提交 1025c04c 编写于 作者: G Gustavo Padovan

Merge git://git.kernel.org/pub/scm/linux/kernel/git/bluetooth/bluetooth

Conflicts:
	net/bluetooth/hci_core.c

要显示的变更太多。

To preserve performance only 1000 of 1000+ files are displayed.
......@@ -637,14 +637,13 @@ S: 14509 NE 39th Street #1096
S: Bellevue, Washington 98007
S: USA
N: Christopher L. Cheney
E: ccheney@debian.org
E: ccheney@cheney.cx
W: http://www.cheney.cx
N: Chris Cheney
E: chris.cheney@gmail.com
E: ccheney@redhat.com
P: 1024D/8E384AF2 2D31 1927 87D7 1F24 9FF9 1BC5 D106 5AB3 8E38 4AF2
D: Vista Imaging usb webcam driver
S: 314 Prince of Wales
S: Conroe, TX 77304
S: 2308 Therrell Way
S: McKinney, TX 75070
S: USA
N: Stuart Cheshire
......@@ -1120,6 +1119,7 @@ D: author of userfs filesystem
D: Improved mmap and munmap handling
D: General mm minor tidyups
D: autofs v4 maintainer
D: Xen subsystem
S: 987 Alabama St
S: San Francisco
S: CA, 94110
......
......@@ -40,7 +40,7 @@ IPMI.txt
IRQ-affinity.txt
- how to select which CPU(s) handle which interrupt events on SMP.
IRQ-domain.txt
- info on inerrupt numbering and setting up IRQ domains.
- info on interrupt numbering and setting up IRQ domains.
IRQ.txt
- description of what an IRQ is.
Intel-IOMMU.txt
......
What: /sys/bus/usb/devices/.../power/persist
Date: May 2007
KernelVersion: 2.6.23
Contact: Alan Stern <stern@rowland.harvard.edu>
Description:
If CONFIG_USB_PERSIST is set, then each USB device directory
will contain a file named power/persist. The file holds a
boolean value (0 or 1) indicating whether or not the
"USB-Persist" facility is enabled for the device. Since the
facility is inherently dangerous, it is disabled by default
for all devices except hubs. For more information, see
Documentation/usb/persist.txt.
What: /sys/bus/usb/devices/.../power/autosuspend
Date: March 2007
KernelVersion: 2.6.21
Contact: Alan Stern <stern@rowland.harvard.edu>
Description:
Each USB device directory will contain a file named
power/autosuspend. This file holds the time (in seconds)
the device must be idle before it will be autosuspended.
0 means the device will be autosuspended as soon as
possible. Negative values will prevent the device from
being autosuspended at all, and writing a negative value
will resume the device if it is already suspended.
The autosuspend delay for newly-created devices is set to
the value of the usbcore.autosuspend module parameter.
What: /sys/bus/usb/device/.../power/connected_duration
Date: January 2008
KernelVersion: 2.6.25
Contact: Sarah Sharp <sarah.a.sharp@intel.com>
Description:
If CONFIG_PM_RUNTIME is enabled then this file
is present. When read, it returns the total time (in msec)
that the USB device has been connected to the machine. This
file is read-only.
Users:
PowerTOP <power@bughost.org>
http://www.lesswatts.org/projects/powertop/
What: /sys/bus/usb/device/.../power/active_duration
Date: January 2008
KernelVersion: 2.6.25
Contact: Sarah Sharp <sarah.a.sharp@intel.com>
Description:
If CONFIG_PM_RUNTIME is enabled then this file
is present. When read, it returns the total time (in msec)
that the USB device has been active, i.e. not in a suspended
state. This file is read-only.
Tools can use this file and the connected_duration file to
compute the percentage of time that a device has been active.
For example,
echo $((100 * `cat active_duration` / `cat connected_duration`))
will give an integer percentage. Note that this does not
account for counter wrap.
Users:
PowerTOP <power@bughost.org>
http://www.lesswatts.org/projects/powertop/
What: /sys/bus/usb/devices/<busnum>-<port[.port]>...:<config num>-<interface num>/supports_autosuspend
Date: January 2008
KernelVersion: 2.6.27
Contact: Sarah Sharp <sarah.a.sharp@intel.com>
Description:
When read, this file returns 1 if the interface driver
for this interface supports autosuspend. It also
returns 1 if no driver has claimed this interface, as an
unclaimed interface will not stop the device from being
autosuspended if all other interface drivers are idle.
The file returns 0 if autosuspend support has not been
added to the driver.
Users:
USB PM tool
git://git.moblin.org/users/sarah/usb-pm-tool/
What: /sys/bus/usb/device/.../avoid_reset_quirk
Date: December 2009
Contact: Oliver Neukum <oliver@neukum.org>
Description:
Writing 1 to this file tells the kernel that this
device will morph into another mode when it is reset.
Drivers will not use reset for error handling for
such devices.
Users:
usb_modeswitch
What: /sys/bus/usb/devices/.../devnum
KernelVersion: since at least 2.6.18
Description:
Device address on the USB bus.
Users:
libusb
What: /sys/bus/usb/devices/.../bConfigurationValue
KernelVersion: since at least 2.6.18
Description:
bConfigurationValue of the *active* configuration for the
device. Writing 0 or -1 to bConfigurationValue will reset the
active configuration (unconfigure the device). Writing
another value will change the active configuration.
Note that some devices, in violation of the USB spec, have a
configuration with a value equal to 0. Writing 0 to
bConfigurationValue for these devices will install that
configuration, rather then unconfigure the device.
Writing -1 will always unconfigure the device.
Users:
libusb
What: /sys/bus/usb/devices/.../busnum
KernelVersion: 2.6.22
Description:
Bus-number of the USB-bus the device is connected to.
Users:
libusb
What: /sys/bus/usb/devices/.../descriptors
KernelVersion: 2.6.26
Description:
Binary file containing cached descriptors of the device. The
binary data consists of the device descriptor followed by the
descriptors for each configuration of the device.
Note that the wTotalLength of the config descriptors can not
be trusted, as the device may have a smaller config descriptor
than it advertises. The bLength field of each (sub) descriptor
can be trusted, and can be used to seek forward one (sub)
descriptor at a time until the next config descriptor is found.
All descriptors read from this file are in bus-endian format
Users:
libusb
What: /sys/bus/usb/devices/.../speed
KernelVersion: since at least 2.6.18
Description:
Speed the device is connected with to the usb-host in
Mbit / second. IE one of 1.5 / 12 / 480 / 5000.
Users:
libusb
......@@ -5,20 +5,21 @@ Description:
The disksize file is read-write and specifies the disk size
which represents the limit on the *uncompressed* worth of data
that can be stored in this disk.
Unit: bytes
What: /sys/block/zram<id>/initstate
Date: August 2010
Contact: Nitin Gupta <ngupta@vflare.org>
Description:
The disksize file is read-only and shows the initialization
The initstate file is read-only and shows the initialization
state of the device.
What: /sys/block/zram<id>/reset
Date: August 2010
Contact: Nitin Gupta <ngupta@vflare.org>
Description:
The disksize file is write-only and allows resetting the
device. The reset operation frees all the memory assocaited
The reset file is write-only and allows resetting the
device. The reset operation frees all the memory associated
with this device.
What: /sys/block/zram<id>/num_reads
......@@ -48,7 +49,7 @@ Contact: Nitin Gupta <ngupta@vflare.org>
Description:
The notify_free file is read-only and specifies the number of
swap slot free notifications received by this device. These
notifications are send to a swap block device when a swap slot
notifications are sent to a swap block device when a swap slot
is freed. This statistic is applicable only when this disk is
being used as a swap disk.
......
......@@ -351,6 +351,7 @@ Description:
6kohm_to_gnd: connected to ground via a 6kOhm resistor,
20kohm_to_gnd: connected to ground via a 20kOhm resistor,
100kohm_to_gnd: connected to ground via an 100kOhm resistor,
500kohm_to_gnd: connected to ground via a 500kOhm resistor,
three_state: left floating.
For a list of available output power down options read
outX_powerdown_mode_available. If Y is not present the
......@@ -792,3 +793,21 @@ Contact: linux-iio@vger.kernel.org
Description:
This attribute is used to read the amount of quadrature error
present in the device at a given time.
What: /sys/.../iio:deviceX/in_accelX_power_mode
KernelVersion: 3.11
Contact: linux-iio@vger.kernel.org
Description:
Specifies the chip power mode.
low_noise: reduce noise level from ADC,
low_power: enable low current consumption.
For a list of available output power modes read
in_accel_power_mode_available.
What: /sys/bus/iio/devices/iio:deviceX/store_eeprom
KernelVersion: 3.4.0
Contact: linux-iio@vger.kernel.org
Description:
Writing '1' stores the current device configuration into
on-chip EEPROM. After power-up or chip reset the device will
automatically load the saved configuration.
......@@ -18,14 +18,6 @@ Description:
Reading returns either '1' or '0'. '1' means that the
pllY is locked.
What: /sys/bus/iio/devices/iio:deviceX/store_eeprom
KernelVersion: 3.4.0
Contact: linux-iio@vger.kernel.org
Description:
Writing '1' stores the current device configuration into
on-chip EEPROM. After power-up or chip reset the device will
automatically load the saved configuration.
What: /sys/bus/iio/devices/iio:deviceX/sync_dividers
KernelVersion: 3.4.0
Contact: linux-iio@vger.kernel.org
......
......@@ -18,4 +18,4 @@ Description:
adjust the reference frequency accordingly.
The value written has no effect until out_altvoltageY_frequency
is updated. Consider to use out_altvoltageY_powerdown to power
down the PLL and it's RFOut buffers during REFin changes.
down the PLL and its RFOut buffers during REFin changes.
What: /sys/bus/usb/devices/.../power/autosuspend
Date: March 2007
KernelVersion: 2.6.21
Contact: Alan Stern <stern@rowland.harvard.edu>
Description:
Each USB device directory will contain a file named
power/autosuspend. This file holds the time (in seconds)
the device must be idle before it will be autosuspended.
0 means the device will be autosuspended as soon as
possible. Negative values will prevent the device from
being autosuspended at all, and writing a negative value
will resume the device if it is already suspended.
The autosuspend delay for newly-created devices is set to
the value of the usbcore.autosuspend module parameter.
What: /sys/bus/usb/devices/.../power/persist
Date: May 2007
KernelVersion: 2.6.23
Contact: Alan Stern <stern@rowland.harvard.edu>
Description:
If CONFIG_USB_PERSIST is set, then each USB device directory
will contain a file named power/persist. The file holds a
boolean value (0 or 1) indicating whether or not the
"USB-Persist" facility is enabled for the device. Since the
facility is inherently dangerous, it is disabled by default
for all devices except hubs. For more information, see
Documentation/usb/persist.txt.
What: /sys/bus/usb/device/.../power/connected_duration
Date: January 2008
KernelVersion: 2.6.25
Contact: Sarah Sharp <sarah.a.sharp@intel.com>
Description:
If CONFIG_PM_RUNTIME is enabled then this file
is present. When read, it returns the total time (in msec)
that the USB device has been connected to the machine. This
file is read-only.
Users:
PowerTOP <power@bughost.org>
http://www.lesswatts.org/projects/powertop/
What: /sys/bus/usb/device/.../power/active_duration
Date: January 2008
KernelVersion: 2.6.25
Contact: Sarah Sharp <sarah.a.sharp@intel.com>
Description:
If CONFIG_PM_RUNTIME is enabled then this file
is present. When read, it returns the total time (in msec)
that the USB device has been active, i.e. not in a suspended
state. This file is read-only.
Tools can use this file and the connected_duration file to
compute the percentage of time that a device has been active.
For example,
echo $((100 * `cat active_duration` / `cat connected_duration`))
will give an integer percentage. Note that this does not
account for counter wrap.
Users:
PowerTOP <power@bughost.org>
http://www.lesswatts.org/projects/powertop/
What: /sys/bus/usb/device/<busnum>-<devnum>...:<config num>-<interface num>/supports_autosuspend
Date: January 2008
KernelVersion: 2.6.27
Contact: Sarah Sharp <sarah.a.sharp@intel.com>
Description:
When read, this file returns 1 if the interface driver
for this interface supports autosuspend. It also
returns 1 if no driver has claimed this interface, as an
unclaimed interface will not stop the device from being
autosuspended if all other interface drivers are idle.
The file returns 0 if autosuspend support has not been
added to the driver.
Users:
USB PM tool
git://git.moblin.org/users/sarah/usb-pm-tool/
What: /sys/bus/usb/device/.../authorized
Date: July 2008
KernelVersion: 2.6.26
......@@ -172,17 +94,6 @@ Description:
device IDs, exactly like reading from the entry
"/sys/bus/usb/drivers/.../new_id"
What: /sys/bus/usb/device/.../avoid_reset_quirk
Date: December 2009
Contact: Oliver Neukum <oliver@neukum.org>
Description:
Writing 1 to this file tells the kernel that this
device will morph into another mode when it is reset.
Drivers will not use reset for error handling for
such devices.
Users:
usb_modeswitch
What: /sys/bus/usb/devices/.../power/usb2_hardware_lpm
Date: September 2011
Contact: Andiry Xu <andiry.xu@amd.com>
......
What: /sys/fs/f2fs/<disk>/gc_max_sleep_time
Date: July 2013
Contact: "Namjae Jeon" <namjae.jeon@samsung.com>
Description:
Controls the maximun sleep time for gc_thread. Time
is in milliseconds.
What: /sys/fs/f2fs/<disk>/gc_min_sleep_time
Date: July 2013
Contact: "Namjae Jeon" <namjae.jeon@samsung.com>
Description:
Controls the minimum sleep time for gc_thread. Time
is in milliseconds.
What: /sys/fs/f2fs/<disk>/gc_no_gc_sleep_time
Date: July 2013
Contact: "Namjae Jeon" <namjae.jeon@samsung.com>
Description:
Controls the default sleep time for gc_thread. Time
is in milliseconds.
What: /sys/fs/f2fs/<disk>/gc_idle
Date: July 2013
Contact: "Namjae Jeon" <namjae.jeon@samsung.com>
Description:
Controls the victim selection policy for garbage collection.
......@@ -155,13 +155,6 @@
will become a fatal error.
</para></listitem>
</varlistentry>
<varlistentry>
<term>DRIVER_USE_MTRR</term>
<listitem><para>
Driver uses MTRR interface for mapping memory, the DRM core will
manage MTRR resources. Deprecated.
</para></listitem>
</varlistentry>
<varlistentry>
<term>DRIVER_PCI_DMA</term>
<listitem><para>
......@@ -194,28 +187,6 @@
support shared IRQs (note that this is required of PCI drivers).
</para></listitem>
</varlistentry>
<varlistentry>
<term>DRIVER_IRQ_VBL</term>
<listitem><para>Unused. Deprecated.</para></listitem>
</varlistentry>
<varlistentry>
<term>DRIVER_DMA_QUEUE</term>
<listitem><para>
Should be set if the driver queues DMA requests and completes them
asynchronously. Deprecated.
</para></listitem>
</varlistentry>
<varlistentry>
<term>DRIVER_FB_DMA</term>
<listitem><para>
Driver supports DMA to/from the framebuffer, mapping of frambuffer
DMA buffers to userspace will be supported. Deprecated.
</para></listitem>
</varlistentry>
<varlistentry>
<term>DRIVER_IRQ_VBL2</term>
<listitem><para>Unused. Deprecated.</para></listitem>
</varlistentry>
<varlistentry>
<term>DRIVER_GEM</term>
<listitem><para>
......@@ -234,6 +205,12 @@
Driver implements DRM PRIME buffer sharing.
</para></listitem>
</varlistentry>
<varlistentry>
<term>DRIVER_RENDER</term>
<listitem><para>
Driver supports dedicated render nodes.
</para></listitem>
</varlistentry>
</variablelist>
</sect3>
<sect3>
......@@ -2212,6 +2189,18 @@ void intel_crt_init(struct drm_device *dev)
!Iinclude/drm/drm_rect.h
!Edrivers/gpu/drm/drm_rect.c
</sect2>
<sect2>
<title>Flip-work Helper Reference</title>
!Pinclude/drm/drm_flip_work.h flip utils
!Iinclude/drm/drm_flip_work.h
!Edrivers/gpu/drm/drm_flip_work.c
</sect2>
<sect2>
<title>VMA Offset Manager</title>
!Pdrivers/gpu/drm/drm_vma_manager.c vma offset manager
!Edrivers/gpu/drm/drm_vma_manager.c
!Iinclude/drm/drm_vma_manager.h
</sect2>
</sect1>
<!-- Internals: kms properties -->
......@@ -2422,18 +2411,18 @@ void (*postclose) (struct drm_device *, struct drm_file *);</synopsis>
</abstract>
<para>
The <methodname>firstopen</methodname> method is called by the DRM core
when an application opens a device that has no other opened file handle.
Similarly the <methodname>lastclose</methodname> method is called when
the last application holding a file handle opened on the device closes
it. Both methods are mostly used for UMS (User Mode Setting) drivers to
acquire and release device resources which should be done in the
<methodname>load</methodname> and <methodname>unload</methodname>
methods for KMS drivers.
for legacy UMS (User Mode Setting) drivers only when an application
opens a device that has no other opened file handle. UMS drivers can
implement it to acquire device resources. KMS drivers can't use the
method and must acquire resources in the <methodname>load</methodname>
method instead.
</para>
<para>
Note that the <methodname>lastclose</methodname> method is also called
at module unload time or, for hot-pluggable devices, when the device is
unplugged. The <methodname>firstopen</methodname> and
Similarly the <methodname>lastclose</methodname> method is called when
the last application holding a file handle opened on the device closes
it, for both UMS and KMS drivers. Additionally, the method is also
called at module unload time or, for hot-pluggable devices, when the
device is unplugged. The <methodname>firstopen</methodname> and
<methodname>lastclose</methodname> calls can thus be unbalanced.
</para>
<para>
......@@ -2462,7 +2451,12 @@ void (*postclose) (struct drm_device *, struct drm_file *);</synopsis>
<para>
The <methodname>lastclose</methodname> method should restore CRTC and
plane properties to default value, so that a subsequent open of the
device will not inherit state from the previous user.
device will not inherit state from the previous user. It can also be
used to execute delayed power switching state changes, e.g. in
conjunction with the vga-switcheroo infrastructure. Beyond that KMS
drivers should not do any further cleanup. Only legacy UMS drivers might
need to clean up device state so that the vga console or an independent
fbdev driver could take over.
</para>
</sect2>
<sect2>
......@@ -2498,7 +2492,6 @@ void (*postclose) (struct drm_device *, struct drm_file *);</synopsis>
<programlisting>
.poll = drm_poll,
.read = drm_read,
.fasync = drm_fasync,
.llseek = no_llseek,
</programlisting>
</para>
......@@ -2657,6 +2650,69 @@ int (*resume) (struct drm_device *);</synopsis>
info, since man pages should cover the rest.
</para>
<!-- External: render nodes -->
<sect1>
<title>Render nodes</title>
<para>
DRM core provides multiple character-devices for user-space to use.
Depending on which device is opened, user-space can perform a different
set of operations (mainly ioctls). The primary node is always created
and called <term>card&lt;num&gt;</term>. Additionally, a currently
unused control node, called <term>controlD&lt;num&gt;</term> is also
created. The primary node provides all legacy operations and
historically was the only interface used by userspace. With KMS, the
control node was introduced. However, the planned KMS control interface
has never been written and so the control node stays unused to date.
</para>
<para>
With the increased use of offscreen renderers and GPGPU applications,
clients no longer require running compositors or graphics servers to
make use of a GPU. But the DRM API required unprivileged clients to
authenticate to a DRM-Master prior to getting GPU access. To avoid this
step and to grant clients GPU access without authenticating, render
nodes were introduced. Render nodes solely serve render clients, that
is, no modesetting or privileged ioctls can be issued on render nodes.
Only non-global rendering commands are allowed. If a driver supports
render nodes, it must advertise it via the <term>DRIVER_RENDER</term>
DRM driver capability. If not supported, the primary node must be used
for render clients together with the legacy drmAuth authentication
procedure.
</para>
<para>
If a driver advertises render node support, DRM core will create a
separate render node called <term>renderD&lt;num&gt;</term>. There will
be one render node per device. No ioctls except PRIME-related ioctls
will be allowed on this node. Especially <term>GEM_OPEN</term> will be
explicitly prohibited. Render nodes are designed to avoid the
buffer-leaks, which occur if clients guess the flink names or mmap
offsets on the legacy interface. Additionally to this basic interface,
drivers must mark their driver-dependent render-only ioctls as
<term>DRM_RENDER_ALLOW</term> so render clients can use them. Driver
authors must be careful not to allow any privileged ioctls on render
nodes.
</para>
<para>
With render nodes, user-space can now control access to the render node
via basic file-system access-modes. A running graphics server which
authenticates clients on the privileged primary/legacy node is no longer
required. Instead, a client can open the render node and is immediately
granted GPU access. Communication between clients (or servers) is done
via PRIME. FLINK from render node to legacy node is not supported. New
clients must not use the insecure FLINK interface.
</para>
<para>
Besides dropping all modeset/global ioctls, render nodes also drop the
DRM-Master concept. There is no reason to associate render clients with
a DRM-Master as they are independent of any graphics server. Besides,
they must work without any running master, anyway.
Drivers must be able to run without a master object if they support
render nodes. If, on the other hand, a driver requires shared state
between clients which is visible to user-space and accessible beyond
open-file boundaries, they cannot support render nodes.
</para>
</sect1>
<!-- External: vblank handling -->
<sect1>
......
......@@ -722,17 +722,22 @@ for more details.</para>
</section>
<section id="mpeg-controls">
<title>MPEG Control Reference</title>
<title>Codec Control Reference</title>
<para>Below all controls within the MPEG control class are
<para>Below all controls within the Codec control class are
described. First the generic controls, then controls specific for
certain hardware.</para>
<para>Note: These controls are applicable to all codecs and
not just MPEG. The defines are prefixed with V4L2_CID_MPEG/V4L2_MPEG
as the controls were originally made for MPEG codecs and later
extended to cover all encoding formats.</para>
<section>
<title>Generic MPEG Controls</title>
<title>Generic Codec Controls</title>
<table pgwide="1" frame="none" id="mpeg-control-id">
<title>MPEG Control IDs</title>
<title>Codec Control IDs</title>
<tgroup cols="4">
<colspec colname="c1" colwidth="1*" />
<colspec colname="c2" colwidth="6*" />
......@@ -752,7 +757,7 @@ certain hardware.</para>
<row>
<entry spanname="id"><constant>V4L2_CID_MPEG_CLASS</constant>&nbsp;</entry>
<entry>class</entry>
</row><row><entry spanname="descr">The MPEG class
</row><row><entry spanname="descr">The Codec class
descriptor. Calling &VIDIOC-QUERYCTRL; for this control will return a
description of this control class. This description can be used as the
caption of a Tab page in a GUI, for example.</entry>
......@@ -3009,6 +3014,159 @@ in by the application. 0 = do not insert, 1 = insert packets.</entry>
</tgroup>
</table>
</section>
<section>
<title>VPX Control Reference</title>
<para>The VPX controls include controls for encoding parameters
of VPx video codec.</para>
<table pgwide="1" frame="none" id="vpx-control-id">
<title>VPX Control IDs</title>
<tgroup cols="4">
<colspec colname="c1" colwidth="1*" />
<colspec colname="c2" colwidth="6*" />
<colspec colname="c3" colwidth="2*" />
<colspec colname="c4" colwidth="6*" />
<spanspec namest="c1" nameend="c2" spanname="id" />
<spanspec namest="c2" nameend="c4" spanname="descr" />
<thead>
<row>
<entry spanname="id" align="left">ID</entry>
<entry align="left">Type</entry>
</row><row rowsep="1"><entry spanname="descr" align="left">Description</entry>
</row>
</thead>
<tbody valign="top">
<row><entry></entry></row>
<row><entry></entry></row>
<row id="v4l2-vpx-num-partitions">
<entry spanname="id"><constant>V4L2_CID_MPEG_VIDEO_VPX_NUM_PARTITIONS</constant></entry>
<entry>enum v4l2_vp8_num_partitions</entry>
</row>
<row><entry spanname="descr">The number of token partitions to use in VP8 encoder.
Possible values are:</entry>
</row>
<row>
<entrytbl spanname="descr" cols="2">
<tbody valign="top">
<row>
<entry><constant>V4L2_CID_MPEG_VIDEO_VPX_1_PARTITION</constant></entry>
<entry>1 coefficient partition</entry>
</row>
<row>
<entry><constant>V4L2_CID_MPEG_VIDEO_VPX_2_PARTITIONS</constant></entry>
<entry>2 coefficient partitions</entry>
</row>
<row>
<entry><constant>V4L2_CID_MPEG_VIDEO_VPX_4_PARTITIONS</constant></entry>
<entry>4 coefficient partitions</entry>
</row>
<row>
<entry><constant>V4L2_CID_MPEG_VIDEO_VPX_8_PARTITIONS</constant></entry>
<entry>8 coefficient partitions</entry>
</row>
</tbody>
</entrytbl>
</row>
<row><entry></entry></row>
<row>
<entry spanname="id"><constant>V4L2_CID_MPEG_VIDEO_VPX_IMD_DISABLE_4X4</constant></entry>
<entry>boolean</entry>
</row>
<row><entry spanname="descr">Setting this prevents intra 4x4 mode in the intra mode decision.</entry>
</row>
<row><entry></entry></row>
<row id="v4l2-vpx-num-ref-frames">
<entry spanname="id"><constant>V4L2_CID_MPEG_VIDEO_VPX_NUM_REF_FRAMES</constant></entry>
<entry>enum v4l2_vp8_num_ref_frames</entry>
</row>
<row><entry spanname="descr">The number of reference pictures for encoding P frames.
Possible values are:</entry>
</row>
<row>
<entrytbl spanname="descr" cols="2">
<tbody valign="top">
<row>
<entry><constant>V4L2_CID_MPEG_VIDEO_VPX_1_REF_FRAME</constant></entry>
<entry>Last encoded frame will be searched</entry>
</row>
<row>
<entry><constant>V4L2_CID_MPEG_VIDEO_VPX_2_REF_FRAME</constant></entry>
<entry>Two frames will be searched among the last encoded frame, the golden frame
and the alternate reference (altref) frame. The encoder implementation will decide which two are chosen.</entry>
</row>
<row>
<entry><constant>V4L2_CID_MPEG_VIDEO_VPX_3_REF_FRAME</constant></entry>
<entry>The last encoded frame, the golden frame and the altref frame will be searched.</entry>
</row>
</tbody>
</entrytbl>
</row>
<row><entry></entry></row>
<row>
<entry spanname="id"><constant>V4L2_CID_MPEG_VIDEO_VPX_FILTER_LEVEL</constant></entry>
<entry>integer</entry>
</row>
<row><entry spanname="descr">Indicates the loop filter level. The adjustment of the loop
filter level is done via a delta value against a baseline loop filter value.</entry>
</row>
<row><entry></entry></row>
<row>
<entry spanname="id"><constant>V4L2_CID_MPEG_VIDEO_VPX_FILTER_SHARPNESS</constant></entry>
<entry>integer</entry>
</row>
<row><entry spanname="descr">This parameter affects the loop filter. Anything above
zero weakens the deblocking effect on the loop filter.</entry>
</row>
<row><entry></entry></row>
<row>
<entry spanname="id"><constant>V4L2_CID_MPEG_VIDEO_VPX_GOLDEN_FRAME_REF_PERIOD</constant></entry>
<entry>integer</entry>
</row>
<row><entry spanname="descr">Sets the refresh period for the golden frame. The period is defined
in number of frames. For a value of 'n', every nth frame starting from the first key frame will be taken as a golden frame.
For eg. for encoding sequence of 0, 1, 2, 3, 4, 5, 6, 7 where the golden frame refresh period is set as 4, the frames
0, 4, 8 etc will be taken as the golden frames as frame 0 is always a key frame.</entry>
</row>
<row><entry></entry></row>
<row id="v4l2-vpx-golden-frame-sel">
<entry spanname="id"><constant>V4L2_CID_MPEG_VIDEO_VPX_GOLDEN_FRAME_SEL</constant></entry>
<entry>enum v4l2_vp8_golden_frame_sel</entry>
</row>
<row><entry spanname="descr">Selects the golden frame for encoding.
Possible values are:</entry>
</row>
<row>
<entrytbl spanname="descr" cols="2">
<tbody valign="top">
<row>
<entry><constant>V4L2_CID_MPEG_VIDEO_VPX_GOLDEN_FRAME_USE_PREV</constant></entry>
<entry>Use the (n-2)th frame as a golden frame, current frame index being 'n'.</entry>
</row>
<row>
<entry><constant>V4L2_CID_MPEG_VIDEO_VPX_GOLDEN_FRAME_USE_REF_PERIOD</constant></entry>
<entry>Use the previous specific frame indicated by
V4L2_CID_MPEG_VIDEO_VPX_GOLDEN_FRAME_REF_PERIOD as a golden frame.</entry>
</row>
</tbody>
</entrytbl>
</row>
<row><entry></entry></row>
</tbody>
</tgroup>
</table>
</section>
</section>
<section id="camera-controls">
......
......@@ -46,7 +46,9 @@ describing an IR signal are read from the chardev.</para>
values. Pulses and spaces are only marked implicitly by their position. The
data must start and end with a pulse, therefore, the data must always include
an uneven number of samples. The write function must block until the data has
been transmitted by the hardware.</para>
been transmitted by the hardware. If more data is provided than the hardware
can send, the driver returns EINVAL.</para>
</section>
<section id="lirc_ioctl">
......
<refentry>
<refmeta>
<refentrytitle>V4L2_PIX_FMT_NV16M ('NM16'), V4L2_PIX_FMT_NV61M ('NM61')</refentrytitle>
&manvol;
</refmeta>
<refnamediv>
<refname id="V4L2-PIX-FMT-NV16M"><constant>V4L2_PIX_FMT_NV16M</constant></refname>
<refname id="V4L2-PIX-FMT-NV61M"><constant>V4L2_PIX_FMT_NV61M</constant></refname>
<refpurpose>Variation of <constant>V4L2_PIX_FMT_NV16</constant> and <constant>V4L2_PIX_FMT_NV61</constant> with planes
non contiguous in memory. </refpurpose>
</refnamediv>
<refsect1>
<title>Description</title>
<para>This is a multi-planar, two-plane version of the YUV 4:2:0 format.
The three components are separated into two sub-images or planes.
<constant>V4L2_PIX_FMT_NV16M</constant> differs from <constant>V4L2_PIX_FMT_NV16
</constant> in that the two planes are non-contiguous in memory, i.e. the chroma
plane does not necessarily immediately follows the luma plane.
The luminance data occupies the first plane. The Y plane has one byte per pixel.
In the second plane there is chrominance data with alternating chroma samples.
The CbCr plane is the same width and height, in bytes, as the Y plane.
Each CbCr pair belongs to four pixels. For example,
Cb<subscript>0</subscript>/Cr<subscript>0</subscript> belongs to
Y'<subscript>00</subscript>, Y'<subscript>01</subscript>,
Y'<subscript>10</subscript>, Y'<subscript>11</subscript>.
<constant>V4L2_PIX_FMT_NV61M</constant> is the same as <constant>V4L2_PIX_FMT_NV16M</constant>
except the Cb and Cr bytes are swapped, the CrCb plane starts with a Cr byte.</para>
<para><constant>V4L2_PIX_FMT_NV16M</constant> and
<constant>V4L2_PIX_FMT_NV61M</constant> are intended to be used only in drivers
and applications that support the multi-planar API, described in
<xref linkend="planar-apis"/>. </para>
<example>
<title><constant>V4L2_PIX_FMT_NV16M</constant> 4 &times; 4 pixel image</title>
<formalpara>
<title>Byte Order.</title>
<para>Each cell is one byte.
<informaltable frame="none">
<tgroup cols="5" align="center">
<colspec align="left" colwidth="2*" />
<tbody valign="top">
<row>
<entry>start0&nbsp;+&nbsp;0:</entry>
<entry>Y'<subscript>00</subscript></entry>
<entry>Y'<subscript>01</subscript></entry>
<entry>Y'<subscript>02</subscript></entry>
<entry>Y'<subscript>03</subscript></entry>
</row>
<row>
<entry>start0&nbsp;+&nbsp;4:</entry>
<entry>Y'<subscript>10</subscript></entry>
<entry>Y'<subscript>11</subscript></entry>
<entry>Y'<subscript>12</subscript></entry>
<entry>Y'<subscript>13</subscript></entry>
</row>
<row>
<entry>start0&nbsp;+&nbsp;8:</entry>
<entry>Y'<subscript>20</subscript></entry>
<entry>Y'<subscript>21</subscript></entry>
<entry>Y'<subscript>22</subscript></entry>
<entry>Y'<subscript>23</subscript></entry>
</row>
<row>
<entry>start0&nbsp;+&nbsp;12:</entry>
<entry>Y'<subscript>30</subscript></entry>
<entry>Y'<subscript>31</subscript></entry>
<entry>Y'<subscript>32</subscript></entry>
<entry>Y'<subscript>33</subscript></entry>
</row>
<row>
<entry></entry>
</row>
<row>
<entry>start1&nbsp;+&nbsp;0:</entry>
<entry>Cb<subscript>00</subscript></entry>
<entry>Cr<subscript>00</subscript></entry>
<entry>Cb<subscript>02</subscript></entry>
<entry>Cr<subscript>02</subscript></entry>
</row>
<row>
<entry>start1&nbsp;+&nbsp;4:</entry>
<entry>Cb<subscript>10</subscript></entry>
<entry>Cr<subscript>10</subscript></entry>
<entry>Cb<subscript>12</subscript></entry>
<entry>Cr<subscript>12</subscript></entry>
</row>
<row>
<entry>start1&nbsp;+&nbsp;8:</entry>
<entry>Cb<subscript>20</subscript></entry>
<entry>Cr<subscript>20</subscript></entry>
<entry>Cb<subscript>22</subscript></entry>
<entry>Cr<subscript>22</subscript></entry>
</row>
<row>
<entry>start1&nbsp;+&nbsp;12:</entry>
<entry>Cb<subscript>30</subscript></entry>
<entry>Cr<subscript>30</subscript></entry>
<entry>Cb<subscript>32</subscript></entry>
<entry>Cr<subscript>32</subscript></entry>
</row>
</tbody>
</tgroup>
</informaltable>
</para>
</formalpara>
<formalpara>
<title>Color Sample Location.</title>
<para>
<informaltable frame="none">
<tgroup cols="7" align="center">
<tbody valign="top">
<row>
<entry></entry>
<entry>0</entry><entry></entry><entry>1</entry><entry></entry>
<entry>2</entry><entry></entry><entry>3</entry>
</row>
<row>
<entry>0</entry>
<entry>Y</entry><entry></entry><entry>Y</entry><entry></entry>
<entry>Y</entry><entry></entry><entry>Y</entry>
</row>
<row>
<entry></entry>
<entry></entry><entry>C</entry><entry></entry><entry></entry>
<entry></entry><entry>C</entry><entry></entry>
</row>
<row>
<entry>1</entry>
<entry>Y</entry><entry></entry><entry>Y</entry><entry></entry>
<entry>Y</entry><entry></entry><entry>Y</entry>
</row>
<row>
<entry></entry>
<entry></entry><entry>C</entry><entry></entry><entry></entry>
<entry></entry><entry>C</entry><entry></entry>
</row>
<row>
<entry></entry>
</row>
<row>
<entry>2</entry>
<entry>Y</entry><entry></entry><entry>Y</entry><entry></entry>
<entry>Y</entry><entry></entry><entry>Y</entry>
</row>
<row>
<entry></entry>
<entry></entry><entry>C</entry><entry></entry><entry></entry>
<entry></entry><entry>C</entry><entry></entry>
</row>
<row>
<entry>3</entry>
<entry>Y</entry><entry></entry><entry>Y</entry><entry></entry>
<entry>Y</entry><entry></entry><entry>Y</entry>
</row>
<row>
<entry></entry>
<entry></entry><entry>C</entry><entry></entry><entry></entry>
<entry></entry><entry>C</entry><entry></entry>
</row>
</tbody>
</tgroup>
</informaltable>
</para>
</formalpara>
</example>
</refsect1>
</refentry>
......@@ -391,9 +391,9 @@ clamp (double x)
else return r;
}
y1 = (255 / 219.0) * (Y1 - 16);
pb = (255 / 224.0) * (Cb - 128);
pr = (255 / 224.0) * (Cr - 128);
y1 = (Y1 - 16) / 219.0;
pb = (Cb - 128) / 224.0;
pr = (Cr - 128) / 224.0;
r = 1.0 * y1 + 0 * pb + 1.402 * pr;
g = 1.0 * y1 - 0.344 * pb - 0.714 * pr;
......@@ -718,6 +718,7 @@ information.</para>
&sub-nv12m;
&sub-nv12mt;
&sub-nv16;
&sub-nv16m;
&sub-nv24;
&sub-m420;
</section>
......
......@@ -62,18 +62,29 @@ addition to the <constant>VIDIOC_REQBUFS</constant> ioctl, when a tighter
control over buffers is required. This ioctl can be called multiple times to
create buffers of different sizes.</para>
<para>To allocate device buffers applications initialize relevant fields of
the <structname>v4l2_create_buffers</structname> structure. They set the
<structfield>type</structfield> field in the
&v4l2-format; structure, embedded in this
structure, to the respective stream or buffer type.
<structfield>count</structfield> must be set to the number of required buffers.
<structfield>memory</structfield> specifies the required I/O method. The
<structfield>format</structfield> field shall typically be filled in using
either the <constant>VIDIOC_TRY_FMT</constant> or
<constant>VIDIOC_G_FMT</constant> ioctl(). Additionally, applications can adjust
<structfield>sizeimage</structfield> fields to fit their specific needs. The
<structfield>reserved</structfield> array must be zeroed.</para>
<para>To allocate the device buffers applications must initialize the
relevant fields of the <structname>v4l2_create_buffers</structname> structure.
The <structfield>count</structfield> field must be set to the number of
requested buffers, the <structfield>memory</structfield> field specifies the
requested I/O method and the <structfield>reserved</structfield> array must be
zeroed.</para>
<para>The <structfield>format</structfield> field specifies the image format
that the buffers must be able to handle. The application has to fill in this
&v4l2-format;. Usually this will be done using the
<constant>VIDIOC_TRY_FMT</constant> or <constant>VIDIOC_G_FMT</constant> ioctl()
to ensure that the requested format is supported by the driver. Unsupported
formats will result in an error.</para>
<para>The buffers created by this ioctl will have as minimum size the size
defined by the <structfield>format.pix.sizeimage</structfield> field. If the
<structfield>format.pix.sizeimage</structfield> field is less than the minimum
required for the given format, then <structfield>sizeimage</structfield> will be
increased by the driver to that minimum to allocate the buffers. If it is
larger, then the value will be used as-is. The same applies to the
<structfield>sizeimage</structfield> field of the
<structname>v4l2_plane_pix_format</structname> structure in the case of
multiplanar formats.</para>
<para>When the ioctl is called with a pointer to this structure the driver
will attempt to allocate up to the requested number of buffers and store the
......@@ -144,9 +155,9 @@ mapped</link> I/O.</para>
<varlistentry>
<term><errorcode>EINVAL</errorcode></term>
<listitem>
<para>The buffer type (<structfield>type</structfield> field) or the
requested I/O method (<structfield>memory</structfield>) is not
supported.</para>
<para>The buffer type (<structfield>format.type</structfield> field),
requested I/O method (<structfield>memory</structfield>) or format
(<structfield>format</structfield> field) is not valid.</para>
</listitem>
</varlistentry>
</variablelist>
......
......@@ -156,19 +156,19 @@ bit 0 (V4L2_DV_VSYNC_POS_POL) is for vertical sync polarity and bit 1 (V4L2_DV_H
<entry>__u32</entry>
<entry><structfield>il_vfrontporch</structfield></entry>
<entry>Vertical front porch in lines for the even field (aka field 2) of
interlaced field formats.</entry>
interlaced field formats. Must be 0 for progressive formats.</entry>
</row>
<row>
<entry>__u32</entry>
<entry><structfield>il_vsync</structfield></entry>
<entry>Vertical sync length in lines for the even field (aka field 2) of
interlaced field formats.</entry>
interlaced field formats. Must be 0 for progressive formats.</entry>
</row>
<row>
<entry>__u32</entry>
<entry><structfield>il_vbackporch</structfield></entry>
<entry>Vertical back porch in lines for the even field (aka field 2) of
interlaced field formats.</entry>
interlaced field formats. Must be 0 for progressive formats.</entry>
</row>
<row>
<entry>__u32</entry>
......
......@@ -92,8 +92,8 @@ to add them.</para>
<entry>int</entry>
<entry><structfield>quality</structfield></entry>
<entry>Deprecated. If <link linkend="jpeg-quality-control"><constant>
V4L2_CID_JPEG_IMAGE_QUALITY</constant></link> control is exposed by
a driver applications should use it instead and ignore this field.
V4L2_CID_JPEG_COMPRESSION_QUALITY</constant></link> control is exposed
by a driver applications should use it instead and ignore this field.
</entry>
</row>
<row>
......
......@@ -132,7 +132,7 @@ devices.</para>
<row>
<entry>&v4l2-fract;</entry>
<entry><structfield>timeperframe</structfield></entry>
<entry><para>This is is the desired period between
<entry><para>This is the desired period between
successive frames captured by the driver, in seconds. The
field is intended to skip frames on the driver side, saving I/O
bandwidth.</para><para>Applications store here the desired frame
......@@ -193,7 +193,7 @@ applications must set the array to zero.</entry>
<row>
<entry>&v4l2-fract;</entry>
<entry><structfield>timeperframe</structfield></entry>
<entry>This is is the desired period between
<entry>This is the desired period between
successive frames output by the driver, in seconds.</entry>
</row>
<row>
......
......@@ -22,8 +22,14 @@
<!-- LinuxTV v4l-dvb repository. -->
<!ENTITY v4l-dvb "<ulink url='http://linuxtv.org/repo/'>http://linuxtv.org/repo/</ulink>">
<!ENTITY dash-ent-8 "<entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry>">
<!ENTITY dash-ent-10 "<entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry>">
<!ENTITY dash-ent-12 "<entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry>">
<!ENTITY dash-ent-14 "<entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry>">
<!ENTITY dash-ent-16 "<entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry>">
<!ENTITY dash-ent-20 "<entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry>">
<!ENTITY dash-ent-22 "<entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry>">
<!ENTITY dash-ent-24 "<entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry><entry>-</entry>">
]>
<book id="media_api">
......
......@@ -57,8 +57,8 @@ i.e counters for the CPU0-3 did not change.
Here is an example of limiting that same irq (44) to cpus 1024 to 1031:
[root@moon 44]# echo 1024-1031 > smp_affinity
[root@moon 44]# cat smp_affinity
[root@moon 44]# echo 1024-1031 > smp_affinity_list
[root@moon 44]# cat smp_affinity_list
1024-1031
Note that to do this with a bitmask would require 32 bitmasks of zero
......
此差异已折叠。
......@@ -70,10 +70,14 @@ in realtime kernels in order to avoid excessive scheduling latencies.
rcu_barrier()
We instead need the rcu_barrier() primitive. This primitive is similar
to synchronize_rcu(), but instead of waiting solely for a grace
period to elapse, it also waits for all outstanding RCU callbacks to
complete. Pseudo-code using rcu_barrier() is as follows:
We instead need the rcu_barrier() primitive. Rather than waiting for
a grace period to elapse, rcu_barrier() waits for all outstanding RCU
callbacks to complete. Please note that rcu_barrier() does -not- imply
synchronize_rcu(), in particular, if there are no RCU callbacks queued
anywhere, rcu_barrier() is within its rights to return immediately,
without waiting for a grace period to elapse.
Pseudo-code using rcu_barrier() is as follows:
1. Prevent any new RCU callbacks from being posted.
2. Execute rcu_barrier().
......
......@@ -42,6 +42,16 @@ fqs_holdoff Holdoff time (in microseconds) between consecutive calls
fqs_stutter Wait time (in seconds) between consecutive bursts
of calls to force_quiescent_state().
gp_normal Make the fake writers use normal synchronous grace-period
primitives.
gp_exp Make the fake writers use expedited synchronous grace-period
primitives. If both gp_normal and gp_exp are set, or
if neither gp_normal nor gp_exp are set, then randomly
choose the primitive so that about 50% are normal and
50% expedited. By default, neither are set, which
gives best overall test coverage.
irqreader Says to invoke RCU readers from irq level. This is currently
done via timers. Defaults to "1" for variants of RCU that
permit this. (Or, more accurately, variants of RCU that do
......
......@@ -109,6 +109,16 @@ probably didn't even receive earlier versions of the patch.
If the patch fixes a logged bug entry, refer to that bug entry by
number and URL.
If you want to refer to a specific commit, don't just refer to the
SHA-1 ID of the commit. Please also include the oneline summary of
the commit, to make it easier for reviewers to know what it is about.
Example:
Commit e21d2170f36602ae2708 ("video: remove unnecessary
platform_set_drvdata()") removed the unnecessary
platform_set_drvdata(), but left the variable "dev" unused,
delete it.
3) Separate your changes.
......
......@@ -207,7 +207,7 @@ passing those. One idea is to return this in _DSM method like:
Return (Local0)
}
Then the at25 SPI driver can get this configation by calling _DSM on its
Then the at25 SPI driver can get this configuration by calling _DSM on its
ACPI handle like:
struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER, NULL };
......@@ -228,19 +228,9 @@ ACPI handle like:
I2C serial bus support
~~~~~~~~~~~~~~~~~~~~~~
The slaves behind I2C bus controller only need to add the ACPI IDs like
with the platform and SPI drivers. However the I2C bus controller driver
needs to call acpi_i2c_register_devices() after it has added the adapter.
An I2C bus (controller) driver does:
...
ret = i2c_add_numbered_adapter(adapter);
if (ret)
/* handle error */
of_i2c_register_devices(adapter);
/* Enumerate the slave devices behind this bus via ACPI */
acpi_i2c_register_devices(adapter);
with the platform and SPI drivers. The I2C core automatically enumerates
any slave devices behind the controller device once the adapter is
registered.
Below is an example of how to add ACPI support to the existing mpu3050
input driver:
......
......@@ -18,7 +18,8 @@ following:
2. Initialise one serial port.
3. Detect the machine type.
4. Setup the kernel tagged list.
5. Call the kernel image.
5. Load initramfs.
6. Call the kernel image.
1. Setup and initialise RAM
......@@ -120,12 +121,27 @@ tagged list.
The boot loader must pass at a minimum the size and location of the
system memory, and the root filesystem location. The dtb must be
placed in a region of memory where the kernel decompressor will not
overwrite it. The recommended placement is in the first 16KiB of RAM
with the caveat that it may not be located at physical address 0 since
the kernel interprets a value of 0 in r2 to mean neither a tagged list
nor a dtb were passed.
overwrite it, whilst remaining within the region which will be covered
by the kernel's low-memory mapping.
5. Calling the kernel image
A safe location is just above the 128MiB boundary from start of RAM.
5. Load initramfs.
------------------
Existing boot loaders: OPTIONAL
New boot loaders: OPTIONAL
If an initramfs is in use then, as with the dtb, it must be placed in
a region of memory where the kernel decompressor will not overwrite it
while also with the region which will be covered by the kernel's
low-memory mapping.
A safe location is just above the device tree blob which itself will
be loaded just above the 128MiB boundary from the start of RAM as
recommended above.
6. Calling the kernel image
---------------------------
Existing boot loaders: MANDATORY
......@@ -136,11 +152,17 @@ is stored in flash, and is linked correctly to be run from flash,
then it is legal for the boot loader to call the zImage in flash
directly.
The zImage may also be placed in system RAM (at any location) and
called there. Note that the kernel uses 16K of RAM below the image
to store page tables. The recommended placement is 32KiB into RAM.
The zImage may also be placed in system RAM and called there. The
kernel should be placed in the first 128MiB of RAM. It is recommended
that it is loaded above 32MiB in order to avoid the need to relocate
prior to decompression, which will make the boot process slightly
faster.
When booting a raw (non-zImage) kernel the constraints are tighter.
In this case the kernel must be loaded at an offset into system equal
to TEXT_OFFSET - PAGE_OFFSET.
In either case, the following conditions must be met:
In any case, the following conditions must be met:
- Quiesce all DMA capable devices so that memory does not get
corrupted by bogus network packets or disk data. This will save
......
......@@ -78,7 +78,7 @@ to NULL. Drivers should use the following idiom:
The most common usage of these functions will probably be to specify
the maximum time from when an interrupt occurs, to when the device
becomes accessible. To accomplish this, driver writers should use the
set_max_mpu_wakeup_lat() function to to constrain the MPU wakeup
set_max_mpu_wakeup_lat() function to constrain the MPU wakeup
latency, and the set_max_dev_wakeup_lat() function to constrain the
device wakeup latency (from clk_enable() to accessibility). For
example,
......
Kernel mode NEON
================
TL;DR summary
-------------
* Use only NEON instructions, or VFP instructions that don't rely on support
code
* Isolate your NEON code in a separate compilation unit, and compile it with
'-mfpu=neon -mfloat-abi=softfp'
* Put kernel_neon_begin() and kernel_neon_end() calls around the calls into your
NEON code
* Don't sleep in your NEON code, and be aware that it will be executed with
preemption disabled
Introduction
------------
It is possible to use NEON instructions (and in some cases, VFP instructions) in
code that runs in kernel mode. However, for performance reasons, the NEON/VFP
register file is not preserved and restored at every context switch or taken
exception like the normal register file is, so some manual intervention is
required. Furthermore, special care is required for code that may sleep [i.e.,
may call schedule()], as NEON or VFP instructions will be executed in a
non-preemptible section for reasons outlined below.
Lazy preserve and restore
-------------------------
The NEON/VFP register file is managed using lazy preserve (on UP systems) and
lazy restore (on both SMP and UP systems). This means that the register file is
kept 'live', and is only preserved and restored when multiple tasks are
contending for the NEON/VFP unit (or, in the SMP case, when a task migrates to
another core). Lazy restore is implemented by disabling the NEON/VFP unit after
every context switch, resulting in a trap when subsequently a NEON/VFP
instruction is issued, allowing the kernel to step in and perform the restore if
necessary.
Any use of the NEON/VFP unit in kernel mode should not interfere with this, so
it is required to do an 'eager' preserve of the NEON/VFP register file, and
enable the NEON/VFP unit explicitly so no exceptions are generated on first
subsequent use. This is handled by the function kernel_neon_begin(), which
should be called before any kernel mode NEON or VFP instructions are issued.
Likewise, the NEON/VFP unit should be disabled again after use to make sure user
mode will hit the lazy restore trap upon next use. This is handled by the
function kernel_neon_end().
Interruptions in kernel mode
----------------------------
For reasons of performance and simplicity, it was decided that there shall be no
preserve/restore mechanism for the kernel mode NEON/VFP register contents. This
implies that interruptions of a kernel mode NEON section can only be allowed if
they are guaranteed not to touch the NEON/VFP registers. For this reason, the
following rules and restrictions apply in the kernel:
* NEON/VFP code is not allowed in interrupt context;
* NEON/VFP code is not allowed to sleep;
* NEON/VFP code is executed with preemption disabled.
If latency is a concern, it is possible to put back to back calls to
kernel_neon_end() and kernel_neon_begin() in places in your code where none of
the NEON registers are live. (Additional calls to kernel_neon_begin() should be
reasonably cheap if no context switch occurred in the meantime)
VFP and support code
--------------------
Earlier versions of VFP (prior to version 3) rely on software support for things
like IEEE-754 compliant underflow handling etc. When the VFP unit needs such
software assistance, it signals the kernel by raising an undefined instruction
exception. The kernel responds by inspecting the VFP control registers and the
current instruction and arguments, and emulates the instruction in software.
Such software assistance is currently not implemented for VFP instructions
executed in kernel mode. If such a condition is encountered, the kernel will
fail and generate an OOPS.
Separating NEON code from ordinary code
---------------------------------------
The compiler is not aware of the special significance of kernel_neon_begin() and
kernel_neon_end(), i.e., that it is only allowed to issue NEON/VFP instructions
between calls to these respective functions. Furthermore, GCC may generate NEON
instructions of its own at -O3 level if -mfpu=neon is selected, and even if the
kernel is currently compiled at -O2, future changes may result in NEON/VFP
instructions appearing in unexpected places if no special care is taken.
Therefore, the recommended and only supported way of using NEON/VFP in the
kernel is by adhering to the following rules:
* isolate the NEON code in a separate compilation unit and compile it with
'-mfpu=neon -mfloat-abi=softfp';
* issue the calls to kernel_neon_begin(), kernel_neon_end() as well as the calls
into the unit containing the NEON code from a compilation unit which is *not*
built with the GCC flag '-mfpu=neon' set.
As the kernel is compiled with '-msoft-float', the above will guarantee that
both NEON and VFP instructions will only ever appear in designated compilation
units at any optimization level.
NEON assembler
--------------
NEON assembler is supported with no additional caveats as long as the rules
above are followed.
NEON code generated by GCC
--------------------------
The GCC option -ftree-vectorize (implied by -O3) tries to exploit implicit
parallelism, and generates NEON code from ordinary C source code. This is fully
supported as long as the rules above are followed.
NEON intrinsics
---------------
NEON intrinsics are also supported. However, as code using NEON intrinsics
relies on the GCC header <arm_neon.h>, (which #includes <stdint.h>), you should
observe the following in addition to the rules above:
* Compile the unit containing the NEON intrinsics with '-ffreestanding' so GCC
uses its builtin version of <stdint.h> (this is a C99 header which the kernel
does not supply);
* Include <arm_neon.h> last, or at least after <linux/types.h>
......@@ -45,9 +45,9 @@ sees fit.)
Requirement: MANDATORY
The device tree blob (dtb) must be no bigger than 2 megabytes in size
and placed at a 2-megabyte boundary within the first 512 megabytes from
the start of the kernel image. This is to allow the kernel to map the
The device tree blob (dtb) must be placed on an 8-byte boundary within
the first 512 megabytes from the start of the kernel image and must not
cross a 2-megabyte boundary. This is to allow the kernel to map the
blob using a single section mapping in the initial page tables.
......@@ -68,13 +68,23 @@ Image target is available instead.
Requirement: MANDATORY
The decompressed kernel image contains a 32-byte header as follows:
The decompressed kernel image contains a 64-byte header as follows:
u32 magic = 0x14000008; /* branch to stext, little-endian */
u32 res0 = 0; /* reserved */
u32 code0; /* Executable code */
u32 code1; /* Executable code */
u64 text_offset; /* Image load offset */
u64 res0 = 0; /* reserved */
u64 res1 = 0; /* reserved */
u64 res2 = 0; /* reserved */
u64 res3 = 0; /* reserved */
u64 res4 = 0; /* reserved */
u32 magic = 0x644d5241; /* Magic number, little endian, "ARM\x64" */
u32 res5 = 0; /* reserved */
Header notes:
- code0/code1 are responsible for branching to stext.
The image must be placed at the specified offset (currently 0x80000)
from the start of the system RAM and called there. The start of the
......
Tagged virtual addresses in AArch64 Linux
=========================================
Author: Will Deacon <will.deacon@arm.com>
Date : 12 June 2013
This document briefly describes the provision of tagged virtual
addresses in the AArch64 translation system and their potential uses
in AArch64 Linux.
The kernel configures the translation tables so that translations made
via TTBR0 (i.e. userspace mappings) have the top byte (bits 63:56) of
the virtual address ignored by the translation hardware. This frees up
this byte for application use, with the following caveats:
(1) The kernel requires that all user addresses passed to EL1
are tagged with tag 0x00. This means that any syscall
parameters containing user virtual addresses *must* have
their top byte cleared before trapping to the kernel.
(2) Tags are not guaranteed to be preserved when delivering
signals. This means that signal handlers in applications
making use of tags cannot rely on the tag information for
user virtual addresses being maintained for fields inside
siginfo_t. One exception to this rule is for signals raised
in response to debug exceptions, where the tag information
will be preserved.
(3) Special care should be taken when using tagged pointers,
since it is likely that C compilers will not hazard two
addresses differing only in the upper bits.
The architecture prevents the use of a tagged PC, so the upper byte will
be set to a sign-extension of bit 55 on exception return.
......@@ -69,7 +69,7 @@ one, this value should be decreased relative to fifo_expire_async.
group_idle
-----------
This parameter forces idling at the CFQ group level instead of CFQ
queue level. This was introduced after after a bottleneck was observed
queue level. This was introduced after a bottleneck was observed
in higher end storage due to idle on sequential queue and allow dispatch
from a single queue. The idea with this parameter is that it can be run with
slice_idle=0 and group_idle=8, so that idling does not happen on individual
......
......@@ -57,7 +57,7 @@ changes occur:
interface must make sure that any previous page table
modifications for the address space 'vma->vm_mm' in the range
'start' to 'end-1' will be visible to the cpu. That is, after
running, here will be no entries in the TLB for 'mm' for
running, there will be no entries in the TLB for 'mm' for
virtual addresses in the range 'start' to 'end-1'.
The "vma" is the backing store being used for the region.
......@@ -375,8 +375,8 @@ maps this page at its virtual address.
void flush_icache_page(struct vm_area_struct *vma, struct page *page)
All the functionality of flush_icache_page can be implemented in
flush_dcache_page and update_mmu_cache. In 2.7 the hope is to
remove this interface completely.
flush_dcache_page and update_mmu_cache. In the future, the hope
is to remove this interface completely.
The final category of APIs is for I/O to deliberately aliased address
ranges inside the kernel. Such aliases are set up by use of the
......
......@@ -50,8 +50,6 @@ What shall this struct cpufreq_driver contain?
cpufreq_driver.name - The name of this driver.
cpufreq_driver.owner - THIS_MODULE;
cpufreq_driver.init - A pointer to the per-CPU initialization
function.
......
......@@ -22,7 +22,7 @@ to /proc/cpuinfo.
4) /sys/devices/system/cpu/cpuX/topology/thread_siblings:
internel kernel map of cpuX's hardware threads within the same
internal kernel map of cpuX's hardware threads within the same
core as cpuX
5) /sys/devices/system/cpu/cpuX/topology/core_siblings:
......
......@@ -276,7 +276,7 @@ mainline get there via -mm.
The current -mm patch is available in the "mmotm" (-mm of the moment)
directory at:
http://userweb.kernel.org/~akpm/mmotm/
http://www.ozlabs.org/~akpm/mmotm/
Use of the MMOTM tree is likely to be a frustrating experience, though;
there is a definite chance that it will not even compile.
......@@ -287,7 +287,7 @@ the mainline is expected to look like after the next merge window closes.
Linux-next trees are announced on the linux-kernel and linux-next mailing
lists when they are assembled; they can be downloaded from:
http://www.kernel.org/pub/linux/kernel/people/sfr/linux-next/
http://www.kernel.org/pub/linux/kernel/next/
Some information about linux-next has been gathered at:
......
* ARM architected timer
ARM cores may have a per-core architected timer, which provides per-cpu timers.
ARM cores may have a per-core architected timer, which provides per-cpu timers,
or a memory mapped architected timer, which provides up to 8 frames with a
physical and optional virtual timer per frame.
The timer is attached to a GIC to deliver its per-processor interrupts.
The per-core architected timer is attached to a GIC to deliver its
per-processor interrupts via PPIs. The memory mapped timer is attached to a GIC
to deliver its interrupts via SPIs.
** Timer node properties:
** CP15 Timer node properties:
- compatible : Should at least contain one of
"arm,armv7-timer"
......@@ -26,3 +30,52 @@ Example:
<1 10 0xf08>;
clock-frequency = <100000000>;
};
** Memory mapped timer node properties:
- compatible : Should at least contain "arm,armv7-timer-mem".
- clock-frequency : The frequency of the main counter, in Hz. Optional.
- reg : The control frame base address.
Note that #address-cells, #size-cells, and ranges shall be present to ensure
the CPU can address a frame's registers.
A timer node has up to 8 frame sub-nodes, each with the following properties:
- frame-number: 0 to 7.
- interrupts : Interrupt list for physical and virtual timers in that order.
The virtual timer interrupt is optional.
- reg : The first and second view base addresses in that order. The second view
base address is optional.
- status : "disabled" indicates the frame is not available for use. Optional.
Example:
timer@f0000000 {
compatible = "arm,armv7-timer-mem";
#address-cells = <1>;
#size-cells = <1>;
ranges;
reg = <0xf0000000 0x1000>;
clock-frequency = <50000000>;
frame@f0001000 {
frame-number = <0>
interrupts = <0 13 0x8>,
<0 14 0x8>;
reg = <0xf0001000 0x1000>,
<0xf0002000 0x1000>;
};
frame@f0003000 {
frame-number = <1>
interrupts = <0 15 0x8>;
reg = <0xf0003000 0x1000>;
status = "disabled";
};
};
* AT91's Analog to Digital Converter (ADC)
Required properties:
- compatible: Should be "atmel,at91sam9260-adc"
- compatible: Should be "atmel,<chip>-adc"
<chip> can be "at91sam9260", "at91sam9g45" or "at91sam9x5"
- reg: Should contain ADC registers location and length
- interrupts: Should contain the IRQ line for the ADC
- atmel,adc-channel-base: Offset of the first channel data register
- atmel,adc-channels-used: Bitmask of the channels muxed and enable for this
device
- atmel,adc-drdy-mask: Mask of the DRDY interruption in the ADC
- atmel,adc-num-channels: Number of channels available in the ADC
- atmel,adc-startup-time: Startup Time of the ADC in microseconds as
defined in the datasheet
- atmel,adc-status-register: Offset of the Interrupt Status Register
- atmel,adc-trigger-register: Offset of the Trigger Register
- atmel,adc-vref: Reference voltage in millivolts for the conversions
- atmel,adc-res: List of resolution in bits supported by the ADC. List size
must be two at least.
......
Broadcom Kona Family timer
-----------------------------------------------------
This timer is used in the following Broadcom SoCs:
BCM11130, BCM11140, BCM11351, BCM28145, BCM28155
Required properties:
- compatible : "bcm,kona-timer"
- reg : Register range for the timer
- interrupts : interrupt for the timer
- clock-frequency: frequency that the clock operates
Example:
timer@35006000 {
compatible = "bcm,kona-timer";
reg = <0x35006000 0x1000>;
interrupts = <0x0 7 0x4>;
clock-frequency = <32768>;
};
......@@ -6,4 +6,5 @@ bcm11351, bcm28145, bcm28155 SoCs) shall have the following properties:
Required root node property:
compatible = "bcm,bcm11351";
compatible = "brcm,bcm11351";
DEPRECATED: compatible = "bcm,bcm11351";
Broadcom Kona Family timer
-----------------------------------------------------
This timer is used in the following Broadcom SoCs:
BCM11130, BCM11140, BCM11351, BCM28145, BCM28155
Required properties:
- compatible : "brcm,kona-timer"
- DEPRECATED: compatible : "bcm,kona-timer"
- reg : Register range for the timer
- interrupts : interrupt for the timer
- clock-frequency: frequency that the clock operates
Example:
timer@35006000 {
compatible = "brcm,kona-timer";
reg = <0x35006000 0x1000>;
interrupts = <0x0 7 0x4>;
clock-frequency = <32768>;
};
Broadcom Kona Family Watchdog Timer
-----------------------------------
This watchdog timer is used in the following Broadcom SoCs:
BCM11130, BCM11140, BCM11351, BCM28145, BCM28155
Required properties:
- compatible = "brcm,bcm11351-wdt", "brcm,kona-wdt";
- reg: memory address & range
Example:
watchdog@35002f40 {
compatible = "brcm,bcm11351-wdt", "brcm,kona-wdt";
reg = <0x35002f40 0x6c>;
};
......@@ -16,9 +16,11 @@ Required properties:
performs the same operation).
"marvell,"aurora-outer-cache: Marvell Controller designed to be
compatible with the ARM one with outer cache mode.
"bcm,bcm11351-a2-pl310-cache": For Broadcom bcm11351 chipset where an
"brcm,bcm11351-a2-pl310-cache": For Broadcom bcm11351 chipset where an
offset needs to be added to the address before passing down to the L2
cache controller
"bcm,bcm11351-a2-pl310-cache": DEPRECATED by
"brcm,bcm11351-a2-pl310-cache"
- cache-unified : Specifies the cache is a unified cache.
- cache-level : Should be set to 2 for a level 2 cache.
- reg : Physical base address and size of cache controller's memory mapped
......
......@@ -59,3 +59,6 @@ Boards:
- AM43x EPOS EVM
compatible = "ti,am43x-epos-evm", "ti,am4372", "ti,am43"
- DRA7 EVM: Software Developement Board for DRA7XX
compatible = "ti,dra7-evm", "ti,dra7"
......@@ -22,7 +22,7 @@ This contains the board-specific information.
- compatible: must be "stericsson,s365".
- vana15-supply: the regulator supplying the 1.5V to drive the
board.
- syscon: a pointer to the syscon node so we can acccess the
- syscon: a pointer to the syscon node so we can access the
syscon registers to set the board as self-powered.
Example:
......
ARM Versatile Express Serial Configuration Controller
-----------------------------------------------------
Test chips for ARM Versatile Express platform implement SCC (Serial
Configuration Controller) interface, used to set initial conditions
for the test chip.
In some cases its registers are also mapped in normal address space
and can be used to obtain runtime information about the chip internals
(like silicon temperature sensors) and as interface to other subsystems
like platform configuration control and power management.
Required properties:
- compatible value: "arm,vexpress-scc,<model>", "arm,vexpress-scc";
where <model> is the full tile model name (as used
in the tile's Technical Reference Manual),
eg. for Coretile Express A15x2 A7x3 (V2P-CA15_A7):
compatible = "arm,vexpress-scc,v2p-ca15_a7", "arm,vexpress-scc";
Optional properties:
- reg: when the SCC is memory mapped, physical address and size of the
registers window
- interrupts: when the SCC can generate a system-level interrupt
Example:
scc@7fff0000 {
compatible = "arm,vexpress-scc,v2p-ca15_a7", "arm,vexpress-scc";
reg = <0 0x7fff0000 0 0x1000>;
interrupts = <0 95 4>;
};
......@@ -32,8 +32,8 @@ numbers - see motherboard's TRM for more details.
The node describing a config device must refer to the sysreg node via
"arm,vexpress,config-bridge" phandle (can be also defined in the node's
parent) and relies on the board topology properties - see main vexpress
node documentation for more details. It must must also define the
following property:
node documentation for more details. It must also define the following
property:
- arm,vexpress-sysreg,func : must contain two cells:
- first cell defines function number (eg. 1 for clock generator,
2 for voltage regulators etc.)
......
......@@ -4,27 +4,17 @@ SATA nodes are defined to describe on-chip Serial ATA controllers.
Each SATA controller should have its own node.
Required properties:
- compatible : compatible list, contains "calxeda,hb-ahci" or "snps,spear-ahci"
- compatible : compatible list, contains "snps,spear-ahci"
- interrupts : <interrupt mapping for SATA IRQ>
- reg : <registers mapping>
Optional properties:
- calxeda,port-phys: phandle-combophy and lane assignment, which maps each
SATA port to a combophy and a lane within that
combophy
- calxeda,sgpio-gpio: phandle-gpio bank, bit offset, and default on or off,
which indicates that the driver supports SGPIO
indicator lights using the indicated GPIOs
- calxeda,led-order : a u32 array that map port numbers to offsets within the
SGPIO bitstream.
- dma-coherent : Present if dma operations are coherent
Example:
sata@ffe08000 {
compatible = "calxeda,hb-ahci";
reg = <0xffe08000 0x1000>;
interrupts = <115>;
calxeda,port-phys = <&combophy5 0 &combophy0 0 &combophy0 1
&combophy0 2 &combophy0 3>;
compatible = "snps,spear-ahci";
reg = <0xffe08000 0x1000>;
interrupts = <115>;
};
* Calxeda AHCI SATA Controller
SATA nodes are defined to describe on-chip Serial ATA controllers.
The Calxeda SATA controller mostly conforms to the AHCI interface
with some special extensions to add functionality.
Each SATA controller should have its own node.
Required properties:
- compatible : compatible list, contains "calxeda,hb-ahci"
- interrupts : <interrupt mapping for SATA IRQ>
- reg : <registers mapping>
Optional properties:
- dma-coherent : Present if dma operations are coherent
- calxeda,port-phys : phandle-combophy and lane assignment, which maps each
SATA port to a combophy and a lane within that
combophy
- calxeda,sgpio-gpio: phandle-gpio bank, bit offset, and default on or off,
which indicates that the driver supports SGPIO
indicator lights using the indicated GPIOs
- calxeda,led-order : a u32 array that map port numbers to offsets within the
SGPIO bitstream.
- calxeda,tx-atten : a u32 array that contains TX attenuation override
codes, one per port. The upper 3 bytes are always
0 and thus ignored.
- calxeda,pre-clocks : a u32 that indicates the number of additional clock
cycles to transmit before sending an SGPIO pattern
- calxeda,post-clocks: a u32 that indicates the number of additional clock
cycles to transmit after sending an SGPIO pattern
Example:
sata@ffe08000 {
compatible = "calxeda,hb-ahci";
reg = <0xffe08000 0x1000>;
interrupts = <115>;
dma-coherent;
calxeda,port-phys = <&combophy5 0 &combophy0 0 &combophy0 1
&combophy0 2 &combophy0 3>;
calxeda,sgpio-gpio =<&gpioh 5 1 &gpioh 6 1 &gpioh 7 1>;
calxeda,led-order = <4 0 1 2 3>;
calxeda,tx-atten = <0xff 22 0xff 0xff 23>;
calxeda,pre-clocks = <10>;
calxeda,post-clocks = <0>;
};
......@@ -8,7 +8,7 @@ The actual devices are instantiated from the child nodes of a WEIM node.
Required properties:
- compatible: Should be set to "fsl,imx6q-weim"
- compatible: Should be set to "fsl,<soc>-weim"
- reg: A resource specifier for the register space
(see the example below)
- clocks: the clock, see the example below.
......@@ -21,11 +21,18 @@ Required properties:
Timing property for child nodes. It is mandatory, not optional.
- fsl,weim-cs-timing: The timing array, contains 6 timing values for the
- fsl,weim-cs-timing: The timing array, contains timing values for the
child node. We can get the CS index from the child
node's "reg" property. This property contains the values
for the registers EIM_CSnGCR1, EIM_CSnGCR2, EIM_CSnRCR1,
EIM_CSnRCR2, EIM_CSnWCR1, EIM_CSnWCR2 in this order.
node's "reg" property. The number of registers depends
on the selected chip.
For i.MX1, i.MX21 ("fsl,imx1-weim") there are two
registers: CSxU, CSxL.
For i.MX25, i.MX27, i.MX31 and i.MX35 ("fsl,imx27-weim")
there are three registers: CSCRxU, CSCRxL, CSCRxA.
For i.MX50, i.MX53 ("fsl,imx50-weim"),
i.MX51 ("fsl,imx51-weim") and i.MX6Q ("fsl,imx6q-weim")
there are six registers: CSxGCR1, CSxGCR2, CSxRCR1,
CSxRCR2, CSxWCR1, CSxWCR2.
Example for an imx6q-sabreauto board, the NOR flash connected to the WEIM:
......
此差异已折叠。
......@@ -5,7 +5,7 @@ TI C6X SoCs contain a region of miscellaneous registers which provide various
function for SoC control or status. Details vary considerably among from SoC
to SoC with no two being alike.
In general, the Device State Configuraion Registers (DSCR) will provide one or
In general, the Device State Configuration Registers (DSCR) will provide one or
more configuration registers often protected by a lock register where one or
more key values must be written to a lock register in order to unlock the
configuration register for writes. These configuration register may be used to
......
......@@ -2,7 +2,7 @@
The Samsung Audio Subsystem clock controller generates and supplies clocks
to Audio Subsystem block available in the S5PV210 and Exynos SoCs. The clock
binding described here is applicable to all SoC's in Exynos family.
binding described here is applicable to all SoCs in Exynos family.
Required Properties:
......
......@@ -197,6 +197,7 @@ clocks and IDs.
spdif0_gate 183
spdif1_gate 184
spdif_ipg_gate 185
ocram 186
Examples (for mx53):
......
......@@ -209,6 +209,12 @@ clocks and IDs.
pll5_post_div 194
pll5_video_div 195
eim_slow 196
spdif 197
cko2_sel 198
cko2_podf 199
cko2 200
cko 201
vdoa 202
Examples:
......
......@@ -17,7 +17,7 @@ Optional properties for the SRC node:
- disable-mxtal: if present this will disable the MXTALO,
i.e. the driver output for the main (~19.2 MHz) chrystal,
if the board has its own circuitry for providing this
osciallator
oscillator
PLL nodes: these nodes represent the two PLLs on the system,
......
此差异已折叠。
......@@ -18,14 +18,14 @@ dma0: dma@ffffec00 {
DMA clients connected to the Atmel DMA controller must use the format
described in the dma.txt file, using a three-cell specifier for each channel:
a phandle plus two interger cells.
a phandle plus two integer cells.
The three cells in order are:
1. A phandle pointing to the DMA controller.
2. The memory interface (16 most significant bits), the peripheral interface
(16 less significant bits).
3. Parameters for the at91 DMA configuration register which are device
dependant:
dependent:
- bit 7-0: peripheral identifier for the hardware handshaking interface. The
identifier can be different for tx and rx.
- bit 11-8: FIFO configuration. 0 for half FIFO, 1 for ALAP, 1 for ASAP.
......
......@@ -34,7 +34,7 @@ Clients have to specify the DMA requests with phandles in a list.
Required properties:
- dmas: List of one or more DMA request specifiers. One DMA request specifier
consists of a phandle to the DMA controller followed by the integer
specifiying the request line.
specifying the request line.
- dma-names: List of string identifiers for the DMA requests. For the correct
names, have a look at the specific client driver.
......
......@@ -37,14 +37,14 @@ Each dmas request consists of 4 cells:
1. A phandle pointing to the DMA controller
2. Device Type
3. The DMA request line number (only when 'use fixed channel' is set)
4. A 32bit mask specifying; mode, direction and endianess [NB: This list will grow]
4. A 32bit mask specifying; mode, direction and endianness [NB: This list will grow]
0x00000001: Mode:
Logical channel when unset
Physical channel when set
0x00000002: Direction:
Memory to Device when unset
Device to Memory when set
0x00000004: Endianess:
0x00000004: Endianness:
Little endian when unset
Big endian when set
0x00000008: Use fixed channel:
......
EXTCON FOR PALMAS/TWL CHIPS
PALMAS USB COMPARATOR
Required Properties:
- compatible : Should be "ti,palmas-usb" or "ti,twl6035-usb"
Optional Properties:
- ti,wakeup : To enable the wakeup comparator in probe
- ti,enable-id-detection: Perform ID detection.
- ti,enable-vbus-detection: Perform VBUS detection.
palmas-usb {
compatible = "ti,twl6035-usb", "ti,palmas-usb";
ti,wakeup;
};
EXTCON FOR TWL CHIPS
PALMAS USB COMPARATOR
Required Properties:
- compatible : Should be "ti,palmas-usb" or "ti,twl6035-usb"
- vbus-supply : phandle to the regulator device tree node.
Optional Properties:
- ti,wakeup : To enable the wakeup comparator in probe
palmas-usb {
compatible = "ti,twl6035-usb", "ti,palmas-usb";
vbus-supply = <&smps10_reg>;
ti,wakeup;
};
Palmas GPIO controller bindings
Required properties:
- compatible:
- "ti,palams-gpio" for palma series of the GPIO controller
- "ti,tps80036-gpio" for Palma series device TPS80036.
- "ti,tps65913-gpio" for palma series device TPS65913.
- "ti,tps65914-gpio" for palma series device TPS65914.
- #gpio-cells : Should be two.
- first cell is the gpio pin number
- second cell is used to specify the gpio polarity:
0 = active high
1 = active low
- gpio-controller : Marks the device node as a GPIO controller.
Note: This gpio node will be sub node of palmas node.
Example:
palmas: tps65913@58 {
:::::::::::
palmas_gpio: palmas_gpio {
compatible = "ti,palmas-gpio";
gpio-controller;
#gpio-cells = <2>;
};
:::::::::::
};
此差异已折叠。
......@@ -10,8 +10,9 @@ Required properties:
There're three gpio interrupts in arch-pxa, and they're gpio0,
gpio1 and gpio_mux. There're only one gpio interrupt in arch-mmp,
gpio_mux.
- interrupt-name : Should be the name of irq resource. Each interrupt
binds its interrupt-name.
- interrupt-names : Should be the names of irq resources. Each interrupt
uses its own interrupt name, so there should be as many interrupt names
as referenced interrups.
- interrupt-controller : Identifies the node as an interrupt controller.
- #interrupt-cells: Specifies the number of cells needed to encode an
interrupt source.
......@@ -24,7 +25,7 @@ Example:
compatible = "marvell,mmp-gpio";
reg = <0xd4019000 0x1000>;
interrupts = <49>;
interrupt-name = "gpio_mux";
interrupt-names = "gpio_mux";
gpio-controller;
#gpio-cells = <1>;
interrupt-controller;
......
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册