f) << 16)
#define __PPC_RB(b) (((b) & 0x1f) << 11) #define __PPC_RB(b) (((b) & 0x1f) << 11)
#define __PPC_RS(s) (((s) & 0x1f) << 21) #define __PPC_RS(s) (((s) & 0x1f) << 21)
#define __PPC_RT(s) __PPC_RS(s) #define __PPC_RT(s) __PPC_RS(s)
#define __PPC_XA(a) ((((a) & 0x1f) << 16) | (((a) & 0x20) >> 3))
#define __PPC_XB(b) ((((b) & 0x1f) << 11) | (((b) & 0x20) >> 4))
#define __PPC_XS(s) ((((s) & 0x1f) << 21) | (((s) & 0x20) >> 5)) #define __PPC_XS(s) ((((s) & 0x1f) << 21) | (((s) & 0x20) >> 5))
#define __PPC_XT(s) __PPC_XS(s)
#define __PPC_T_TLB(t) (((t) & 0x3) << 21) #define __PPC_T_TLB(t) (((t) & 0x3) << 21)
#define __PPC_WC(w) (((w) & 0x3) << 21) #define __PPC_WC(w) (((w) & 0x3) << 21)
/* /*
...@@ -106,9 +110,12 @@ ...@@ -106,9 +110,12 @@
* the 128 bit load store instructions based on that. * the 128 bit load store instructions based on that.
*/ */
#define VSX_XX1(s, a, b) (__PPC_XS(s) | __PPC_RA(a) | __PPC_RB(b)) #define VSX_XX1(s, a, b) (__PPC_XS(s) | __PPC_RA(a) | __PPC_RB(b))
#define VSX_XX3(t, a, b) (__PPC_XT(t) | __PPC_XA(a) | __PPC_XB(b))
#define STXVD2X(s, a, b) stringify_in_c(.long PPC_INST_STXVD2X | \ #define STXVD2X(s, a, b) stringify_in_c(.long PPC_INST_STXVD2X | \
VSX_XX1((s), (a), (b))) VSX_XX1((s), (a), (b)))
#define LXVD2X(s, a, b) stringify_in_c(.long PPC_INST_LXVD2X | \ #define LXVD2X(s, a, b) stringify_in_c(.long PPC_INST_LXVD2X | \
VSX_XX1((s), (a), (b))) VSX_XX1((s), (a), (b)))
#define XXLOR(t, a, b) stringify_in_c(.long PPC_INST_XXLOR | \
VSX_XX3((t), (a), (b)))
#endif /* _ASM_POWERPC_PPC_OPCODE_H */ #endif /* _ASM_POWERPC_PPC_OPCODE_H */
...@@ -209,6 +209,14 @@ struct thread_struct { ...@@ -209,6 +209,14 @@ struct thread_struct {
#ifdef CONFIG_PPC64 #ifdef CONFIG_PPC64
unsigned long start_tb; /* Start purr when proc switched in */ unsigned long start_tb; /* Start purr when proc switched in */
unsigned long accum_tb; /* Total accumilated purr for process */ unsigned long accum_tb; /* Total accumilated purr for process */
#ifdef CONFIG_HAVE_HW_BREAKPOINT
struct perf_event *ptrace_bps[HBP_NUM];
/*
* Helps identify source of single-step exception and subsequent
* hw-breakpoint enablement
*/
struct perf_event *last_hit_ubp;
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
#endif #endif
unsigned long dabr; /* Data address breakpoint register */ unsigned long dabr; /* Data address breakpoint register */
#ifdef CONFIG_ALTIVEC #ifdef CONFIG_ALTIVEC
......
...@@ -34,6 +34,7 @@ obj-y += vdso32/ ...@@ -34,6 +34,7 @@ obj-y += vdso32/
obj-$(CONFIG_PPC64) += setup_64.o sys_ppc32.o \ obj-$(CONFIG_PPC64) += setup_64.o sys_ppc32.o \
signal_64.o ptrace32.o \ signal_64.o ptrace32.o \
paca.o nvram_64.o firmware.o paca.o nvram_64.o firmware.o
obj-$(CONFIG_HAVE_HW_BREAKPOINT) += hw_breakpoint.o
obj-$(CONFIG_PPC_BOOK3S_64) += cpu_setup_ppc970.o cpu_setup_pa6t.o obj-$(CONFIG_PPC_BOOK3S_64) += cpu_setup_ppc970.o cpu_setup_pa6t.o
obj64-$(CONFIG_RELOCATABLE) += reloc_64.o obj64-$(CONFIG_RELOCATABLE) += reloc_64.o
obj-$(CONFIG_PPC_BOOK3E_64) += exceptions-64e.o obj-$(CONFIG_PPC_BOOK3E_64) += exceptions-64e.o
......
...@@ -828,6 +828,7 @@ END_FW_FTR_SECTION_IFCLR(FW_FEATURE_ISERIES) ...@@ -828,6 +828,7 @@ END_FW_FTR_SECTION_IFCLR(FW_FEATURE_ISERIES)
/* We have a data breakpoint exception - handle it */ /* We have a data breakpoint exception - handle it */
handle_dabr_fault: handle_dabr_fault:
bl .save_nvgprs
ld r4,_DAR(r1) ld r4,_DAR(r1)
ld r5,_DSISR(r1) ld r5,_DSISR(r1)
addi r3,r1,STACK_FRAME_OVERHEAD addi r3,r1,STACK_FRAME_OVERHEAD
......
/*
* HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
* using the CPU's debug registers. Derived from
* "arch/x86/kernel/hw_breakpoint.c"
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright 2010 IBM Corporation
* Author: K.Prasad <prasad@linux.vnet.ibm.com>
*
*/
#include <linux/hw_breakpoint.h>
#include <linux/notifier.h>
#include <linux/kprobes.h>
#include <linux/percpu.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/smp.h>
#include <asm/hw_breakpoint.h>
#include <asm/processor.h>
#include <asm/sstep.h>
#include <asm/uaccess.h>
/*
* Stores the breakpoints currently in use on each breakpoint address
* register for every cpu
*/
static DEFINE_PER_CPU(struct perf_event *, bp_per_reg);
/*
* Returns total number of data or instruction breakpoints available.
*/
int hw_breakpoint_slots(int type)
{
if (type == TYPE_DATA)
return HBP_NUM;
return 0; /* no instruction breakpoints available */
}
/*
* Install a perf counter breakpoint.
*
* We seek a free debug address register and use it for this
* breakpoint.
*
* Atomic: we hold the counter->ctx->lock and we only handle variables
* and registers local to this cpu.
*/
int arch_install_hw_breakpoint(struct perf_event *bp)
{
struct arch_hw_breakpoint *info = counter_arch_bp(bp);
struct perf_event **slot = &__get_cpu_var(bp_per_reg);
*slot = bp;
/*
* Do not install DABR values if the instruction must be single-stepped.
* If so, DABR will be populated in single_step_dabr_instruction().
*/
if (current->thread.last_hit_ubp != bp)
set_dabr(info->address | info->type | DABR_TRANSLATION);
return 0;
}
/*
* Uninstall the breakpoint contained in the given counter.
*
* First we search the debug address register it uses and then we disable
* it.
*
* Atomic: we hold the counter->ctx->lock and we only handle variables
* and registers local to this cpu.
*/
void arch_uninstall_hw_breakpoint(struct perf_event *bp)
{
struct perf_event **slot = &__get_cpu_var(bp_per_reg);
if (*slot != bp) {
WARN_ONCE(1, "Can't find the breakpoint");
return;
}
*slot = NULL;
set_dabr(0);
}
/*
* Perform cleanup of arch-specific counters during unregistration
* of the perf-event
*/
void arch_unregister_hw_breakpoint(struct perf_event *bp)
{
/*
* If the breakpoint is unregistered between a hw_breakpoint_handler()
* and the single_step_dabr_instruction(), then cleanup the breakpoint
* restoration variables to prevent dangling pointers.
*/
if (bp->ctx->task)
bp->ctx->task->thread.last_hit_ubp = NULL;
}
/*
* Check for virtual address in kernel space.
*/
int arch_check_bp_in_kernelspace(struct perf_event *bp)
{
struct arch_hw_breakpoint *info = counter_arch_bp(bp);
return is_kernel_addr(info->address);
}
int arch_bp_generic_fields(int type, int *gen_bp_type)
{
switch (type) {
case DABR_DATA_READ:
*gen_bp_type = HW_BREAKPOINT_R;
break;
case DABR_DATA_WRITE:
*gen_bp_type = HW_BREAKPOINT_W;
break;
case (DABR_DATA_WRITE | DABR_DATA_READ):
*gen_bp_type = (HW_BREAKPOINT_W | HW_BREAKPOINT_R);
break;
default:
return -EINVAL;
}
return 0;
}
/*
* Validate the arch-specific HW Breakpoint register settings
*/
int arch_validate_hwbkpt_settings(struct perf_event *bp)
{
int ret = -EINVAL;
struct arch_hw_breakpoint *info = counter_arch_bp(bp);
if (!bp)
return ret;
switch (bp->attr.bp_type) {
case HW_BREAKPOINT_R:
info->type = DABR_DATA_READ;
break;
case HW_BREAKPOINT_W:
info->type = DABR_DATA_WRITE;
break;
case HW_BREAKPOINT_R | HW_BREAKPOINT_W:
info->type = (DABR_DATA_READ | DABR_DATA_WRITE);
break;
default:
return ret;
}
info->address = bp->attr.bp_addr;
info->len = bp->attr.bp_len;
/*
* Since breakpoint length can be a maximum of HW_BREAKPOINT_LEN(8)
* and breakpoint addresses are aligned to nearest double-word
* HW_BREAKPOINT_ALIGN by rounding off to the lower address, the
* 'symbolsize' should satisfy the check below.
*/
if (info->len >
(HW_BREAKPOINT_LEN - (info->address & HW_BREAKPOINT_ALIGN)))
return -EINVAL;
return 0;
}
/*
* Restores the breakpoint on the debug registers.
* Invoke this function if it is known that the execution context is
* about to change to cause loss of MSR_SE settings.
*/
void thread_change_pc(struct task_struct *tsk, struct pt_regs *regs)
{
struct arch_hw_breakpoint *info;
if (likely(!tsk->thread.last_hit_ubp))
return;
info = counter_arch_bp(tsk->thread.last_hit_ubp);
regs->msr &= ~MSR_SE;
set_dabr(info->address | info->type | DABR_TRANSLATION);
tsk->thread.last_hit_ubp = NULL;
}
/*
* Handle debug exception notifications.
*/
int __kprobes hw_breakpoint_handler(struct die_args *args)
{
int rc = NOTIFY_STOP;
struct perf_event *bp;
struct pt_regs *regs = args->regs;
int stepped = 1;
struct arch_hw_breakpoint *info;
unsigned int instr;
unsigned long dar = regs->dar;
/* Disable breakpoints during exception handling */
set_dabr(0);
/*
* The counter may be concurrently released but that can only
* occur from a call_rcu() path. We can then safely fetch
* the breakpoint, use its callback, touch its counter
* while we are in an rcu_read_lock() path.
*/
rcu_read_lock();
bp = __get_cpu_var(bp_per_reg);
if (!bp)
goto out;
info = counter_arch_bp(bp);
/*
* Return early after invoking user-callback function without restoring
* DABR if the breakpoint is from ptrace which always operates in
* one-shot mode. The ptrace-ed process will receive the SIGTRAP signal
* generated in do_dabr().
*/
if (bp->overflow_handler == ptrace_triggered) {
perf_bp_event(bp, regs);
rc = NOTIFY_DONE;
goto out;
}
/*
* Verify if dar lies within the address range occupied by the symbol
* being watched to filter extraneous exceptions. If it doesn't,
* we still need to single-step the instruction, but we don't
* generate an event.
*/
info->extraneous_interrupt = !((bp->attr.bp_addr <= dar) &&
(dar - bp->attr.bp_addr < bp->attr.bp_len));
/* Do not emulate user-space instructions, instead single-step them */
if (user_mode(regs)) {
bp->ctx->task->thread.last_hit_ubp = bp;
regs->msr |= MSR_SE;
goto out;
}
stepped = 0;
instr = 0;
if (!__get_user_inatomic(instr, (unsigned int *) regs->nip))
stepped = emulate_step(regs, instr);
/*
* emulate_step() could not execute it. We've failed in reliably
* handling the hw-breakpoint. Unregister it and throw a warning
* message to let the user know about it.
*/
if (!stepped) {
WARN(1, "Unable to handle hardware breakpoint. Breakpoint at "
"0x%lx will be disabled.", info->address);
perf_event_disable(bp);
goto out;
}
/*
* As a policy, the callback is invoked in a 'trigger-after-execute'
* fashion
*/
if (!info->extraneous_interrupt)
perf_bp_event(bp, regs);
set_dabr(info->address | info->type | DABR_TRANSLATION);
out:
rcu_read_unlock();
return rc;
}
/*
* Handle single-step exceptions following a DABR hit.
*/
int __kprobes single_step_dabr_instruction(struct die_args *args)
{
struct pt_regs *regs = args->regs;
struct perf_event *bp = NULL;
struct arch_hw_breakpoint *bp_info;
bp = current->thread.last_hit_ubp;
/*
* Check if we are single-stepping as a result of a
* previous HW Breakpoint exception
*/
if (!bp)
return NOTIFY_DONE;
bp_info = counter_arch_bp(bp);
/*
* We shall invoke the user-defined callback function in the single
* stepping handler to confirm to 'trigger-after-execute' semantics
*/
if (!bp_info->extraneous_interrupt)
perf_bp_event(bp, regs);
set_dabr(bp_info->address | bp_info->type | DABR_TRANSLATION);
current->thread.last_hit_ubp = NULL;
/*
* If the process was being single-stepped by ptrace, let the
* other single-step actions occur (e.g. generate SIGTRAP).
*/
if (test_thread_flag(TIF_SINGLESTEP))
return NOTIFY_DONE;
return NOTIFY_STOP;
}
/*
* Handle debug exception notifications.
*/
int __kprobes hw_breakpoint_exceptions_notify(
struct notifier_block *unused, unsigned long val, void *data)
{
int ret = NOTIFY_DONE;
switch (val) {
case DIE_DABR_MATCH:
ret = hw_breakpoint_handler(data);
break;
case DIE_SSTEP:
ret = single_step_dabr_instruction(data);
break;
}
return ret;
}
/*
* Release the user breakpoints used by ptrace
*/
void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
{
struct thread_struct *t = &tsk->thread;
unregister_hw_breakpoint(t->ptrace_bps[0]);
t->ptrace_bps[0] = NULL;
}
void hw_breakpoint_pmu_read(struct perf_event *bp)
{
/* TODO */
}
...@@ -25,6 +25,7 @@ ...@@ -25,6 +25,7 @@
#include <asm/sections.h> /* _end */ #include <asm/sections.h> /* _end */
#include <asm/prom.h> #include <asm/prom.h>
#include <asm/smp.h> #include <asm/smp.h>
#include <asm/hw_breakpoint.h>
int default_machine_kexec_prepare(struct kimage *image) int default_machine_kexec_prepare(struct kimage *image)
{ {
...@@ -165,6 +166,7 @@ static void kexec_smp_down(void *arg) ...@@ -165,6 +166,7 @@ static void kexec_smp_down(void *arg)
while(kexec_all_irq_disabled == 0) while(kexec_all_irq_disabled == 0)
cpu_relax(); cpu_relax();
mb(); /* make sure all irqs are disabled before this */ mb(); /* make sure all irqs are disabled before this */
hw_breakpoint_disable();
/* /*
* Now every CPU has IRQs off, we can clear out any pending * Now every CPU has IRQs off, we can clear out any pending
* IPIs and be sure that no more will come in after this. * IPIs and be sure that no more will come in after this.
...@@ -180,6 +182,7 @@ static void kexec_prepare_cpus_wait(int wait_state) ...@@ -180,6 +182,7 @@ static void kexec_prepare_cpus_wait(int wait_state)
{ {
int my_cpu, i, notified=-1; int my_cpu, i, notified=-1;
hw_breakpoint_disable();
my_cpu = get_cpu(); my_cpu = get_cpu();
/* Make sure each CPU has atleast made it to the state we need */ /* Make sure each CPU has atleast made it to the state we need */
for_each_online_cpu(i) { for_each_online_cpu(i) {
......
...@@ -37,6 +37,7 @@ ...@@ -37,6 +37,7 @@
#include <linux/kernel_stat.h> #include <linux/kernel_stat.h>
#include <linux/personality.h> #include <linux/personality.h>
#include <linux/random.h> #include <linux/random.h>
#include <linux/hw_breakpoint.h>
#include <asm/pgtable.h> #include <asm/pgtable.h>
#include <asm/uaccess.h> #include <asm/uaccess.h>
...@@ -462,8 +463,14 @@ struct task_struct *__switch_to(struct task_struct *prev, ...@@ -462,8 +463,14 @@ struct task_struct *__switch_to(struct task_struct *prev,
#ifdef CONFIG_PPC_ADV_DEBUG_REGS #ifdef CONFIG_PPC_ADV_DEBUG_REGS
switch_booke_debug_regs(&new->thread); switch_booke_debug_regs(&new->thread);
#else #else
/*
* For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
* schedule DABR
*/
#ifndef CONFIG_HAVE_HW_BREAKPOINT
if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr))
set_dabr(new->thread.dabr); set_dabr(new->thread.dabr);
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
#endif #endif
...@@ -642,7 +649,11 @@ void flush_thread(void) ...@@ -642,7 +649,11 @@ void flush_thread(void)
{ {
discard_lazy_cpu_state(); discard_lazy_cpu_state();
#ifdef CONFIG_HAVE_HW_BREAKPOINTS
flush_ptrace_hw_breakpoint(current);
#else /* CONFIG_HAVE_HW_BREAKPOINTS */
set_debug_reg_defaults(&current->thread); set_debug_reg_defaults(&current->thread);
#endif /* CONFIG_HAVE_HW_BREAKPOINTS */
} }
void void
...@@ -660,6 +671,9 @@ void prepare_to_copy(struct task_struct *tsk) ...@@ -660,6 +671,9 @@ void prepare_to_copy(struct task_struct *tsk)
flush_altivec_to_thread(current); flush_altivec_to_thread(current);
flush_vsx_to_thread(current); flush_vsx_to_thread(current);
flush_spe_to_thread(current); flush_spe_to_thread(current);
#ifdef CONFIG_HAVE_HW_BREAKPOINT
flush_ptrace_hw_breakpoint(tsk);
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
} }
/* /*
......
...@@ -32,6 +32,8 @@ ...@@ -32,6 +32,8 @@
#ifdef CONFIG_PPC32 #ifdef CONFIG_PPC32
#include <linux/module.h> #include <linux/module.h>
#endif #endif
#include <linux/hw_breakpoint.h>
#include <linux/perf_event.h>
#include <asm/uaccess.h> #include <asm/uaccess.h>
#include <asm/page.h> #include <asm/page.h>
...@@ -866,9 +868,34 @@ void user_disable_single_step(struct task_struct *task) ...@@ -866,9 +868,34 @@ void user_disable_single_step(struct task_struct *task)
clear_tsk_thread_flag(task, TIF_SINGLESTEP); clear_tsk_thread_flag(task, TIF_SINGLESTEP);
} }
#ifdef CONFIG_HAVE_HW_BREAKPOINT
void ptrace_triggered(struct perf_event *bp, int nmi,
struct perf_sample_data *data, struct pt_regs *regs)
{
struct perf_event_attr attr;
/*
* Disable the breakpoint request here since ptrace has defined a
* one-shot behaviour for breakpoint exceptions in PPC64.
* The SIGTRAP signal is generated automatically for us in do_dabr().
* We don't have to do anything about that here
*/
attr = bp->attr;
attr.disabled = true;
modify_user_hw_breakpoint(bp, &attr);
}
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
int ptrace_set_debugreg(struct task_struct *task, unsigned long addr, int ptrace_set_debugreg(struct task_struct *task, unsigned long addr,
unsigned long data) unsigned long data)
{ {
#ifdef CONFIG_HAVE_HW_BREAKPOINT
int ret;
struct thread_struct *thread = &(task->thread);
struct perf_event *bp;
struct perf_event_attr attr;
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
/* For ppc64 we support one DABR and no IABR's at the moment (ppc64). /* For ppc64 we support one DABR and no IABR's at the moment (ppc64).
* For embedded processors we support one DAC and no IAC's at the * For embedded processors we support one DAC and no IAC's at the
* moment. * moment.
...@@ -896,6 +923,43 @@ int ptrace_set_debugreg(struct task_struct *task, unsigned long addr, ...@@ -896,6 +923,43 @@ int ptrace_set_debugreg(struct task_struct *task, unsigned long addr,
/* Ensure breakpoint translation bit is set */ /* Ensure breakpoint translation bit is set */
if (data && !(data & DABR_TRANSLATION)) if (data && !(data & DABR_TRANSLATION))
return -EIO; return -EIO;
#ifdef CONFIG_HAVE_HW_BREAKPOINT
bp = thread->ptrace_bps[0];
if ((!data) || !(data & (DABR_DATA_WRITE | DABR_DATA_READ))) {
if (bp) {
unregister_hw_breakpoint(bp);
thread->ptrace_bps[0] = NULL;
}
return 0;
}
if (bp) {
attr = bp->attr;
attr.bp_addr = data & ~HW_BREAKPOINT_ALIGN;
arch_bp_generic_fields(data &
(DABR_DATA_WRITE | DABR_DATA_READ),
&attr.bp_type);
ret = modify_user_hw_breakpoint(bp, &attr);
if (ret)
return ret;
thread->ptrace_bps[0] = bp;
thread->dabr = data;
return 0;
}
/* Create a new breakpoint request if one doesn't exist already */
hw_breakpoint_init(&attr);
attr.bp_addr = data & ~HW_BREAKPOINT_ALIGN;
arch_bp_generic_fields(data & (DABR_DATA_WRITE | DABR_DATA_READ),
&attr.bp_type);
thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
ptrace_triggered, task);
if (IS_ERR(bp)) {
thread->ptrace_bps[0] = NULL;
return PTR_ERR(bp);
}
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
/* Move contents to the DABR register */ /* Move contents to the DABR register */
task->thread.dabr = data; task->thread.dabr = data;
......
...@@ -11,6 +11,7 @@ ...@@ -11,6 +11,7 @@
#include <linux/tracehook.h> #include <linux/tracehook.h>
#include <linux/signal.h> #include <linux/signal.h>
#include <asm/hw_breakpoint.h>
#include <asm/uaccess.h> #include <asm/uaccess.h>
#include <asm/unistd.h> #include <asm/unistd.h>
...@@ -149,6 +150,8 @@ static int do_signal_pending(sigset_t *oldset, struct pt_regs *regs) ...@@ -149,6 +150,8 @@ static int do_signal_pending(sigset_t *oldset, struct pt_regs *regs)
if (current->thread.dabr) if (current->thread.dabr)
set_dabr(current->thread.dabr); set_dabr(current->thread.dabr);
#endif #endif
/* Re-enable the breakpoints for the signal stack */
thread_change_pc(current, regs);
if (is32) { if (is32) {
if (ka.sa.sa_flags & SA_SIGINFO) if (ka.sa.sa_flags & SA_SIGINFO)
......
...@@ -688,7 +688,7 @@ void RunModeException(struct pt_regs *regs) ...@@ -688,7 +688,7 @@ void RunModeException(struct pt_regs *regs)
void __kprobes single_step_exception(struct pt_regs *regs) void __kprobes single_step_exception(struct pt_regs *regs)
{ {
regs->msr &= ~(MSR_SE | MSR_BE); /* Turn off 'trace' bits */ clear_single_step(regs);
if (notify_die(DIE_SSTEP, "single_step", regs, 5, if (notify_die(DIE_SSTEP, "single_step", regs, 5,
5, SIGTRAP) == NOTIFY_STOP) 5, SIGTRAP) == NOTIFY_STOP)
...@@ -707,10 +707,8 @@ void __kprobes single_step_exception(struct pt_regs *regs) ...@@ -707,10 +707,8 @@ void __kprobes single_step_exception(struct pt_regs *regs)
*/ */
static void emulate_single_step(struct pt_regs *regs) static void emulate_single_step(struct pt_regs *regs)
{ {
if (single_stepping(regs)) { if (single_stepping(regs))
clear_single_step(regs); single_step_exception(regs);
_exception(SIGTRAP, regs, TRAP_TRACE, 0);
}
} }
static inline int __parse_fpscr(unsigned long fpscr) static inline int __parse_fpscr(unsigned long fpscr)
......
...@@ -18,8 +18,9 @@ obj-$(CONFIG_HAS_IOMEM) += devres.o ...@@ -18,8 +18,9 @@ obj-$(CONFIG_HAS_IOMEM) += devres.o
obj-$(CONFIG_PPC64) += copypage_64.o copyuser_64.o \ obj-$(CONFIG_PPC64) += copypage_64.o copyuser_64.o \
memcpy_64.o usercopy_64.o mem_64.o string.o memcpy_64.o usercopy_64.o mem_64.o string.o
obj-$(CONFIG_XMON) += sstep.o obj-$(CONFIG_XMON) += sstep.o ldstfp.o
obj-$(CONFIG_KPROBES) += sstep.o obj-$(CONFIG_KPROBES) += sstep.o ldstfp.o
obj-$(CONFIG_HAVE_HW_BREAKPOINT) += sstep.o ldstfp.o
ifeq ($(CONFIG_PPC64),y) ifeq ($(CONFIG_PPC64),y)
obj-$(CONFIG_SMP) += locks.o obj-$(CONFIG_SMP) += locks.o
......
/*
* Floating-point, VMX/Altivec and VSX loads and stores
* for use in instruction emulation.
*
* Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <asm/processor.h>
#include <asm/ppc_asm.h>
#include <asm/ppc-opcode.h>
#include <asm/reg.h>
#include <asm/asm-offsets.h>
#include <linux/errno.h>
#define STKFRM (PPC_MIN_STKFRM + 16)
.macro extab instr,handler
.section __ex_table,"a"
PPC_LONG \instr,\handler
.previous
.endm
.macro inst32 op
reg = 0
.rept 32
20: \op reg,0,r4
b 3f
extab 20b,99f
reg = reg + 1
.endr
.endm
/* Get the contents of frN into fr0; N is in r3. */
_GLOBAL(get_fpr)
mflr r0
rlwinm r3,r3,3,0xf8
bcl 20,31,1f
blr /* fr0 is already in fr0 */
nop
reg = 1
.rept 31
fmr fr0,reg
blr
reg = reg + 1
.endr
1: mflr r5
add r5,r3,r5
mtctr r5
mtlr r0
bctr
/* Put the contents of fr0 into frN; N is in r3. */
_GLOBAL(put_fpr)
mflr r0
rlwinm r3,r3,3,0xf8
bcl 20,31,1f
blr /* fr0 is already in fr0 */
nop
reg = 1
.rept 31
fmr reg,fr0
blr
reg = reg + 1
.endr
1: mflr r5
add r5,r3,r5
mtctr r5
mtlr r0
bctr
/* Load FP reg N from float at *p. N is in r3, p in r4. */
_GLOBAL(do_lfs)
PPC_STLU r1,-STKFRM(r1)
mflr r0
PPC_STL r0,STKFRM+PPC_LR_STKOFF(r1)
mfmsr r6
ori r7,r6,MSR_FP
cmpwi cr7,r3,0
mtmsrd r7
isync
beq cr7,1f
stfd fr0,STKFRM-16(r1)
1: li r9,-EFAULT
2: lfs fr0,0(r4)
li r9,0
3: bl put_fpr
beq cr7,4f
lfd fr0,STKFRM-16(r1)
4: PPC_LL r0,STKFRM+PPC_LR_STKOFF(r1)
mtlr r0
mtmsrd r6
isync
mr r3,r9
addi r1,r1,STKFRM
blr
extab 2b,3b
/* Load FP reg N from double at *p. N is in r3, p in r4. */
_GLOBAL(do_lfd)
PPC_STLU r1,-STKFRM(r1)
mflr r0
PPC_STL r0,STKFRM+PPC_LR_STKOFF(r1)
mfmsr r6
ori r7,r6,MSR_FP
cmpwi cr7,r3,0
mtmsrd r7
isync
beq cr7,1f
stfd fr0,STKFRM-16(r1)
1: li r9,-EFAULT
2: lfd fr0,0(r4)
li r9,0
3: beq cr7,4f
bl put_fpr
lfd fr0,STKFRM-16(r1)
4: PPC_LL r0,STKFRM+PPC_LR_STKOFF(r1)
mtlr r0
mtmsrd r6
isync
mr r3,r9
addi r1,r1,STKFRM
blr
extab 2b,3b
/* Store FP reg N to float at *p. N is in r3, p in r4. */
_GLOBAL(do_stfs)
PPC_STLU r1,-STKFRM(r1)
mflr r0
PPC_STL r0,STKFRM+PPC_LR_STKOFF(r1)
mfmsr r6
ori r7,r6,MSR_FP
cmpwi cr7,r3,0
mtmsrd r7
isync
beq cr7,1f
stfd fr0,STKFRM-16(r1)
bl get_fpr
1: li r9,-EFAULT
2: stfs fr0,0(r4)
li r9,0
3: beq cr7,4f
lfd fr0,STKFRM-16(r1)
4: PPC_LL r0,STKFRM+PPC_LR_STKOFF(r1)
mtlr r0
mtmsrd r6
isync
mr r3,r9
addi r1,r1,STKFRM
blr
extab 2b,3b
/* Store FP reg N to double at *p. N is in r3, p in r4. */
_GLOBAL(do_stfd)
PPC_STLU r1,-STKFRM(r1)
mflr r0
PPC_STL r0,STKFRM+PPC_LR_STKOFF(r1)
mfmsr r6
ori r7,r6,MSR_FP
cmpwi cr7,r3,0
mtmsrd r7
isync
beq cr7,1f
stfd fr0,STKFRM-16(r1)
bl get_fpr
1: li r9,-EFAULT
2: stfd fr0,0(r4)
li r9,0
3: beq cr7,4f
lfd fr0,STKFRM-16(r1)
4: PPC_LL r0,STKFRM+PPC_LR_STKOFF(r1)
mtlr r0
mtmsrd r6
isync
mr r3,r9
addi r1,r1,STKFRM
blr
extab 2b,3b
#ifdef CONFIG_ALTIVEC
/* Get the contents of vrN into vr0; N is in r3. */
_GLOBAL(get_vr)
mflr r0
rlwinm r3,r3,3,0xf8
bcl 20,31,1f
blr /* vr0 is already in vr0 */
nop
reg = 1
.rept 31
vor vr0,reg,reg /* assembler doesn't know vmr? */
blr
reg = reg + 1
.endr
1: mflr r5
add r5,r3,r5
mtctr r5
mtlr r0
bctr
/* Put the contents of vr0 into vrN; N is in r3. */
_GLOBAL(put_vr)
mflr r0
rlwinm r3,r3,3,0xf8
bcl 20,31,1f
blr /* vr0 is already in vr0 */
nop
reg = 1
.rept 31
vor reg,vr0,vr0
blr
reg = reg + 1
.endr
1: mflr r5
add r5,r3,r5
mtctr r5
mtlr r0
bctr
/* Load vector reg N from *p. N is in r3, p in r4. */
_GLOBAL(do_lvx)
PPC_STLU r1,-STKFRM(r1)
mflr r0
PPC_STL r0,STKFRM+PPC_LR_STKOFF(r1)
mfmsr r6
oris r7,r6,MSR_VEC@h
cmpwi cr7,r3,0
li r8,STKFRM-16
mtmsrd r7
isync
beq cr7,1f
stvx vr0,r1,r8
1: li r9,-EFAULT
2: lvx vr0,0,r4
li r9,0
3: beq cr7,4f
bl put_vr
lvx vr0,r1,r8
4: PPC_LL r0,STKFRM+PPC_LR_STKOFF(r1)
mtlr r0
mtmsrd r6
isync
mr r3,r9
addi r1,r1,STKFRM
blr
extab 2b,3b
/* Store vector reg N to *p. N is in r3, p in r4. */
_GLOBAL(do_stvx)
PPC_STLU r1,-STKFRM(r1)
mflr r0
PPC_STL r0,STKFRM+PPC_LR_STKOFF(r1)
mfmsr r6
oris r7,r6,MSR_VEC@h
cmpwi cr7,r3,0
li r8,STKFRM-16
mtmsrd r7
isync
beq cr7,1f
stvx vr0,r1,r8
bl get_vr
1: li r9,-EFAULT
2: stvx vr0,0,r4
li r9,0
3: beq cr7,4f
lvx vr0,r1,r8
4: PPC_LL r0,STKFRM+PPC_LR_STKOFF(r1)
mtlr r0
mtmsrd r6
isync
mr r3,r9
addi r1,r1,STKFRM
blr
extab 2b,3b
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_VSX
/* Get the contents of vsrN into vsr0; N is in r3. */
_GLOBAL(get_vsr)
mflr r0
rlwinm r3,r3,3,0x1f8
bcl 20,31,1f
blr /* vsr0 is already in vsr0 */
nop
reg = 1
.rept 63
XXLOR(0,reg,reg)
blr
reg = reg + 1
.endr
1: mflr r5
add r5,r3,r5
mtctr r5
mtlr r0
bctr
/* Put the contents of vsr0 into vsrN; N is in r3. */
_GLOBAL(put_vsr)
mflr r0
rlwinm r3,r3,3,0x1f8
bcl 20,31,1f
blr /* vr0 is already in vr0 */
nop
reg = 1
.rept 63
XXLOR(reg,0,0)
blr
reg = reg + 1
.endr
1: mflr r5
add r5,r3,r5
mtctr r5
mtlr r0
bctr
/* Load VSX reg N from vector doubleword *p. N is in r3, p in r4. */
_GLOBAL(do_lxvd2x)
PPC_STLU r1,-STKFRM(r1)
mflr r0
PPC_STL r0,STKFRM+PPC_LR_STKOFF(r1)
mfmsr r6
oris r7,r6,MSR_VSX@h
cmpwi cr7,r3,0
li r8,STKFRM-16
mtmsrd r7
isync
beq cr7,1f
STXVD2X(0,r1,r8)
1: li r9,-EFAULT
2: LXVD2X(0,0,r4)
li r9,0
3: beq cr7,4f
bl put_vsr
LXVD2X(0,r1,r8)
4: PPC_LL r0,STKFRM+PPC_LR_STKOFF(r1)
mtlr r0
mtmsrd r6
isync
mr r3,r9
addi r1,r1,STKFRM
blr
extab 2b,3b
/* Store VSX reg N to vector doubleword *p. N is in r3, p in r4. */
_GLOBAL(do_stxvd2x)
PPC_STLU r1,-STKFRM(r1)
mflr r0
PPC_STL r0,STKFRM+PPC_LR_STKOFF(r1)
mfmsr r6
oris r7,r6,MSR_VSX@h
cmpwi cr7,r3,0
li r8,STKFRM-16
mtmsrd r7
isync
beq cr7,1f
STXVD2X(0,r1,r8)
bl get_vsr
1: li r9,-EFAULT
2: STXVD2X(0,0,r4)
li r9,0
3: beq cr7,4f
LXVD2X(0,r1,r8)
4: PPC_LL r0,STKFRM+PPC_LR_STKOFF(r1)
mtlr r0
mtmsrd r6
isync
mr r3,r9
addi r1,r1,STKFRM
blr
extab 2b,3b
#endif /* CONFIG_VSX */
...@@ -13,6 +13,8 @@ ...@@ -13,6 +13,8 @@
#include <linux/ptrace.h> #include <linux/ptrace.h>
#include <asm/sstep.h> #include <asm/sstep.h>
#include <asm/processor.h> #include <asm/processor.h>
#include <asm/uaccess.h>
#include <asm/cputable.h>
extern char system_call_common[]; extern char system_call_common[];
...@@ -23,6 +25,23 @@ extern char system_call_common[]; ...@@ -23,6 +25,23 @@ extern char system_call_common[];
#define MSR_MASK 0x87c0ffff #define MSR_MASK 0x87c0ffff
#endif #endif
/* Bits in XER */
#define XER_SO 0x80000000U
#define XER_OV 0x40000000U
#define XER_CA 0x20000000U
/*
* Functions in ldstfp.S
*/
extern int do_lfs(int rn, unsigned long ea);
extern int do_lfd(int rn, unsigned long ea);
extern int do_stfs(int rn, unsigned long ea);
extern int do_stfd(int rn, unsigned long ea);
extern int do_lvx(int rn, unsigned long ea);
extern int do_stvx(int rn, unsigned long ea);
extern int do_lxvd2x(int rn, unsigned long ea);
extern int do_stxvd2x(int rn, unsigned long ea);
/* /*
* Determine whether a conditional branch instruction would branch. * Determine whether a conditional branch instruction would branch.
*/ */
...@@ -46,16 +65,499 @@ static int __kprobes branch_taken(unsigned int instr, struct pt_regs *regs) ...@@ -46,16 +65,499 @@ static int __kprobes branch_taken(unsigned int instr, struct pt_regs *regs)
return 1; return 1;
} }
static long __kprobes address_ok(struct pt_regs *regs, unsigned long ea, int nb)
{
if (!user_mode(regs))
return 1;
return __access_ok(ea, nb, USER_DS);
}
/*
* Calculate effective address for a D-form instruction
*/
static unsigned long __kprobes dform_ea(unsigned int instr, struct pt_regs *regs)
{
int ra;
unsigned long ea;
ra = (instr >> 16) & 0x1f;
ea = (signed short) instr; /* sign-extend */
if (ra) {
ea += regs->gpr[ra];
if (instr & 0x04000000) /* update forms */
regs->gpr[ra] = ea;
}
#ifdef __powerpc64__
if (!(regs->msr & MSR_SF))
ea &= 0xffffffffUL;
#endif
return ea;
}
#ifdef __powerpc64__
/*
* Calculate effective address for a DS-form instruction
*/
static unsigned long __kprobes dsform_ea(unsigned int instr, struct pt_regs *regs)
{
int ra;
unsigned long ea;
ra = (instr >> 16) & 0x1f;
ea = (signed short) (instr & ~3); /* sign-extend */
if (ra) {
ea += regs->gpr[ra];
if ((instr & 3) == 1) /* update forms */
regs->gpr[ra] = ea;
}
if (!(regs->msr & MSR_SF))
ea &= 0xffffffffUL;
return ea;
}
#endif /* __powerpc64 */
/*
* Calculate effective address for an X-form instruction
*/
static unsigned long __kprobes xform_ea(unsigned int instr, struct pt_regs *regs,
int do_update)
{
int ra, rb;
unsigned long ea;
ra = (instr >> 16) & 0x1f;
rb = (instr >> 11) & 0x1f;
ea = regs->gpr[rb];
if (ra) {
ea += regs->gpr[ra];
if (do_update) /* update forms */
regs->gpr[ra] = ea;
}
#ifdef __powerpc64__
if (!(regs->msr & MSR_SF))
ea &= 0xffffffffUL;
#endif
return ea;
}
/*
* Return the largest power of 2, not greater than sizeof(unsigned long),
* such that x is a multiple of it.
*/
static inline unsigned long max_align(unsigned long x)
{
x |= sizeof(unsigned long);
return x & -x; /* isolates rightmost bit */
}
static inline unsigned long byterev_2(unsigned long x)
{
return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
}
static inline unsigned long byterev_4(unsigned long x)
{
return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
((x & 0xff00) << 8) | ((x & 0xff) << 24);
}
#ifdef __powerpc64__
static inline unsigned long byterev_8(unsigned long x)
{
return (byterev_4(x) << 32) | byterev_4(x >> 32);
}
#endif
static int __kprobes read_mem_aligned(unsigned long *dest, unsigned long ea,
int nb)
{
int err = 0;
unsigned long x = 0;
switch (nb) {
case 1:
err = __get_user(x, (unsigned char __user *) ea);
break;
case 2:
err = __get_user(x, (unsigned short __user *) ea);
break;
case 4:
err = __get_user(x, (unsigned int __user *) ea);
break;
#ifdef __powerpc64__
case 8:
err = __get_user(x, (unsigned long __user *) ea);
break;
#endif
}
if (!err)
*dest = x;
return err;
}
static int __kprobes read_mem_unaligned(unsigned long *dest, unsigned long ea,
int nb, struct pt_regs *regs)
{
int err;
unsigned long x, b, c;
/* unaligned, do this in pieces */
x = 0;
for (; nb > 0; nb -= c) {
c = max_align(ea);
if (c > nb)
c = max_align(nb);
err = read_mem_aligned(&b, ea, c);
if (err)
return err;
x = (x << (8 * c)) + b;
ea += c;
}
*dest = x;
return 0;
}
/*
* Read memory at address ea for nb bytes, return 0 for success
* or -EFAULT if an error occurred.
*/
static int __kprobes read_mem(unsigned long *dest, unsigned long ea, int nb,
struct pt_regs *regs)
{
if (!address_ok(regs, ea, nb))
return -EFAULT;
if ((ea & (nb - 1)) == 0)
return read_mem_aligned(dest, ea, nb);
return read_mem_unaligned(dest, ea, nb, regs);
}
static int __kprobes write_mem_aligned(unsigned long val, unsigned long ea,
int nb)
{
int err = 0;
switch (nb) {
case 1:
err = __put_user(val, (unsigned char __user *) ea);
break;
case 2:
err = __put_user(val, (unsigned short __user *) ea);
break;
case 4:
err = __put_user(val, (unsigned int __user *) ea);
break;
#ifdef __powerpc64__
case 8:
err = __put_user(val, (unsigned long __user *) ea);
break;
#endif
}
return err;
}
static int __kprobes write_mem_unaligned(unsigned long val, unsigned long ea,
int nb, struct pt_regs *regs)
{
int err;
unsigned long c;
/* unaligned or little-endian, do this in pieces */
for (; nb > 0; nb -= c) {
c = max_align(ea);
if (c > nb)
c = max_align(nb);
err = write_mem_aligned(val >> (nb - c) * 8, ea, c);
if (err)
return err;
++ea;
}
return 0;
}
/*
* Write memory at address ea for nb bytes, return 0 for success
* or -EFAULT if an error occurred.
*/
static int __kprobes write_mem(unsigned long val, unsigned long ea, int nb,
struct pt_regs *regs)
{
if (!address_ok(regs, ea, nb))
return -EFAULT;
if ((ea & (nb - 1)) == 0)
return write_mem_aligned(val, ea, nb);
return write_mem_unaligned(val, ea, nb, regs);
}
/*
* Check the address and alignment, and call func to do the actual
* load or store.
*/
static int __kprobes do_fp_load(int rn, int (*func)(int, unsigned long),
unsigned long ea, int nb,
struct pt_regs *regs)
{
int err;
unsigned long val[sizeof(double) / sizeof(long)];
unsigned long ptr;
if (!address_ok(regs, ea, nb))
return -EFAULT;
if ((ea & 3) == 0)
return (*func)(rn, ea);
ptr = (unsigned long) &val[0];
if (sizeof(unsigned long) == 8 || nb == 4) {
err = read_mem_unaligned(&val[0], ea, nb, regs);
ptr += sizeof(unsigned long) - nb;
} else {
/* reading a double on 32-bit */
err = read_mem_unaligned(&val[0], ea, 4, regs);
if (!err)
err = read_mem_unaligned(&val[1], ea + 4, 4, regs);
}
if (err)
return err;
return (*func)(rn, ptr);
}
static int __kprobes do_fp_store(int rn, int (*func)(int, unsigned long),
unsigned long ea, int nb,
struct pt_regs *regs)
{
int err;
unsigned long val[sizeof(double) / sizeof(long)];
unsigned long ptr;
if (!address_ok(regs, ea, nb))
return -EFAULT;
if ((ea & 3) == 0)
return (*func)(rn, ea);
ptr = (unsigned long) &val[0];
if (sizeof(unsigned long) == 8 || nb == 4) {
ptr += sizeof(unsigned long) - nb;
err = (*func)(rn, ptr);
if (err)
return err;
err = write_mem_unaligned(val[0], ea, nb, regs);
} else {
/* writing a double on 32-bit */
err = (*func)(rn, ptr);
if (err)
return err;
err = write_mem_unaligned(val[0], ea, 4, regs);
if (!err)
err = write_mem_unaligned(val[1], ea + 4, 4, regs);
}
return err;
}
#ifdef CONFIG_ALTIVEC
/* For Altivec/VMX, no need to worry about alignment */
static int __kprobes do_vec_load(int rn, int (*func)(int, unsigned long),
unsigned long ea, struct pt_regs *regs)
{
if (!address_ok(regs, ea & ~0xfUL, 16))
return -EFAULT;
return (*func)(rn, ea);
}
static int __kprobes do_vec_store(int rn, int (*func)(int, unsigned long),
unsigned long ea, struct pt_regs *regs)
{
if (!address_ok(regs, ea & ~0xfUL, 16))
return -EFAULT;
return (*func)(rn, ea);
}
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_VSX
static int __kprobes do_vsx_load(int rn, int (*func)(int, unsigned long),
unsigned long ea, struct pt_regs *regs)
{
int err;
unsigned long val[2];
if (!address_ok(regs, ea, 16))
return -EFAULT;
if ((ea & 3) == 0)
return (*func)(rn, ea);
err = read_mem_unaligned(&val[0], ea, 8, regs);
if (!err)
err = read_mem_unaligned(&val[1], ea + 8, 8, regs);
if (!err)
err = (*func)(rn, (unsigned long) &val[0]);
return err;
}
static int __kprobes do_vsx_store(int rn, int (*func)(int, unsigned long),
unsigned long ea, struct pt_regs *regs)
{
int err;
unsigned long val[2];
if (!address_ok(regs, ea, 16))
return -EFAULT;
if ((ea & 3) == 0)
return (*func)(rn, ea);
err = (*func)(rn, (unsigned long) &val[0]);
if (err)
return err;
err = write_mem_unaligned(val[0], ea, 8, regs);
if (!err)
err = write_mem_unaligned(val[1], ea + 8, 8, regs);
return err;
}
#endif /* CONFIG_VSX */
#define __put_user_asmx(x, addr, err, op, cr) \
__asm__ __volatile__( \
"1: " op " %2,0,%3\n" \
" mfcr %1\n" \
"2:\n" \
".section .fixup,\"ax\"\n" \
"3: li %0,%4\n" \
" b 2b\n" \
".previous\n" \
".section __ex_table,\"a\"\n" \
PPC_LONG_ALIGN "\n" \
PPC_LONG "1b,3b\n" \
".previous" \
: "=r" (err), "=r" (cr) \
: "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
#define __get_user_asmx(x, addr, err, op) \
__asm__ __volatile__( \
"1: "op" %1,0,%2\n" \
"2:\n" \
".section .fixup,\"ax\"\n" \
"3: li %0,%3\n" \
" b 2b\n" \
".previous\n" \
".section __ex_table,\"a\"\n" \
PPC_LONG_ALIGN "\n" \
PPC_LONG "1b,3b\n" \
".previous" \
: "=r" (err), "=r" (x) \
: "r" (addr), "i" (-EFAULT), "0" (err))
#define __cacheop_user_asmx(addr, err, op) \
__asm__ __volatile__( \
"1: "op" 0,%1\n" \
"2:\n" \
".section .fixup,\"ax\"\n" \
"3: li %0,%3\n" \
" b 2b\n" \
".previous\n" \
".section __ex_table,\"a\"\n" \
PPC_LONG_ALIGN "\n" \
PPC_LONG "1b,3b\n" \
".previous" \
: "=r" (err) \
: "r" (addr), "i" (-EFAULT), "0" (err))
static void __kprobes set_cr0(struct pt_regs *regs, int rd)
{
long val = regs->gpr[rd];
regs->ccr = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
#ifdef __powerpc64__
if (!(regs->msr & MSR_SF))
val = (int) val;
#endif
if (val < 0)
regs->ccr |= 0x80000000;
else if (val > 0)
regs->ccr |= 0x40000000;
else
regs->ccr |= 0x20000000;
}
static void __kprobes add_with_carry(struct pt_regs *regs, int rd,
unsigned long val1, unsigned long val2,
unsigned long carry_in)
{
unsigned long val = val1 + val2;
if (carry_in)
++val;
regs->gpr[rd] = val;
#ifdef __powerpc64__
if (!(regs->msr & MSR_SF)) {
val = (unsigned int) val;
val1 = (unsigned int) val1;
}
#endif
if (val < val1 || (carry_in && val == val1))
regs->xer |= XER_CA;
else
regs->xer &= ~XER_CA;
}
static void __kprobes do_cmp_signed(struct pt_regs *regs, long v1, long v2,
int crfld)
{
unsigned int crval, shift;
crval = (regs->xer >> 31) & 1; /* get SO bit */
if (v1 < v2)
crval |= 8;
else if (v1 > v2)
crval |= 4;
else
crval |= 2;
shift = (7 - crfld) * 4;
regs->ccr = (regs->ccr & ~(0xf << shift)) | (crval << shift);
}
static void __kprobes do_cmp_unsigned(struct pt_regs *regs, unsigned long v1,
unsigned long v2, int crfld)
{
unsigned int crval, shift;
crval = (regs->xer >> 31) & 1; /* get SO bit */
if (v1 < v2)
crval |= 8;
else if (v1 > v2)
crval |= 4;
else
crval |= 2;
shift = (7 - crfld) * 4;
regs->ccr = (regs->ccr & ~(0xf << shift)) | (crval << shift);
}
/*
* Elements of 32-bit rotate and mask instructions.
*/
#define MASK32(mb, me) ((0xffffffffUL >> (mb)) + \
((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
#ifdef __powerpc64__
#define MASK64_L(mb) (~0UL >> (mb))
#define MASK64_R(me) ((signed long)-0x8000000000000000L >> (me))
#define MASK64(mb, me) (MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
#define DATA32(x) (((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
#else
#define DATA32(x) (x)
#endif
#define ROTATE(x, n) ((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
/* /*
* Emulate instructions that cause a transfer of control. * Emulate instructions that cause a transfer of control,
* loads and stores, and a few other instructions.
* Returns 1 if the step was emulated, 0 if not, * Returns 1 if the step was emulated, 0 if not,
* or -1 if the instruction is one that should not be stepped, * or -1 if the instruction is one that should not be stepped,
* such as an rfid, or a mtmsrd that would clear MSR_RI. * such as an rfid, or a mtmsrd that would clear MSR_RI.
*/ */
int __kprobes emulate_step(struct pt_regs *regs, unsigned int instr) int __kprobes emulate_step(struct pt_regs *regs, unsigned int instr)
{ {
unsigned int opcode, rs, rb, rd, spr; unsigned int opcode, ra, rb, rd, spr, u;
unsigned long int imm; unsigned long int imm;
unsigned long int val, val2;
unsigned long int ea;
unsigned int cr, mb, me, sh;
int err;
unsigned long old_ra;
long ival;
opcode = instr >> 26; opcode = instr >> 26;
switch (opcode) { switch (opcode) {
...@@ -78,7 +580,13 @@ int __kprobes emulate_step(struct pt_regs *regs, unsigned int instr) ...@@ -78,7 +580,13 @@ int __kprobes emulate_step(struct pt_regs *regs, unsigned int instr)
* entry code works. If that is changed, this will * entry code works. If that is changed, this will
* need to be changed also. * need to be changed also.
*/ */
if (regs->gpr[0] == 0x1ebe &&
cpu_has_feature(CPU_FTR_REAL_LE)) {
regs->msr ^= MSR_LE;
goto instr_done;
}
regs->gpr[9] = regs->gpr[13]; regs->gpr[9] = regs->gpr[13];
regs->gpr[10] = MSR_KERNEL;
regs->gpr[11] = regs->nip + 4; regs->gpr[11] = regs->nip + 4;
regs->gpr[12] = regs->msr & MSR_MASK; regs->gpr[12] = regs->msr & MSR_MASK;
regs->gpr[13] = (unsigned long) get_paca(); regs->gpr[13] = (unsigned long) get_paca();
...@@ -102,9 +610,9 @@ int __kprobes emulate_step(struct pt_regs *regs, unsigned int instr) ...@@ -102,9 +610,9 @@ int __kprobes emulate_step(struct pt_regs *regs, unsigned int instr)
regs->nip = imm; regs->nip = imm;
return 1; return 1;
case 19: case 19:
switch (instr & 0x7fe) { switch ((instr >> 1) & 0x3ff) {
case 0x20: /* bclr */ case 16: /* bclr */
case 0x420: /* bcctr */ case 528: /* bcctr */
imm = (instr & 0x400)? regs->ctr: regs->link; imm = (instr & 0x400)? regs->ctr: regs->link;
regs->nip += 4; regs->nip += 4;
if ((regs->msr & MSR_SF) == 0) { if ((regs->msr & MSR_SF) == 0) {
...@@ -116,30 +624,233 @@ int __kprobes emulate_step(struct pt_regs *regs, unsigned int instr) ...@@ -116,30 +624,233 @@ int __kprobes emulate_step(struct pt_regs *regs, unsigned int instr)
if (branch_taken(instr, regs)) if (branch_taken(instr, regs))
regs->nip = imm; regs->nip = imm;
return 1; return 1;
case 0x24: /* rfid, scary */
case 18: /* rfid, scary */
return -1; return -1;
case 150: /* isync */
isync();
goto instr_done;
case 33: /* crnor */
case 129: /* crandc */
case 193: /* crxor */
case 225: /* crnand */
case 257: /* crand */
case 289: /* creqv */
case 417: /* crorc */
case 449: /* cror */
ra = (instr >> 16) & 0x1f;
rb = (instr >> 11) & 0x1f;
rd = (instr >> 21) & 0x1f;
ra = (regs->ccr >> (31 - ra)) & 1;
rb = (regs->ccr >> (31 - rb)) & 1;
val = (instr >> (6 + ra * 2 + rb)) & 1;
regs->ccr = (regs->ccr & ~(1UL << (31 - rd))) |
(val << (31 - rd));
goto instr_done;
} }
break;
case 31: case 31:
switch ((instr >> 1) & 0x3ff) {
case 598: /* sync */
#ifdef __powerpc64__
switch ((instr >> 21) & 3) {
case 1: /* lwsync */
asm volatile("lwsync" : : : "memory");
goto instr_done;
case 2: /* ptesync */
asm volatile("ptesync" : : : "memory");
goto instr_done;
}
#endif
mb();
goto instr_done;
case 854: /* eieio */
eieio();
goto instr_done;
}
break;
}
/* Following cases refer to regs->gpr[], so we need all regs */
if (!FULL_REGS(regs))
return 0;
rd = (instr >> 21) & 0x1f; rd = (instr >> 21) & 0x1f;
switch (instr & 0x7fe) { ra = (instr >> 16) & 0x1f;
case 0xa6: /* mfmsr */ rb = (instr >> 11) & 0x1f;
switch (opcode) {
case 7: /* mulli */
regs->gpr[rd] = regs->gpr[ra] * (short) instr;
goto instr_done;
case 8: /* subfic */
imm = (short) instr;
add_with_carry(regs, rd, ~regs->gpr[ra], imm, 1);
goto instr_done;
case 10: /* cmpli */
imm = (unsigned short) instr;
val = regs->gpr[ra];
#ifdef __powerpc64__
if ((rd & 1) == 0)
val = (unsigned int) val;
#endif
do_cmp_unsigned(regs, val, imm, rd >> 2);
goto instr_done;
case 11: /* cmpi */
imm = (short) instr;
val = regs->gpr[ra];
#ifdef __powerpc64__
if ((rd & 1) == 0)
val = (int) val;
#endif
do_cmp_signed(regs, val, imm, rd >> 2);
goto instr_done;
case 12: /* addic */
imm = (short) instr;
add_with_carry(regs, rd, regs->gpr[ra], imm, 0);
goto instr_done;
case 13: /* addic. */
imm = (short) instr;
add_with_carry(regs, rd, regs->gpr[ra], imm, 0);
set_cr0(regs, rd);
goto instr_done;
case 14: /* addi */
imm = (short) instr;
if (ra)
imm += regs->gpr[ra];
regs->gpr[rd] = imm;
goto instr_done;
case 15: /* addis */
imm = ((short) instr) << 16;
if (ra)
imm += regs->gpr[ra];
regs->gpr[rd] = imm;
goto instr_done;
case 20: /* rlwimi */
mb = (instr >> 6) & 0x1f;
me = (instr >> 1) & 0x1f;
val = DATA32(regs->gpr[rd]);
imm = MASK32(mb, me);
regs->gpr[ra] = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
goto logical_done;
case 21: /* rlwinm */
mb = (instr >> 6) & 0x1f;
me = (instr >> 1) & 0x1f;
val = DATA32(regs->gpr[rd]);
regs->gpr[ra] = ROTATE(val, rb) & MASK32(mb, me);
goto logical_done;
case 23: /* rlwnm */
mb = (instr >> 6) & 0x1f;
me = (instr >> 1) & 0x1f;
rb = regs->gpr[rb] & 0x1f;
val = DATA32(regs->gpr[rd]);
regs->gpr[ra] = ROTATE(val, rb) & MASK32(mb, me);
goto logical_done;
case 24: /* ori */
imm = (unsigned short) instr;
regs->gpr[ra] = regs->gpr[rd] | imm;
goto instr_done;
case 25: /* oris */
imm = (unsigned short) instr;
regs->gpr[ra] = regs->gpr[rd] | (imm << 16);
goto instr_done;
case 26: /* xori */
imm = (unsigned short) instr;
regs->gpr[ra] = regs->gpr[rd] ^ imm;
goto instr_done;
case 27: /* xoris */
imm = (unsigned short) instr;
regs->gpr[ra] = regs->gpr[rd] ^ (imm << 16);
goto instr_done;
case 28: /* andi. */
imm = (unsigned short) instr;
regs->gpr[ra] = regs->gpr[rd] & imm;
set_cr0(regs, ra);
goto instr_done;
case 29: /* andis. */
imm = (unsigned short) instr;
regs->gpr[ra] = regs->gpr[rd] & (imm << 16);
set_cr0(regs, ra);
goto instr_done;
#ifdef __powerpc64__
case 30: /* rld* */
mb = ((instr >> 6) & 0x1f) | (instr & 0x20);
val = regs->gpr[rd];
if ((instr & 0x10) == 0) {
sh = rb | ((instr & 2) << 4);
val = ROTATE(val, sh);
switch ((instr >> 2) & 3) {
case 0: /* rldicl */
regs->gpr[ra] = val & MASK64_L(mb);
goto logical_done;
case 1: /* rldicr */
regs->gpr[ra] = val & MASK64_R(mb);
goto logical_done;
case 2: /* rldic */
regs->gpr[ra] = val & MASK64(mb, 63 - sh);
goto logical_done;
case 3: /* rldimi */
imm = MASK64(mb, 63 - sh);
regs->gpr[ra] = (regs->gpr[ra] & ~imm) |
(val & imm);
goto logical_done;
}
} else {
sh = regs->gpr[rb] & 0x3f;
val = ROTATE(val, sh);
switch ((instr >> 1) & 7) {
case 0: /* rldcl */
regs->gpr[ra] = val & MASK64_L(mb);
goto logical_done;
case 1: /* rldcr */
regs->gpr[ra] = val & MASK64_R(mb);
goto logical_done;
}
}
#endif
case 31:
switch ((instr >> 1) & 0x3ff) {
case 83: /* mfmsr */
if (regs->msr & MSR_PR)
break;
regs->gpr[rd] = regs->msr & MSR_MASK; regs->gpr[rd] = regs->msr & MSR_MASK;
regs->nip += 4; goto instr_done;
if ((regs->msr & MSR_SF) == 0) case 146: /* mtmsr */
regs->nip &= 0xffffffffUL; if (regs->msr & MSR_PR)
return 1; break;
case 0x124: /* mtmsr */
imm = regs->gpr[rd]; imm = regs->gpr[rd];
if ((imm & MSR_RI) == 0) if ((imm & MSR_RI) == 0)
/* can't step mtmsr that would clear MSR_RI */ /* can't step mtmsr that would clear MSR_RI */
return -1; return -1;
regs->msr = imm; regs->msr = imm;
regs->nip += 4; goto instr_done;
return 1;
#ifdef CONFIG_PPC64 #ifdef CONFIG_PPC64
case 0x164: /* mtmsrd */ case 178: /* mtmsrd */
/* only MSR_EE and MSR_RI get changed if bit 15 set */ /* only MSR_EE and MSR_RI get changed if bit 15 set */
/* mtmsrd doesn't change MSR_HV and MSR_ME */ /* mtmsrd doesn't change MSR_HV and MSR_ME */
if (regs->msr & MSR_PR)
break;
imm = (instr & 0x10000)? 0x8002: 0xefffffffffffefffUL; imm = (instr & 0x10000)? 0x8002: 0xefffffffffffefffUL;
imm = (regs->msr & MSR_MASK & ~imm) imm = (regs->msr & MSR_MASK & ~imm)
| (regs->gpr[rd] & imm); | (regs->gpr[rd] & imm);
...@@ -147,57 +858,770 @@ int __kprobes emulate_step(struct pt_regs *regs, unsigned int instr) ...@@ -147,57 +858,770 @@ int __kprobes emulate_step(struct pt_regs *regs, unsigned int instr)
/* can't step mtmsrd that would clear MSR_RI */ /* can't step mtmsrd that would clear MSR_RI */
return -1; return -1;
regs->msr = imm; regs->msr = imm;
regs->nip += 4; goto instr_done;
if ((imm & MSR_SF) == 0)
regs->nip &= 0xffffffffUL;
return 1;
#endif #endif
case 0x26: /* mfcr */ case 19: /* mfcr */
regs->gpr[rd] = regs->ccr; regs->gpr[rd] = regs->ccr;
regs->gpr[rd] &= 0xffffffffUL; regs->gpr[rd] &= 0xffffffffUL;
goto mtspr_out; goto instr_done;
case 0x2a6: /* mfspr */
case 144: /* mtcrf */
imm = 0xf0000000UL;
val = regs->gpr[rd];
for (sh = 0; sh < 8; ++sh) {
if (instr & (0x80000 >> sh))
regs->ccr = (regs->ccr & ~imm) |
(val & imm);
imm >>= 4;
}
goto instr_done;
case 339: /* mfspr */
spr = (instr >> 11) & 0x3ff; spr = (instr >> 11) & 0x3ff;
switch (spr) { switch (spr) {
case 0x20: /* mfxer */ case 0x20: /* mfxer */
regs->gpr[rd] = regs->xer; regs->gpr[rd] = regs->xer;
regs->gpr[rd] &= 0xffffffffUL; regs->gpr[rd] &= 0xffffffffUL;
goto mtspr_out; goto instr_done;
case 0x100: /* mflr */ case 0x100: /* mflr */
regs->gpr[rd] = regs->link; regs->gpr[rd] = regs->link;
goto mtspr_out; goto instr_done;
case 0x120: /* mfctr */ case 0x120: /* mfctr */
regs->gpr[rd] = regs->ctr; regs->gpr[rd] = regs->ctr;
goto mtspr_out; goto instr_done;
}
break;
case 0x378: /* orx */
if (instr & 1)
break;
rs = (instr >> 21) & 0x1f;
rb = (instr >> 11) & 0x1f;
if (rs == rb) { /* mr */
rd = (instr >> 16) & 0x1f;
regs->gpr[rd] = regs->gpr[rs];
goto mtspr_out;
} }
break; break;
case 0x3a6: /* mtspr */
case 467: /* mtspr */
spr = (instr >> 11) & 0x3ff; spr = (instr >> 11) & 0x3ff;
switch (spr) { switch (spr) {
case 0x20: /* mtxer */ case 0x20: /* mtxer */
regs->xer = (regs->gpr[rd] & 0xffffffffUL); regs->xer = (regs->gpr[rd] & 0xffffffffUL);
goto mtspr_out; goto instr_done;
case 0x100: /* mtlr */ case 0x100: /* mtlr */
regs->link = regs->gpr[rd]; regs->link = regs->gpr[rd];
goto mtspr_out; goto instr_done;
case 0x120: /* mtctr */ case 0x120: /* mtctr */
regs->ctr = regs->gpr[rd]; regs->ctr = regs->gpr[rd];
mtspr_out: goto instr_done;
regs->nip += 4; }
return 1; break;
/*
* Compare instructions
*/
case 0: /* cmp */
val = regs->gpr[ra];
val2 = regs->gpr[rb];
#ifdef __powerpc64__
if ((rd & 1) == 0) {
/* word (32-bit) compare */
val = (int) val;
val2 = (int) val2;
}
#endif
do_cmp_signed(regs, val, val2, rd >> 2);
goto instr_done;
case 32: /* cmpl */
val = regs->gpr[ra];
val2 = regs->gpr[rb];
#ifdef __powerpc64__
if ((rd & 1) == 0) {
/* word (32-bit) compare */
val = (unsigned int) val;
val2 = (unsigned int) val2;
}
#endif
do_cmp_unsigned(regs, val, val2, rd >> 2);
goto instr_done;
/*
* Arithmetic instructions
*/
case 8: /* subfc */
add_with_carry(regs, rd, ~regs->gpr[ra],
regs->gpr[rb], 1);
goto arith_done;
#ifdef __powerpc64__
case 9: /* mulhdu */
asm("mulhdu %0,%1,%2" : "=r" (regs->gpr[rd]) :
"r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
goto arith_done;
#endif
case 10: /* addc */
add_with_carry(regs, rd, regs->gpr[ra],
regs->gpr[rb], 0);
goto arith_done;
case 11: /* mulhwu */
asm("mulhwu %0,%1,%2" : "=r" (regs->gpr[rd]) :
"r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
goto arith_done;
case 40: /* subf */
regs->gpr[rd] = regs->gpr[rb] - regs->gpr[ra];
goto arith_done;
#ifdef __powerpc64__
case 73: /* mulhd */
asm("mulhd %0,%1,%2" : "=r" (regs->gpr[rd]) :
"r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
goto arith_done;
#endif
case 75: /* mulhw */
asm("mulhw %0,%1,%2" : "=r" (regs->gpr[rd]) :
"r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
goto arith_done;
case 104: /* neg */
regs->gpr[rd] = -regs->gpr[ra];
goto arith_done;
case 136: /* subfe */
add_with_carry(regs, rd, ~regs->gpr[ra], regs->gpr[rb],
regs->xer & XER_CA);
goto arith_done;
case 138: /* adde */
add_with_carry(regs, rd, regs->gpr[ra], regs->gpr[rb],
regs->xer & XER_CA);
goto arith_done;
case 200: /* subfze */
add_with_carry(regs, rd, ~regs->gpr[ra], 0L,
regs->xer & XER_CA);
goto arith_done;
case 202: /* addze */
add_with_carry(regs, rd, regs->gpr[ra], 0L,
regs->xer & XER_CA);
goto arith_done;
case 232: /* subfme */
add_with_carry(regs, rd, ~regs->gpr[ra], -1L,
regs->xer & XER_CA);
goto arith_done;
#ifdef __powerpc64__
case 233: /* mulld */
regs->gpr[rd] = regs->gpr[ra] * regs->gpr[rb];
goto arith_done;
#endif
case 234: /* addme */
add_with_carry(regs, rd, regs->gpr[ra], -1L,
regs->xer & XER_CA);
goto arith_done;
case 235: /* mullw */
regs->gpr[rd] = (unsigned int) regs->gpr[ra] *
(unsigned int) regs->gpr[rb];
goto arith_done;
case 266: /* add */
regs->gpr[rd] = regs->gpr[ra] + regs->gpr[rb];
goto arith_done;
#ifdef __powerpc64__
case 457: /* divdu */
regs->gpr[rd] = regs->gpr[ra] / regs->gpr[rb];
goto arith_done;
#endif
case 459: /* divwu */
regs->gpr[rd] = (unsigned int) regs->gpr[ra] /
(unsigned int) regs->gpr[rb];
goto arith_done;
#ifdef __powerpc64__
case 489: /* divd */
regs->gpr[rd] = (long int) regs->gpr[ra] /
(long int) regs->gpr[rb];
goto arith_done;
#endif
case 491: /* divw */
regs->gpr[rd] = (int) regs->gpr[ra] /
(int) regs->gpr[rb];
goto arith_done;
/*
* Logical instructions
*/
case 26: /* cntlzw */
asm("cntlzw %0,%1" : "=r" (regs->gpr[ra]) :
"r" (regs->gpr[rd]));
goto logical_done;
#ifdef __powerpc64__
case 58: /* cntlzd */
asm("cntlzd %0,%1" : "=r" (regs->gpr[ra]) :
"r" (regs->gpr[rd]));
goto logical_done;
#endif
case 28: /* and */
regs->gpr[ra] = regs->gpr[rd] & regs->gpr[rb];
goto logical_done;
case 60: /* andc */
regs->gpr[ra] = regs->gpr[rd] & ~regs->gpr[rb];
goto logical_done;
case 124: /* nor */
regs->gpr[ra] = ~(regs->gpr[rd] | regs->gpr[rb]);
goto logical_done;
case 284: /* xor */
regs->gpr[ra] = ~(regs->gpr[rd] ^ regs->gpr[rb]);
goto logical_done;
case 316: /* xor */
regs->gpr[ra] = regs->gpr[rd] ^ regs->gpr[rb];
goto logical_done;
case 412: /* orc */
regs->gpr[ra] = regs->gpr[rd] | ~regs->gpr[rb];
goto logical_done;
case 444: /* or */
regs->gpr[ra] = regs->gpr[rd] | regs->gpr[rb];
goto logical_done;
case 476: /* nand */
regs->gpr[ra] = ~(regs->gpr[rd] & regs->gpr[rb]);
goto logical_done;
case 922: /* extsh */
regs->gpr[ra] = (signed short) regs->gpr[rd];
goto logical_done;
case 954: /* extsb */
regs->gpr[ra] = (signed char) regs->gpr[rd];
goto logical_done;
#ifdef __powerpc64__
case 986: /* extsw */
regs->gpr[ra] = (signed int) regs->gpr[rd];
goto logical_done;
#endif
/*
* Shift instructions
*/
case 24: /* slw */
sh = regs->gpr[rb] & 0x3f;
if (sh < 32)
regs->gpr[ra] = (regs->gpr[rd] << sh) & 0xffffffffUL;
else
regs->gpr[ra] = 0;
goto logical_done;
case 536: /* srw */
sh = regs->gpr[rb] & 0x3f;
if (sh < 32)
regs->gpr[ra] = (regs->gpr[rd] & 0xffffffffUL) >> sh;
else
regs->gpr[ra] = 0;
goto logical_done;
case 792: /* sraw */
sh = regs->gpr[rb] & 0x3f;
ival = (signed int) regs->gpr[rd];
regs->gpr[ra] = ival >> (sh < 32 ? sh : 31);
if (ival < 0 && (sh >= 32 || (ival & ((1 << sh) - 1)) != 0))
regs->xer |= XER_CA;
else
regs->xer &= ~XER_CA;
goto logical_done;
case 824: /* srawi */
sh = rb;
ival = (signed int) regs->gpr[rd];
regs->gpr[ra] = ival >> sh;
if (ival < 0 && (ival & ((1 << sh) - 1)) != 0)
regs->xer |= XER_CA;
else
regs->xer &= ~XER_CA;
goto logical_done;
#ifdef __powerpc64__
case 27: /* sld */
sh = regs->gpr[rd] & 0x7f;
if (sh < 64)
regs->gpr[ra] = regs->gpr[rd] << sh;
else
regs->gpr[ra] = 0;
goto logical_done;
case 539: /* srd */
sh = regs->gpr[rb] & 0x7f;
if (sh < 64)
regs->gpr[ra] = regs->gpr[rd] >> sh;
else
regs->gpr[ra] = 0;
goto logical_done;
case 794: /* srad */
sh = regs->gpr[rb] & 0x7f;
ival = (signed long int) regs->gpr[rd];
regs->gpr[ra] = ival >> (sh < 64 ? sh : 63);
if (ival < 0 && (sh >= 64 || (ival & ((1 << sh) - 1)) != 0))
regs->xer |= XER_CA;
else
regs->xer &= ~XER_CA;
goto logical_done;
case 826: /* sradi with sh_5 = 0 */
case 827: /* sradi with sh_5 = 1 */
sh = rb | ((instr & 2) << 4);
ival = (signed long int) regs->gpr[rd];
regs->gpr[ra] = ival >> sh;
if (ival < 0 && (ival & ((1 << sh) - 1)) != 0)
regs->xer |= XER_CA;
else
regs->xer &= ~XER_CA;
goto logical_done;
#endif /* __powerpc64__ */
/*
* Cache instructions
*/
case 54: /* dcbst */
ea = xform_ea(instr, regs, 0);
if (!address_ok(regs, ea, 8))
return 0;
err = 0;
__cacheop_user_asmx(ea, err, "dcbst");
if (err)
return 0;
goto instr_done;
case 86: /* dcbf */
ea = xform_ea(instr, regs, 0);
if (!address_ok(regs, ea, 8))
return 0;
err = 0;
__cacheop_user_asmx(ea, err, "dcbf");
if (err)
return 0;
goto instr_done;
case 246: /* dcbtst */
if (rd == 0) {
ea = xform_ea(instr, regs, 0);
prefetchw((void *) ea);
}
goto instr_done;
case 278: /* dcbt */
if (rd == 0) {
ea = xform_ea(instr, regs, 0);
prefetch((void *) ea);
}
goto instr_done;
} }
break;
} }
/*
* Following cases are for loads and stores, so bail out
* if we're in little-endian mode.
*/
if (regs->msr & MSR_LE)
return 0;
/*
* Save register RA in case it's an update form load or store
* and the access faults.
*/
old_ra = regs->gpr[ra];
switch (opcode) {
case 31:
u = instr & 0x40;
switch ((instr >> 1) & 0x3ff) {
case 20: /* lwarx */
ea = xform_ea(instr, regs, 0);
if (ea & 3)
break; /* can't handle misaligned */
err = -EFAULT;
if (!address_ok(regs, ea, 4))
goto ldst_done;
err = 0;
__get_user_asmx(val, ea, err, "lwarx");
if (!err)
regs->gpr[rd] = val;
goto ldst_done;
case 150: /* stwcx. */
ea = xform_ea(instr, regs, 0);
if (ea & 3)
break; /* can't handle misaligned */
err = -EFAULT;
if (!address_ok(regs, ea, 4))
goto ldst_done;
err = 0;
__put_user_asmx(regs->gpr[rd], ea, err, "stwcx.", cr);
if (!err)
regs->ccr = (regs->ccr & 0x0fffffff) |
(cr & 0xe0000000) |
((regs->xer >> 3) & 0x10000000);
goto ldst_done;
#ifdef __powerpc64__
case 84: /* ldarx */
ea = xform_ea(instr, regs, 0);
if (ea & 7)
break; /* can't handle misaligned */
err = -EFAULT;
if (!address_ok(regs, ea, 8))
goto ldst_done;
err = 0;
__get_user_asmx(val, ea, err, "ldarx");
if (!err)
regs->gpr[rd] = val;
goto ldst_done;
case 214: /* stdcx. */
ea = xform_ea(instr, regs, 0);
if (ea & 7)
break; /* can't handle misaligned */
err = -EFAULT;
if (!address_ok(regs, ea, 8))
goto ldst_done;
err = 0;
__put_user_asmx(regs->gpr[rd], ea, err, "stdcx.", cr);
if (!err)
regs->ccr = (regs->ccr & 0x0fffffff) |
(cr & 0xe0000000) |
((regs->xer >> 3) & 0x10000000);
goto ldst_done;
case 21: /* ldx */
case 53: /* ldux */
err = read_mem(&regs->gpr[rd], xform_ea(instr, regs, u),
8, regs);
goto ldst_done;
#endif
case 23: /* lwzx */
case 55: /* lwzux */
err = read_mem(&regs->gpr[rd], xform_ea(instr, regs, u),
4, regs);
goto ldst_done;
case 87: /* lbzx */
case 119: /* lbzux */
err = read_mem(&regs->gpr[rd], xform_ea(instr, regs, u),
1, regs);
goto ldst_done;
#ifdef CONFIG_ALTIVEC
case 103: /* lvx */
case 359: /* lvxl */
if (!(regs->msr & MSR_VEC))
break;
ea = xform_ea(instr, regs, 0);
err = do_vec_load(rd, do_lvx, ea, regs);
goto ldst_done;
case 231: /* stvx */
case 487: /* stvxl */
if (!(regs->msr & MSR_VEC))
break;
ea = xform_ea(instr, regs, 0);
err = do_vec_store(rd, do_stvx, ea, regs);
goto ldst_done;
#endif /* CONFIG_ALTIVEC */
#ifdef __powerpc64__
case 149: /* stdx */
case 181: /* stdux */
val = regs->gpr[rd];
err = write_mem(val, xform_ea(instr, regs, u), 8, regs);
goto ldst_done;
#endif
case 151: /* stwx */
case 183: /* stwux */
val = regs->gpr[rd];
err = write_mem(val, xform_ea(instr, regs, u), 4, regs);
goto ldst_done;
case 215: /* stbx */
case 247: /* stbux */
val = regs->gpr[rd];
err = write_mem(val, xform_ea(instr, regs, u), 1, regs);
goto ldst_done;
case 279: /* lhzx */
case 311: /* lhzux */
err = read_mem(&regs->gpr[rd], xform_ea(instr, regs, u),
2, regs);
goto ldst_done;
#ifdef __powerpc64__
case 341: /* lwax */
case 373: /* lwaux */
err = read_mem(&regs->gpr[rd], xform_ea(instr, regs, u),
4, regs);
if (!err)
regs->gpr[rd] = (signed int) regs->gpr[rd];
goto ldst_done;
#endif
case 343: /* lhax */
case 375: /* lhaux */
err = read_mem(&regs->gpr[rd], xform_ea(instr, regs, u),
2, regs);
if (!err)
regs->gpr[rd] = (signed short) regs->gpr[rd];
goto ldst_done;
case 407: /* sthx */
case 439: /* sthux */
val = regs->gpr[rd];
err = write_mem(val, xform_ea(instr, regs, u), 2, regs);
goto ldst_done;
#ifdef __powerpc64__
case 532: /* ldbrx */
err = read_mem(&val, xform_ea(instr, regs, 0), 8, regs);
if (!err)
regs->gpr[rd] = byterev_8(val);
goto ldst_done;
#endif
case 534: /* lwbrx */
err = read_mem(&val, xform_ea(instr, regs, 0), 4, regs);
if (!err)
regs->gpr[rd] = byterev_4(val);
goto ldst_done;
case 535: /* lfsx */
case 567: /* lfsux */
if (!(regs->msr & MSR_FP))
break;
ea = xform_ea(instr, regs, u);
err = do_fp_load(rd, do_lfs, ea, 4, regs);
goto ldst_done;
case 599: /* lfdx */
case 631: /* lfdux */
if (!(regs->msr & MSR_FP))
break;
ea = xform_ea(instr, regs, u);
err = do_fp_load(rd, do_lfd, ea, 8, regs);
goto ldst_done;
case 663: /* stfsx */
case 695: /* stfsux */
if (!(regs->msr & MSR_FP))
break;
ea = xform_ea(instr, regs, u);
err = do_fp_store(rd, do_stfs, ea, 4, regs);
goto ldst_done;
case 727: /* stfdx */
case 759: /* stfdux */
if (!(regs->msr & MSR_FP))
break;
ea = xform_ea(instr, regs, u);
err = do_fp_store(rd, do_stfd, ea, 8, regs);
goto ldst_done;
#ifdef __powerpc64__
case 660: /* stdbrx */
val = byterev_8(regs->gpr[rd]);
err = write_mem(val, xform_ea(instr, regs, 0), 8, regs);
goto ldst_done;
#endif
case 662: /* stwbrx */
val = byterev_4(regs->gpr[rd]);
err = write_mem(val, xform_ea(instr, regs, 0), 4, regs);
goto ldst_done;
case 790: /* lhbrx */
err = read_mem(&val, xform_ea(instr, regs, 0), 2, regs);
if (!err)
regs->gpr[rd] = byterev_2(val);
goto ldst_done;
case 918: /* sthbrx */
val = byterev_2(regs->gpr[rd]);
err = write_mem(val, xform_ea(instr, regs, 0), 2, regs);
goto ldst_done;
#ifdef CONFIG_VSX
case 844: /* lxvd2x */
case 876: /* lxvd2ux */
if (!(regs->msr & MSR_VSX))
break;
rd |= (instr & 1) << 5;
ea = xform_ea(instr, regs, u);
err = do_vsx_load(rd, do_lxvd2x, ea, regs);
goto ldst_done;
case 972: /* stxvd2x */
case 1004: /* stxvd2ux */
if (!(regs->msr & MSR_VSX))
break;
rd |= (instr & 1) << 5;
ea = xform_ea(instr, regs, u);
err = do_vsx_store(rd, do_stxvd2x, ea, regs);
goto ldst_done;
#endif /* CONFIG_VSX */
} }
break;
case 32: /* lwz */
case 33: /* lwzu */
err = read_mem(&regs->gpr[rd], dform_ea(instr, regs), 4, regs);
goto ldst_done;
case 34: /* lbz */
case 35: /* lbzu */
err = read_mem(&regs->gpr[rd], dform_ea(instr, regs), 1, regs);
goto ldst_done;
case 36: /* stw */
case 37: /* stwu */
val = regs->gpr[rd];
err = write_mem(val, dform_ea(instr, regs), 4, regs);
goto ldst_done;
case 38: /* stb */
case 39: /* stbu */
val = regs->gpr[rd];
err = write_mem(val, dform_ea(instr, regs), 1, regs);
goto ldst_done;
case 40: /* lhz */
case 41: /* lhzu */
err = read_mem(&regs->gpr[rd], dform_ea(instr, regs), 2, regs);
goto ldst_done;
case 42: /* lha */
case 43: /* lhau */
err = read_mem(&regs->gpr[rd], dform_ea(instr, regs), 2, regs);
if (!err)
regs->gpr[rd] = (signed short) regs->gpr[rd];
goto ldst_done;
case 44: /* sth */
case 45: /* sthu */
val = regs->gpr[rd];
err = write_mem(val, dform_ea(instr, regs), 2, regs);
goto ldst_done;
case 46: /* lmw */
ra = (instr >> 16) & 0x1f;
if (ra >= rd)
break; /* invalid form, ra in range to load */
ea = dform_ea(instr, regs);
do {
err = read_mem(&regs->gpr[rd], ea, 4, regs);
if (err)
return 0; return 0;
ea += 4;
} while (++rd < 32);
goto instr_done;
case 47: /* stmw */
ea = dform_ea(instr, regs);
do {
err = write_mem(regs->gpr[rd], ea, 4, regs);
if (err)
return 0;
ea += 4;
} while (++rd < 32);
goto instr_done;
case 48: /* lfs */
case 49: /* lfsu */
if (!(regs->msr & MSR_FP))
break;
ea = dform_ea(instr, regs);
err = do_fp_load(rd, do_lfs, ea, 4, regs);
goto ldst_done;
case 50: /* lfd */
case 51: /* lfdu */
if (!(regs->msr & MSR_FP))
break;
ea = dform_ea(instr, regs);
err = do_fp_load(rd, do_lfd, ea, 8, regs);
goto ldst_done;
case 52: /* stfs */
case 53: /* stfsu */
if (!(regs->msr & MSR_FP))
break;
ea = dform_ea(instr, regs);
err = do_fp_store(rd, do_stfs, ea, 4, regs);
goto ldst_done;
case 54: /* stfd */
case 55: /* stfdu */
if (!(regs->msr & MSR_FP))
break;
ea = dform_ea(instr, regs);
err = do_fp_store(rd, do_stfd, ea, 8, regs);
goto ldst_done;
#ifdef __powerpc64__
case 58: /* ld[u], lwa */
switch (instr & 3) {
case 0: /* ld */
err = read_mem(&regs->gpr[rd], dsform_ea(instr, regs),
8, regs);
goto ldst_done;
case 1: /* ldu */
err = read_mem(&regs->gpr[rd], dsform_ea(instr, regs),
8, regs);
goto ldst_done;
case 2: /* lwa */
err = read_mem(&regs->gpr[rd], dsform_ea(instr, regs),
4, regs);
if (!err)
regs->gpr[rd] = (signed int) regs->gpr[rd];
goto ldst_done;
}
break;
case 62: /* std[u] */
val = regs->gpr[rd];
switch (instr & 3) {
case 0: /* std */
err = write_mem(val, dsform_ea(instr, regs), 8, regs);
goto ldst_done;
case 1: /* stdu */
err = write_mem(val, dsform_ea(instr, regs), 8, regs);
goto ldst_done;
}
break;
#endif /* __powerpc64__ */
}
err = -EINVAL;
ldst_done:
if (err) {
regs->gpr[ra] = old_ra;
return 0; /* invoke DSI if -EFAULT? */
}
instr_done:
regs->nip += 4;
#ifdef __powerpc64__
if ((regs->msr & MSR_SF) == 0)
regs->nip &= 0xffffffffUL;
#endif
return 1;
logical_done:
if (instr & 1)
set_cr0(regs, ra);
goto instr_done;
arith_done:
if (instr & 1)
set_cr0(regs, rd);
goto instr_done;
} }
...@@ -241,6 +241,17 @@ toggle_bp_slot(struct perf_event *bp, bool enable, enum bp_type_idx type, ...@@ -241,6 +241,17 @@ toggle_bp_slot(struct perf_event *bp, bool enable, enum bp_type_idx type,
per_cpu(nr_cpu_bp_pinned[type], bp->cpu) -= weight; per_cpu(nr_cpu_bp_pinned[type], bp->cpu) -= weight;
} }
/*
* Function to perform processor-specific cleanup during unregistration
*/
__weak void arch_unregister_hw_breakpoint(struct perf_event *bp)
{
/*
* A weak stub function here for those archs that don't define
* it inside arch/.../kernel/hw_breakpoint.c
*/
}
/* /*
* Contraints to check before allowing this new breakpoint counter: * Contraints to check before allowing this new breakpoint counter:
* *
...@@ -339,6 +350,7 @@ void release_bp_slot(struct perf_event *bp) ...@@ -339,6 +350,7 @@ void release_bp_slot(struct perf_event *bp)
{ {
mutex_lock(&nr_bp_mutex); mutex_lock(&nr_bp_mutex);
arch_unregister_hw_breakpoint(bp);
__release_bp_slot(bp); __release_bp_slot(bp);
mutex_unlock(&nr_bp_mutex); mutex_unlock(&nr_bp_mutex);
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册