提交 22f6b860 编写于 作者: S Sascha Hauer 提交者: David S. Miller

fec: Codingstyle cleanups

Signed-off-by: NSascha Hauer <s.hauer@pengutronix.de>
Signed-off-by: NDavid S. Miller <davem@davemloft.net>
上级 8d4dd5cf
...@@ -86,8 +86,7 @@ static unsigned char fec_mac_default[] = { ...@@ -86,8 +86,7 @@ static unsigned char fec_mac_default[] = {
#endif #endif
#endif /* CONFIG_M5272 */ #endif /* CONFIG_M5272 */
/* Forward declarations of some structures to support different PHYs /* Forward declarations of some structures to support different PHYs */
*/
typedef struct { typedef struct {
uint mii_data; uint mii_data;
...@@ -123,8 +122,7 @@ typedef struct { ...@@ -123,8 +122,7 @@ typedef struct {
#error "FEC: descriptor ring size constants too large" #error "FEC: descriptor ring size constants too large"
#endif #endif
/* Interrupt events/masks. /* Interrupt events/masks. */
*/
#define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */ #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
#define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */ #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
#define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */ #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
...@@ -177,15 +175,14 @@ struct fec_enet_private { ...@@ -177,15 +175,14 @@ struct fec_enet_private {
ushort skb_cur; ushort skb_cur;
ushort skb_dirty; ushort skb_dirty;
/* CPM dual port RAM relative addresses. /* CPM dual port RAM relative addresses */
*/
dma_addr_t bd_dma; dma_addr_t bd_dma;
/* Address of Rx and Tx buffers. */ /* Address of Rx and Tx buffers */
struct bufdesc *rx_bd_base; struct bufdesc *rx_bd_base;
struct bufdesc *tx_bd_base; struct bufdesc *tx_bd_base;
/* The next free ring entry */ /* The next free ring entry */
struct bufdesc *cur_rx, *cur_tx; struct bufdesc *cur_rx, *cur_tx;
/* The ring entries to be free()ed. */ /* The ring entries to be free()ed */
struct bufdesc *dirty_tx; struct bufdesc *dirty_tx;
uint tx_full; uint tx_full;
...@@ -245,19 +242,16 @@ static mii_list_t *mii_tail; ...@@ -245,19 +242,16 @@ static mii_list_t *mii_tail;
static int mii_queue(struct net_device *dev, int request, static int mii_queue(struct net_device *dev, int request,
void (*func)(uint, struct net_device *)); void (*func)(uint, struct net_device *));
/* Make MII read/write commands for the FEC. /* Make MII read/write commands for the FEC */
*/
#define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18)) #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
#define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \ #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
(VAL & 0xffff)) (VAL & 0xffff))
#define mk_mii_end 0 #define mk_mii_end 0
/* Transmitter timeout. /* Transmitter timeout */
*/ #define TX_TIMEOUT (2 * HZ)
#define TX_TIMEOUT (2*HZ)
/* Register definitions for the PHY. /* Register definitions for the PHY */
*/
#define MII_REG_CR 0 /* Control Register */ #define MII_REG_CR 0 /* Control Register */
#define MII_REG_SR 1 /* Status Register */ #define MII_REG_SR 1 /* Status Register */
...@@ -307,7 +301,7 @@ fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) ...@@ -307,7 +301,7 @@ fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
bdp = fep->cur_tx; bdp = fep->cur_tx;
status = bdp->cbd_sc; status = bdp->cbd_sc;
#ifndef final_version
if (status & BD_ENET_TX_READY) { if (status & BD_ENET_TX_READY) {
/* Ooops. All transmit buffers are full. Bail out. /* Ooops. All transmit buffers are full. Bail out.
* This should not happen, since dev->tbusy should be set. * This should not happen, since dev->tbusy should be set.
...@@ -316,21 +310,18 @@ fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) ...@@ -316,21 +310,18 @@ fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
spin_unlock_irqrestore(&fep->hw_lock, flags); spin_unlock_irqrestore(&fep->hw_lock, flags);
return 1; return 1;
} }
#endif
/* Clear all of the status flags. /* Clear all of the status flags */
*/
status &= ~BD_ENET_TX_STATS; status &= ~BD_ENET_TX_STATS;
/* Set buffer length and buffer pointer. /* Set buffer length and buffer pointer */
*/
bdp->cbd_bufaddr = __pa(skb->data); bdp->cbd_bufaddr = __pa(skb->data);
bdp->cbd_datlen = skb->len; bdp->cbd_datlen = skb->len;
/* /*
* On some FEC implementations data must be aligned on * On some FEC implementations data must be aligned on
* 4-byte boundaries. Use bounce buffers to copy data * 4-byte boundaries. Use bounce buffers to copy data
* and get it aligned. Ugh. * and get it aligned. Ugh.
*/ */
if (bdp->cbd_bufaddr & FEC_ALIGNMENT) { if (bdp->cbd_bufaddr & FEC_ALIGNMENT) {
unsigned int index; unsigned int index;
...@@ -339,8 +330,7 @@ fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) ...@@ -339,8 +330,7 @@ fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]); bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]);
} }
/* Save skb pointer. /* Save skb pointer */
*/
fep->tx_skbuff[fep->skb_cur] = skb; fep->tx_skbuff[fep->skb_cur] = skb;
dev->stats.tx_bytes += skb->len; dev->stats.tx_bytes += skb->len;
...@@ -355,7 +345,6 @@ fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) ...@@ -355,7 +345,6 @@ fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
/* Send it on its way. Tell FEC it's ready, interrupt when done, /* Send it on its way. Tell FEC it's ready, interrupt when done,
* it's the last BD of the frame, and to put the CRC on the end. * it's the last BD of the frame, and to put the CRC on the end.
*/ */
status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
| BD_ENET_TX_LAST | BD_ENET_TX_TC); | BD_ENET_TX_LAST | BD_ENET_TX_TC);
bdp->cbd_sc = status; bdp->cbd_sc = status;
...@@ -365,13 +354,11 @@ fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) ...@@ -365,13 +354,11 @@ fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
/* Trigger transmission start */ /* Trigger transmission start */
writel(0, fep->hwp + FEC_X_DES_ACTIVE); writel(0, fep->hwp + FEC_X_DES_ACTIVE);
/* If this was the last BD in the ring, start at the beginning again. /* If this was the last BD in the ring, start at the beginning again. */
*/ if (status & BD_ENET_TX_WRAP)
if (status & BD_ENET_TX_WRAP) {
bdp = fep->tx_bd_base; bdp = fep->tx_bd_base;
} else { else
bdp++; bdp++;
}
if (bdp == fep->dirty_tx) { if (bdp == fep->dirty_tx) {
fep->tx_full = 1; fep->tx_full = 1;
...@@ -429,9 +416,6 @@ fec_timeout(struct net_device *dev) ...@@ -429,9 +416,6 @@ fec_timeout(struct net_device *dev)
netif_wake_queue(dev); netif_wake_queue(dev);
} }
/* The interrupt handler.
* This is called from the MPC core interrupt.
*/
static irqreturn_t static irqreturn_t
fec_enet_interrupt(int irq, void * dev_id) fec_enet_interrupt(int irq, void * dev_id)
{ {
...@@ -440,12 +424,10 @@ fec_enet_interrupt(int irq, void * dev_id) ...@@ -440,12 +424,10 @@ fec_enet_interrupt(int irq, void * dev_id)
uint int_events; uint int_events;
irqreturn_t ret = IRQ_NONE; irqreturn_t ret = IRQ_NONE;
/* Get the interrupt events that caused us to be here. */
do { do {
int_events = readl(fep->hwp + FEC_IEVENT); int_events = readl(fep->hwp + FEC_IEVENT);
writel(int_events, fep->hwp + FEC_IEVENT); writel(int_events, fep->hwp + FEC_IEVENT);
/* Handle receive event in its own function. */
if (int_events & FEC_ENET_RXF) { if (int_events & FEC_ENET_RXF) {
ret = IRQ_HANDLED; ret = IRQ_HANDLED;
fec_enet_rx(dev); fec_enet_rx(dev);
...@@ -506,31 +488,27 @@ fec_enet_tx(struct net_device *dev) ...@@ -506,31 +488,27 @@ fec_enet_tx(struct net_device *dev)
dev->stats.tx_packets++; dev->stats.tx_packets++;
} }
#ifndef final_version
if (status & BD_ENET_TX_READY) if (status & BD_ENET_TX_READY)
printk("HEY! Enet xmit interrupt and TX_READY.\n"); printk("HEY! Enet xmit interrupt and TX_READY.\n");
#endif
/* Deferred means some collisions occurred during transmit, /* Deferred means some collisions occurred during transmit,
* but we eventually sent the packet OK. * but we eventually sent the packet OK.
*/ */
if (status & BD_ENET_TX_DEF) if (status & BD_ENET_TX_DEF)
dev->stats.collisions++; dev->stats.collisions++;
/* Free the sk buffer associated with this last transmit. /* Free the sk buffer associated with this last transmit */
*/
dev_kfree_skb_any(skb); dev_kfree_skb_any(skb);
fep->tx_skbuff[fep->skb_dirty] = NULL; fep->tx_skbuff[fep->skb_dirty] = NULL;
fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK; fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
/* Update pointer to next buffer descriptor to be transmitted. /* Update pointer to next buffer descriptor to be transmitted */
*/
if (status & BD_ENET_TX_WRAP) if (status & BD_ENET_TX_WRAP)
bdp = fep->tx_bd_base; bdp = fep->tx_bd_base;
else else
bdp++; bdp++;
/* Since we have freed up a buffer, the ring is no longer /* Since we have freed up a buffer, the ring is no longer full
* full.
*/ */
if (fep->tx_full) { if (fep->tx_full) {
fep->tx_full = 0; fep->tx_full = 0;
...@@ -569,114 +547,93 @@ fec_enet_rx(struct net_device *dev) ...@@ -569,114 +547,93 @@ fec_enet_rx(struct net_device *dev)
*/ */
bdp = fep->cur_rx; bdp = fep->cur_rx;
while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) { while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
#ifndef final_version /* Since we have allocated space to hold a complete frame,
/* Since we have allocated space to hold a complete frame, * the last indicator should be set.
* the last indicator should be set. */
*/ if ((status & BD_ENET_RX_LAST) == 0)
if ((status & BD_ENET_RX_LAST) == 0) printk("FEC ENET: rcv is not +last\n");
printk("FEC ENET: rcv is not +last\n");
#endif
if (!fep->opened) if (!fep->opened)
goto rx_processing_done; goto rx_processing_done;
/* Check for errors. */ /* Check for errors. */
if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
BD_ENET_RX_CR | BD_ENET_RX_OV)) { BD_ENET_RX_CR | BD_ENET_RX_OV)) {
dev->stats.rx_errors++; dev->stats.rx_errors++;
if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) { if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
/* Frame too long or too short. */ /* Frame too long or too short. */
dev->stats.rx_length_errors++; dev->stats.rx_length_errors++;
}
if (status & BD_ENET_RX_NO) /* Frame alignment */
dev->stats.rx_frame_errors++;
if (status & BD_ENET_RX_CR) /* CRC Error */
dev->stats.rx_crc_errors++;
if (status & BD_ENET_RX_OV) /* FIFO overrun */
dev->stats.rx_fifo_errors++;
} }
if (status & BD_ENET_RX_NO) /* Frame alignment */
dev->stats.rx_frame_errors++;
if (status & BD_ENET_RX_CR) /* CRC Error */
dev->stats.rx_crc_errors++;
if (status & BD_ENET_RX_OV) /* FIFO overrun */
dev->stats.rx_fifo_errors++;
}
/* Report late collisions as a frame error. /* Report late collisions as a frame error.
* On this error, the BD is closed, but we don't know what we * On this error, the BD is closed, but we don't know what we
* have in the buffer. So, just drop this frame on the floor. * have in the buffer. So, just drop this frame on the floor.
*/ */
if (status & BD_ENET_RX_CL) { if (status & BD_ENET_RX_CL) {
dev->stats.rx_errors++; dev->stats.rx_errors++;
dev->stats.rx_frame_errors++; dev->stats.rx_frame_errors++;
goto rx_processing_done; goto rx_processing_done;
} }
/* Process the incoming frame. /* Process the incoming frame. */
*/ dev->stats.rx_packets++;
dev->stats.rx_packets++; pkt_len = bdp->cbd_datlen;
pkt_len = bdp->cbd_datlen; dev->stats.rx_bytes += pkt_len;
dev->stats.rx_bytes += pkt_len; data = (__u8*)__va(bdp->cbd_bufaddr);
data = (__u8*)__va(bdp->cbd_bufaddr);
dma_sync_single(NULL, (unsigned long)__pa(data), dma_sync_single(NULL, (unsigned long)__pa(data),
pkt_len - 4, DMA_FROM_DEVICE); pkt_len - 4, DMA_FROM_DEVICE);
/* This does 16 byte alignment, exactly what we need. /* This does 16 byte alignment, exactly what we need.
* The packet length includes FCS, but we don't want to * The packet length includes FCS, but we don't want to
* include that when passing upstream as it messes up * include that when passing upstream as it messes up
* bridging applications. * bridging applications.
*/ */
skb = dev_alloc_skb(pkt_len-4); skb = dev_alloc_skb(pkt_len - 4);
if (skb == NULL) {
printk("%s: Memory squeeze, dropping packet.\n", dev->name);
dev->stats.rx_dropped++;
} else {
skb_put(skb,pkt_len-4); /* Make room */
skb_copy_to_linear_data(skb, data, pkt_len-4);
skb->protocol=eth_type_trans(skb,dev);
netif_rx(skb);
}
rx_processing_done:
/* Clear the status flags for this buffer.
*/
status &= ~BD_ENET_RX_STATS;
/* Mark the buffer empty. if (skb == NULL) {
*/ printk("%s: Memory squeeze, dropping packet.\n",
status |= BD_ENET_RX_EMPTY; dev->name);
bdp->cbd_sc = status; dev->stats.rx_dropped++;
} else {
skb_put(skb, pkt_len - 4); /* Make room */
skb_copy_to_linear_data(skb, data, pkt_len - 4);
skb->protocol = eth_type_trans(skb, dev);
netif_rx(skb);
}
rx_processing_done:
/* Clear the status flags for this buffer */
status &= ~BD_ENET_RX_STATS;
/* Update BD pointer to next entry. /* Mark the buffer empty */
*/ status |= BD_ENET_RX_EMPTY;
if (status & BD_ENET_RX_WRAP) bdp->cbd_sc = status;
bdp = fep->rx_bd_base;
else
bdp++;
#if 1 /* Update BD pointer to next entry */
/* Doing this here will keep the FEC running while we process if (status & BD_ENET_RX_WRAP)
* incoming frames. On a heavily loaded network, we should be bdp = fep->rx_bd_base;
* able to keep up at the expense of system resources. else
*/ bdp++;
writel(0, fep->hwp + FEC_R_DES_ACTIVE); /* Doing this here will keep the FEC running while we process
#endif * incoming frames. On a heavily loaded network, we should be
} /* while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) */ * able to keep up at the expense of system resources.
*/
writel(0, fep->hwp + FEC_R_DES_ACTIVE);
}
fep->cur_rx = bdp; fep->cur_rx = bdp;
#if 0
/* Doing this here will allow us to process all frames in the
* ring before the FEC is allowed to put more there. On a heavily
* loaded network, some frames may be lost. Unfortunately, this
* increases the interrupt overhead since we can potentially work
* our way back to the interrupt return only to come right back
* here.
*/
fecp->fec_r_des_active = 0;
#endif
spin_unlock_irq(&fep->hw_lock); spin_unlock_irq(&fep->hw_lock);
} }
/* called from interrupt context */ /* called from interrupt context */
static void static void
fec_enet_mii(struct net_device *dev) fec_enet_mii(struct net_device *dev)
...@@ -714,8 +671,7 @@ mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_devi ...@@ -714,8 +671,7 @@ mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_devi
mii_list_t *mip; mii_list_t *mip;
int retval; int retval;
/* Add PHY address to register command. /* Add PHY address to register command */
*/
fep = netdev_priv(dev); fep = netdev_priv(dev);
spin_lock_irqsave(&fep->mii_lock, flags); spin_lock_irqsave(&fep->mii_lock, flags);
...@@ -1358,11 +1314,6 @@ static void mii_relink(struct work_struct *work) ...@@ -1358,11 +1314,6 @@ static void mii_relink(struct work_struct *work)
fec_restart(dev, duplex); fec_restart(dev, duplex);
} else } else
fec_stop(dev); fec_stop(dev);
#if 0
enable_irq(fep->mii_irq);
#endif
} }
/* mii_queue_relink is called in interrupt context from mii_link_interrupt */ /* mii_queue_relink is called in interrupt context from mii_link_interrupt */
...@@ -1371,12 +1322,12 @@ static void mii_queue_relink(uint mii_reg, struct net_device *dev) ...@@ -1371,12 +1322,12 @@ static void mii_queue_relink(uint mii_reg, struct net_device *dev)
struct fec_enet_private *fep = netdev_priv(dev); struct fec_enet_private *fep = netdev_priv(dev);
/* /*
** We cannot queue phy_task twice in the workqueue. It * We cannot queue phy_task twice in the workqueue. It
** would cause an endless loop in the workqueue. * would cause an endless loop in the workqueue.
** Fortunately, if the last mii_relink entry has not yet been * Fortunately, if the last mii_relink entry has not yet been
** executed now, it will do the job for the current interrupt, * executed now, it will do the job for the current interrupt,
** which is just what we want. * which is just what we want.
*/ */
if (fep->mii_phy_task_queued) if (fep->mii_phy_task_queued)
return; return;
...@@ -1407,8 +1358,7 @@ phy_cmd_t const phy_cmd_config[] = { ...@@ -1407,8 +1358,7 @@ phy_cmd_t const phy_cmd_config[] = {
{ mk_mii_end, } { mk_mii_end, }
}; };
/* Read remainder of PHY ID. /* Read remainder of PHY ID. */
*/
static void static void
mii_discover_phy3(uint mii_reg, struct net_device *dev) mii_discover_phy3(uint mii_reg, struct net_device *dev)
{ {
...@@ -1447,8 +1397,7 @@ mii_discover_phy(uint mii_reg, struct net_device *dev) ...@@ -1447,8 +1397,7 @@ mii_discover_phy(uint mii_reg, struct net_device *dev)
if (fep->phy_addr < 32) { if (fep->phy_addr < 32) {
if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) { if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
/* Got first part of ID, now get remainder. /* Got first part of ID, now get remainder */
*/
fep->phy_id = phytype << 16; fep->phy_id = phytype << 16;
mii_queue(dev, mk_mii_read(MII_REG_PHYIR2), mii_queue(dev, mk_mii_read(MII_REG_PHYIR2),
mii_discover_phy3); mii_discover_phy3);
...@@ -1468,8 +1417,7 @@ mii_discover_phy(uint mii_reg, struct net_device *dev) ...@@ -1468,8 +1417,7 @@ mii_discover_phy(uint mii_reg, struct net_device *dev)
} }
} }
/* This interrupt occurs when the PHY detects a link change. /* This interrupt occurs when the PHY detects a link change */
*/
#ifdef HAVE_mii_link_interrupt #ifdef HAVE_mii_link_interrupt
static irqreturn_t static irqreturn_t
mii_link_interrupt(int irq, void * dev_id) mii_link_interrupt(int irq, void * dev_id)
...@@ -1479,10 +1427,6 @@ mii_link_interrupt(int irq, void * dev_id) ...@@ -1479,10 +1427,6 @@ mii_link_interrupt(int irq, void * dev_id)
fec_phy_ack_intr(); fec_phy_ack_intr();
#if 0
disable_irq(fep->mii_irq); /* disable now, enable later */
#endif
mii_do_cmd(dev, fep->phy->ack_int); mii_do_cmd(dev, fep->phy->ack_int);
mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */ mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */
...@@ -1533,7 +1477,7 @@ fec_enet_open(struct net_device *dev) ...@@ -1533,7 +1477,7 @@ fec_enet_open(struct net_device *dev)
netif_start_queue(dev); netif_start_queue(dev);
fep->opened = 1; fep->opened = 1;
return 0; /* Success */ return 0;
} }
static int static int
...@@ -1541,8 +1485,7 @@ fec_enet_close(struct net_device *dev) ...@@ -1541,8 +1485,7 @@ fec_enet_close(struct net_device *dev)
{ {
struct fec_enet_private *fep = netdev_priv(dev); struct fec_enet_private *fep = netdev_priv(dev);
/* Don't know what to do yet. /* Don't know what to do yet. */
*/
fep->opened = 0; fep->opened = 0;
netif_stop_queue(dev); netif_stop_queue(dev);
fec_stop(dev); fec_stop(dev);
...@@ -1570,7 +1513,7 @@ static void set_multicast_list(struct net_device *dev) ...@@ -1570,7 +1513,7 @@ static void set_multicast_list(struct net_device *dev)
unsigned int i, j, bit, data, crc, tmp; unsigned int i, j, bit, data, crc, tmp;
unsigned char hash; unsigned char hash;
if (dev->flags&IFF_PROMISC) { if (dev->flags & IFF_PROMISC) {
tmp = readl(fep->hwp + FEC_R_CNTRL); tmp = readl(fep->hwp + FEC_R_CNTRL);
tmp |= 0x8; tmp |= 0x8;
writel(tmp, fep->hwp + FEC_R_CNTRL); writel(tmp, fep->hwp + FEC_R_CNTRL);
...@@ -1581,42 +1524,37 @@ static void set_multicast_list(struct net_device *dev) ...@@ -1581,42 +1524,37 @@ static void set_multicast_list(struct net_device *dev)
if (dev->flags & IFF_ALLMULTI) { if (dev->flags & IFF_ALLMULTI) {
/* Catch all multicast addresses, so set the /* Catch all multicast addresses, so set the
* filter to all 1's. * filter to all 1's
*/ */
writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
} else { } else {
/* Clear filter and add the addresses in hash register. /* Clear filter and add the addresses in hash register
*/ */
writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW); writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
dmi = dev->mc_list; dmi = dev->mc_list;
for (j = 0; j < dev->mc_count; j++, dmi = dmi->next) for (j = 0; j < dev->mc_count; j++, dmi = dmi->next) {
{ /* Only support group multicast for now */
/* Only support group multicast for now.
*/
if (!(dmi->dmi_addr[0] & 1)) if (!(dmi->dmi_addr[0] & 1))
continue; continue;
/* calculate crc32 value of mac address /* calculate crc32 value of mac address */
*/
crc = 0xffffffff; crc = 0xffffffff;
for (i = 0; i < dmi->dmi_addrlen; i++) for (i = 0; i < dmi->dmi_addrlen; i++) {
{
data = dmi->dmi_addr[i]; data = dmi->dmi_addr[i];
for (bit = 0; bit < 8; bit++, data >>= 1) for (bit = 0; bit < 8; bit++, data >>= 1) {
{
crc = (crc >> 1) ^ crc = (crc >> 1) ^
(((crc ^ data) & 1) ? CRC32_POLY : 0); (((crc ^ data) & 1) ? CRC32_POLY : 0);
} }
} }
/* only upper 6 bits (HASH_BITS) are used /* only upper 6 bits (HASH_BITS) are used
which point to specific bit in he hash registers * which point to specific bit in he hash registers
*/ */
hash = (crc >> (32 - HASH_BITS)) & 0x3f; hash = (crc >> (32 - HASH_BITS)) & 0x3f;
if (hash > 31) { if (hash > 31) {
...@@ -1633,8 +1571,7 @@ static void set_multicast_list(struct net_device *dev) ...@@ -1633,8 +1571,7 @@ static void set_multicast_list(struct net_device *dev)
} }
} }
/* Set a MAC change in hardware. /* Set a MAC change in hardware. */
*/
static void static void
fec_set_mac_address(struct net_device *dev) fec_set_mac_address(struct net_device *dev)
{ {
...@@ -1675,8 +1612,7 @@ int __init fec_enet_init(struct net_device *dev, int index) ...@@ -1675,8 +1612,7 @@ int __init fec_enet_init(struct net_device *dev, int index)
fep->hwp = (void __iomem *)dev->base_addr; fep->hwp = (void __iomem *)dev->base_addr;
fep->netdev = dev; fep->netdev = dev;
/* Whack a reset. We should wait for this. /* Whack a reset. We should wait for this. */
*/
writel(1, fep->hwp + FEC_ECNTRL); writel(1, fep->hwp + FEC_ECNTRL);
udelay(10); udelay(10);
...@@ -1706,18 +1642,15 @@ int __init fec_enet_init(struct net_device *dev, int index) ...@@ -1706,18 +1642,15 @@ int __init fec_enet_init(struct net_device *dev, int index)
fep->skb_cur = fep->skb_dirty = 0; fep->skb_cur = fep->skb_dirty = 0;
/* Initialize the receive buffer descriptors. /* Initialize the receive buffer descriptors. */
*/
bdp = fep->rx_bd_base; bdp = fep->rx_bd_base;
for (i=0; i<FEC_ENET_RX_PAGES; i++) { for (i=0; i<FEC_ENET_RX_PAGES; i++) {
/* Allocate a page. /* Allocate a page */
*/
mem_addr = __get_free_page(GFP_KERNEL); mem_addr = __get_free_page(GFP_KERNEL);
/* XXX: missing check for allocation failure */ /* XXX: missing check for allocation failure */
/* Initialize the BD for every fragment in the page. /* Initialize the BD for every fragment in the page */
*/
for (j=0; j<FEC_ENET_RX_FRPPG; j++) { for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
bdp->cbd_sc = BD_ENET_RX_EMPTY; bdp->cbd_sc = BD_ENET_RX_EMPTY;
bdp->cbd_bufaddr = __pa(mem_addr); bdp->cbd_bufaddr = __pa(mem_addr);
...@@ -1726,13 +1659,11 @@ int __init fec_enet_init(struct net_device *dev, int index) ...@@ -1726,13 +1659,11 @@ int __init fec_enet_init(struct net_device *dev, int index)
} }
} }
/* Set the last buffer to wrap. /* Set the last buffer to wrap */
*/
bdp--; bdp--;
bdp->cbd_sc |= BD_SC_WRAP; bdp->cbd_sc |= BD_SC_WRAP;
/* ...and the same for transmmit. /* ...and the same for transmit */
*/
bdp = fep->tx_bd_base; bdp = fep->tx_bd_base;
for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) { for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) {
if (j >= FEC_ENET_TX_FRPPG) { if (j >= FEC_ENET_TX_FRPPG) {
...@@ -1744,20 +1675,17 @@ int __init fec_enet_init(struct net_device *dev, int index) ...@@ -1744,20 +1675,17 @@ int __init fec_enet_init(struct net_device *dev, int index)
} }
fep->tx_bounce[i] = (unsigned char *) mem_addr; fep->tx_bounce[i] = (unsigned char *) mem_addr;
/* Initialize the BD for every fragment in the page. /* Initialize the BD for every fragment in the page */
*/
bdp->cbd_sc = 0; bdp->cbd_sc = 0;
bdp->cbd_bufaddr = 0; bdp->cbd_bufaddr = 0;
bdp++; bdp++;
} }
/* Set the last buffer to wrap. /* Set the last buffer to wrap */
*/
bdp--; bdp--;
bdp->cbd_sc |= BD_SC_WRAP; bdp->cbd_sc |= BD_SC_WRAP;
/* Set receive and transmit descriptor base. /* Set receive and transmit descriptor base */
*/
writel(fep->bd_dma, fep->hwp + FEC_R_DES_START); writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE, writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE,
fep->hwp + FEC_X_DES_START); fep->hwp + FEC_X_DES_START);
...@@ -1776,7 +1704,7 @@ int __init fec_enet_init(struct net_device *dev, int index) ...@@ -1776,7 +1704,7 @@ int __init fec_enet_init(struct net_device *dev, int index)
writel(0, fep->hwp + FEC_HASH_TABLE_LOW); writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
#endif #endif
/* The FEC Ethernet specific entries in the device structure. */ /* The FEC Ethernet specific entries in the device structure */
dev->open = fec_enet_open; dev->open = fec_enet_open;
dev->hard_start_xmit = fec_enet_start_xmit; dev->hard_start_xmit = fec_enet_start_xmit;
dev->tx_timeout = fec_timeout; dev->tx_timeout = fec_timeout;
...@@ -1792,9 +1720,7 @@ int __init fec_enet_init(struct net_device *dev, int index) ...@@ -1792,9 +1720,7 @@ int __init fec_enet_init(struct net_device *dev, int index)
writel(OPT_FRAME_SIZE | 0x04, fep->hwp + FEC_R_CNTRL); writel(OPT_FRAME_SIZE | 0x04, fep->hwp + FEC_R_CNTRL);
writel(0, fep->hwp + FEC_X_CNTRL); writel(0, fep->hwp + FEC_X_CNTRL);
/* /* Set MII speed to 2.5 MHz */
* Set MII speed to 2.5 MHz
*/
fep->phy_speed = ((((clk_get_rate(fep->clk) / 2 + 4999999) fep->phy_speed = ((((clk_get_rate(fep->clk) / 2 + 4999999)
/ 2500000) / 2) & 0x3F) << 1; / 2500000) / 2) & 0x3F) << 1;
writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
...@@ -1853,8 +1779,8 @@ fec_restart(struct net_device *dev, int duplex) ...@@ -1853,8 +1779,8 @@ fec_restart(struct net_device *dev, int duplex)
/* Reset SKB transmit buffers. */ /* Reset SKB transmit buffers. */
fep->skb_cur = fep->skb_dirty = 0; fep->skb_cur = fep->skb_dirty = 0;
for (i=0; i<=TX_RING_MOD_MASK; i++) { for (i = 0; i <= TX_RING_MOD_MASK; i++) {
if (fep->tx_skbuff[i] != NULL) { if (fep->tx_skbuff[i]) {
dev_kfree_skb_any(fep->tx_skbuff[i]); dev_kfree_skb_any(fep->tx_skbuff[i]);
fep->tx_skbuff[i] = NULL; fep->tx_skbuff[i] = NULL;
} }
...@@ -1862,20 +1788,20 @@ fec_restart(struct net_device *dev, int duplex) ...@@ -1862,20 +1788,20 @@ fec_restart(struct net_device *dev, int duplex)
/* Initialize the receive buffer descriptors. */ /* Initialize the receive buffer descriptors. */
bdp = fep->rx_bd_base; bdp = fep->rx_bd_base;
for (i=0; i<RX_RING_SIZE; i++) { for (i = 0; i < RX_RING_SIZE; i++) {
/* Initialize the BD for every fragment in the page. */ /* Initialize the BD for every fragment in the page. */
bdp->cbd_sc = BD_ENET_RX_EMPTY; bdp->cbd_sc = BD_ENET_RX_EMPTY;
bdp++; bdp++;
} }
/* Set the last buffer to wrap. */ /* Set the last buffer to wrap */
bdp--; bdp--;
bdp->cbd_sc |= BD_SC_WRAP; bdp->cbd_sc |= BD_SC_WRAP;
/* ...and the same for transmmit. */ /* ...and the same for transmit */
bdp = fep->tx_bd_base; bdp = fep->tx_bd_base;
for (i=0; i<TX_RING_SIZE; i++) { for (i = 0; i < TX_RING_SIZE; i++) {
/* Initialize the BD for every fragment in the page. */ /* Initialize the BD for every fragment in the page. */
bdp->cbd_sc = 0; bdp->cbd_sc = 0;
...@@ -1883,11 +1809,11 @@ fec_restart(struct net_device *dev, int duplex) ...@@ -1883,11 +1809,11 @@ fec_restart(struct net_device *dev, int duplex)
bdp++; bdp++;
} }
/* Set the last buffer to wrap. */ /* Set the last buffer to wrap */
bdp--; bdp--;
bdp->cbd_sc |= BD_SC_WRAP; bdp->cbd_sc |= BD_SC_WRAP;
/* Enable MII mode. */ /* Enable MII mode */
if (duplex) { if (duplex) {
/* MII enable / FD enable */ /* MII enable / FD enable */
writel(OPT_FRAME_SIZE | 0x04, fep->hwp + FEC_R_CNTRL); writel(OPT_FRAME_SIZE | 0x04, fep->hwp + FEC_R_CNTRL);
...@@ -1899,14 +1825,14 @@ fec_restart(struct net_device *dev, int duplex) ...@@ -1899,14 +1825,14 @@ fec_restart(struct net_device *dev, int duplex)
} }
fep->full_duplex = duplex; fep->full_duplex = duplex;
/* Set MII speed. */ /* Set MII speed */
writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
/* And last, enable the transmit and receive processing. */ /* And last, enable the transmit and receive processing */
writel(2, fep->hwp + FEC_ECNTRL); writel(2, fep->hwp + FEC_ECNTRL);
writel(0, fep->hwp + FEC_R_DES_ACTIVE); writel(0, fep->hwp + FEC_R_DES_ACTIVE);
/* Enable interrupts we wish to service. */ /* Enable interrupts we wish to service */
writel(FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII, writel(FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII,
fep->hwp + FEC_IMASK); fep->hwp + FEC_IMASK);
} }
...@@ -1916,9 +1842,7 @@ fec_stop(struct net_device *dev) ...@@ -1916,9 +1842,7 @@ fec_stop(struct net_device *dev)
{ {
struct fec_enet_private *fep = netdev_priv(dev); struct fec_enet_private *fep = netdev_priv(dev);
/* /* We cannot expect a graceful transmit stop without link !!! */
** We cannot expect a graceful transmit stop without link !!!
*/
if (fep->link) { if (fep->link) {
writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
udelay(10); udelay(10);
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册