提交 08039264 编写于 作者: H Horms 提交者: Adrian Bunk

Documentation: Make fujitsu/frv/kernel-ABI.txt 80 columns wide

Documentation: Make kernel-ABI.txt 80 columns wide

Note that this only has line-wrapping and white-space changes.
No text was changed at all.
Signed-Off-By: NHorms <horms@verge.net.au>
Signed-off-by: NAdrian Bunk <bunk@stusta.de>
上级 abe37e5a
...@@ -2,16 +2,18 @@ ...@@ -2,16 +2,18 @@
INTERNAL KERNEL ABI FOR FR-V ARCH INTERNAL KERNEL ABI FOR FR-V ARCH
================================= =================================
The internal FRV kernel ABI is not quite the same as the userspace ABI. A number of the registers The internal FRV kernel ABI is not quite the same as the userspace ABI. A
are used for special purposed, and the ABI is not consistent between modules vs core, and MMU vs number of the registers are used for special purposed, and the ABI is not
no-MMU. consistent between modules vs core, and MMU vs no-MMU.
This partly stems from the fact that FRV CPUs do not have a separate supervisor stack pointer, and This partly stems from the fact that FRV CPUs do not have a separate
most of them do not have any scratch registers, thus requiring at least one general purpose supervisor stack pointer, and most of them do not have any scratch
register to be clobbered in such an event. Also, within the kernel core, it is possible to simply registers, thus requiring at least one general purpose register to be
jump or call directly between functions using a relative offset. This cannot be extended to modules clobbered in such an event. Also, within the kernel core, it is possible to
for the displacement is likely to be too far. Thus in modules the address of a function to call simply jump or call directly between functions using a relative offset.
must be calculated in a register and then used, requiring two extra instructions. This cannot be extended to modules for the displacement is likely to be too
far. Thus in modules the address of a function to call must be calculated
in a register and then used, requiring two extra instructions.
This document has the following sections: This document has the following sections:
...@@ -39,7 +41,8 @@ When a system call is made, the following registers are effective: ...@@ -39,7 +41,8 @@ When a system call is made, the following registers are effective:
CPU OPERATING MODES CPU OPERATING MODES
=================== ===================
The FR-V CPU has three basic operating modes. In order of increasing capability: The FR-V CPU has three basic operating modes. In order of increasing
capability:
(1) User mode. (1) User mode.
...@@ -47,42 +50,46 @@ The FR-V CPU has three basic operating modes. In order of increasing capability: ...@@ -47,42 +50,46 @@ The FR-V CPU has three basic operating modes. In order of increasing capability:
(2) Kernel mode. (2) Kernel mode.
Normal kernel mode. There are many additional control registers available that may be Normal kernel mode. There are many additional control registers
accessed in this mode, in addition to all the stuff available to user mode. This has two available that may be accessed in this mode, in addition to all the
submodes: stuff available to user mode. This has two submodes:
(a) Exceptions enabled (PSR.T == 1). (a) Exceptions enabled (PSR.T == 1).
Exceptions will invoke the appropriate normal kernel mode handler. On entry to the Exceptions will invoke the appropriate normal kernel mode
handler, the PSR.T bit will be cleared. handler. On entry to the handler, the PSR.T bit will be cleared.
(b) Exceptions disabled (PSR.T == 0). (b) Exceptions disabled (PSR.T == 0).
No exceptions or interrupts may happen. Any mandatory exceptions will cause the CPU to No exceptions or interrupts may happen. Any mandatory exceptions
halt unless the CPU is told to jump into debug mode instead. will cause the CPU to halt unless the CPU is told to jump into
debug mode instead.
(3) Debug mode. (3) Debug mode.
No exceptions may happen in this mode. Memory protection and management exceptions will be No exceptions may happen in this mode. Memory protection and
flagged for later consideration, but the exception handler won't be invoked. Debugging traps management exceptions will be flagged for later consideration, but
such as hardware breakpoints and watchpoints will be ignored. This mode is entered only by the exception handler won't be invoked. Debugging traps such as
debugging events obtained from the other two modes. hardware breakpoints and watchpoints will be ignored. This mode is
entered only by debugging events obtained from the other two modes.
All kernel mode registers may be accessed, plus a few extra debugging specific registers. All kernel mode registers may be accessed, plus a few extra debugging
specific registers.
================================= =================================
INTERNAL KERNEL-MODE REGISTER ABI INTERNAL KERNEL-MODE REGISTER ABI
================================= =================================
There are a number of permanent register assignments that are set up by entry.S in the exception There are a number of permanent register assignments that are set up by
prologue. Note that there is a complete set of exception prologues for each of user->kernel entry.S in the exception prologue. Note that there is a complete set of
transition and kernel->kernel transition. There are also user->debug and kernel->debug mode exception prologues for each of user->kernel transition and kernel->kernel
transition prologues. transition. There are also user->debug and kernel->debug mode transition
prologues.
REGISTER FLAVOUR USE REGISTER FLAVOUR USE
=============== ======= ==================================================== =============== ======= ==============================================
GR1 Supervisor stack pointer GR1 Supervisor stack pointer
GR15 Current thread info pointer GR15 Current thread info pointer
GR16 GP-Rel base register for small data GR16 GP-Rel base register for small data
...@@ -92,10 +99,12 @@ transition prologues. ...@@ -92,10 +99,12 @@ transition prologues.
GR31 NOMMU Destroyed by debug mode entry GR31 NOMMU Destroyed by debug mode entry
GR31 MMU Destroyed by TLB miss kernel mode entry GR31 MMU Destroyed by TLB miss kernel mode entry
CCR.ICC2 Virtual interrupt disablement tracking CCR.ICC2 Virtual interrupt disablement tracking
CCCR.CC3 Cleared by exception prologue (atomic op emulation) CCCR.CC3 Cleared by exception prologue
(atomic op emulation)
SCR0 MMU See mmu-layout.txt. SCR0 MMU See mmu-layout.txt.
SCR1 MMU See mmu-layout.txt. SCR1 MMU See mmu-layout.txt.
SCR2 MMU Save for EAR0 (destroyed by icache insns in debug mode) SCR2 MMU Save for EAR0 (destroyed by icache insns
in debug mode)
SCR3 MMU Save for GR31 during debug exceptions SCR3 MMU Save for GR31 during debug exceptions
DAMR/IAMR NOMMU Fixed memory protection layout. DAMR/IAMR NOMMU Fixed memory protection layout.
DAMR/IAMR MMU See mmu-layout.txt. DAMR/IAMR MMU See mmu-layout.txt.
...@@ -104,18 +113,21 @@ transition prologues. ...@@ -104,18 +113,21 @@ transition prologues.
Certain registers are also used or modified across function calls: Certain registers are also used or modified across function calls:
REGISTER CALL RETURN REGISTER CALL RETURN
=============== =============================== =============================== =============== =============================== ======================
GR0 Fixed Zero - GR0 Fixed Zero -
GR2 Function call frame pointer GR2 Function call frame pointer
GR3 Special Preserved GR3 Special Preserved
GR3-GR7 - Clobbered GR3-GR7 - Clobbered
GR8 Function call arg #1 Return value (or clobbered) GR8 Function call arg #1 Return value
GR9 Function call arg #2 Return value MSW (or clobbered) (or clobbered)
GR9 Function call arg #2 Return value MSW
(or clobbered)
GR10-GR13 Function call arg #3-#6 Clobbered GR10-GR13 Function call arg #3-#6 Clobbered
GR14 - Clobbered GR14 - Clobbered
GR15-GR16 Special Preserved GR15-GR16 Special Preserved
GR17-GR27 - Preserved GR17-GR27 - Preserved
GR28-GR31 Special Only accessed explicitly GR28-GR31 Special Only accessed
explicitly
LR Return address after CALL Clobbered LR Return address after CALL Clobbered
CCR/CCCR - Mostly Clobbered CCR/CCCR - Mostly Clobbered
...@@ -124,46 +136,53 @@ Certain registers are also used or modified across function calls: ...@@ -124,46 +136,53 @@ Certain registers are also used or modified across function calls:
INTERNAL DEBUG-MODE REGISTER ABI INTERNAL DEBUG-MODE REGISTER ABI
================================ ================================
This is the same as the kernel-mode register ABI for functions calls. The difference is that in This is the same as the kernel-mode register ABI for functions calls. The
debug-mode there's a different stack and a different exception frame. Almost all the global difference is that in debug-mode there's a different stack and a different
registers from kernel-mode (including the stack pointer) may be changed. exception frame. Almost all the global registers from kernel-mode
(including the stack pointer) may be changed.
REGISTER FLAVOUR USE REGISTER FLAVOUR USE
=============== ======= ==================================================== =============== ======= ==============================================
GR1 Debug stack pointer GR1 Debug stack pointer
GR16 GP-Rel base register for small data GR16 GP-Rel base register for small data
GR31 Current debug exception frame pointer (__debug_frame) GR31 Current debug exception frame pointer
(__debug_frame)
SCR3 MMU Saved value of GR31 SCR3 MMU Saved value of GR31
Note that debug mode is able to interfere with the kernel's emulated atomic ops, so it must be Note that debug mode is able to interfere with the kernel's emulated atomic
exceedingly careful not to do any that would interact with the main kernel in this regard. Hence ops, so it must be exceedingly careful not to do any that would interact
the debug mode code (gdbstub) is almost completely self-contained. The only external code used is with the main kernel in this regard. Hence the debug mode code (gdbstub) is
the sprintf family of functions. almost completely self-contained. The only external code used is the
sprintf family of functions.
Futhermore, break.S is so complicated because single-step mode does not switch off on entry to an Futhermore, break.S is so complicated because single-step mode does not
exception. That means unless manually disabled, single-stepping will blithely go on stepping into switch off on entry to an exception. That means unless manually disabled,
things like interrupts. See gdbstub.txt for more information. single-stepping will blithely go on stepping into things like interrupts.
See gdbstub.txt for more information.
========================== ==========================
VIRTUAL INTERRUPT HANDLING VIRTUAL INTERRUPT HANDLING
========================== ==========================
Because accesses to the PSR is so slow, and to disable interrupts we have to access it twice (once Because accesses to the PSR is so slow, and to disable interrupts we have
to read and once to write), we don't actually disable interrupts at all if we don't have to. What to access it twice (once to read and once to write), we don't actually
we do instead is use the ICC2 condition code flags to note virtual disablement, such that if we disable interrupts at all if we don't have to. What we do instead is use
then do take an interrupt, we note the flag, really disable interrupts, set another flag and resume the ICC2 condition code flags to note virtual disablement, such that if we
execution at the point the interrupt happened. Setting condition flags as a side effect of an then do take an interrupt, we note the flag, really disable interrupts, set
arithmetic or logical instruction is really fast. This use of the ICC2 only occurs within the another flag and resume execution at the point the interrupt happened.
Setting condition flags as a side effect of an arithmetic or logical
instruction is really fast. This use of the ICC2 only occurs within the
kernel - it does not affect userspace. kernel - it does not affect userspace.
The flags we use are: The flags we use are:
(*) CCR.ICC2.Z [Zero flag] (*) CCR.ICC2.Z [Zero flag]
Set to virtually disable interrupts, clear when interrupts are virtually enabled. Can be Set to virtually disable interrupts, clear when interrupts are
modified by logical instructions without affecting the Carry flag. virtually enabled. Can be modified by logical instructions without
affecting the Carry flag.
(*) CCR.ICC2.C [Carry flag] (*) CCR.ICC2.C [Carry flag]
...@@ -176,8 +195,9 @@ What happens is this: ...@@ -176,8 +195,9 @@ What happens is this:
ICC2.Z is 0, ICC2.C is 1. ICC2.Z is 0, ICC2.C is 1.
(2) An interrupt occurs. The exception prologue examines ICC2.Z and determines that nothing needs (2) An interrupt occurs. The exception prologue examines ICC2.Z and
doing. This is done simply with an unlikely BEQ instruction. determines that nothing needs doing. This is done simply with an
unlikely BEQ instruction.
(3) The interrupts are disabled (local_irq_disable) (3) The interrupts are disabled (local_irq_disable)
...@@ -187,48 +207,56 @@ What happens is this: ...@@ -187,48 +207,56 @@ What happens is this:
ICC2.Z would be set to 0. ICC2.Z would be set to 0.
A TIHI #2 instruction (trap #2 if condition HI - Z==0 && C==0) would be used to trap if A TIHI #2 instruction (trap #2 if condition HI - Z==0 && C==0) would
interrupts were now virtually enabled, but physically disabled - which they're not, so the be used to trap if interrupts were now virtually enabled, but
trap isn't taken. The kernel would then be back to state (1). physically disabled - which they're not, so the trap isn't taken. The
kernel would then be back to state (1).
(5) An interrupt occurs. The exception prologue examines ICC2.Z and determines that the interrupt (5) An interrupt occurs. The exception prologue examines ICC2.Z and
shouldn't actually have happened. It jumps aside, and there disabled interrupts by setting determines that the interrupt shouldn't actually have happened. It
PSR.PIL to 14 and then it clears ICC2.C. jumps aside, and there disabled interrupts by setting PSR.PIL to 14
and then it clears ICC2.C.
(6) If interrupts were then saved and disabled again (local_irq_save): (6) If interrupts were then saved and disabled again (local_irq_save):
ICC2.Z would be shifted into the save variable and masked off (giving a 1). ICC2.Z would be shifted into the save variable and masked off
(giving a 1).
ICC2.Z would then be set to 1 (thus unchanged), and ICC2.C would be unaffected (ie: 0). ICC2.Z would then be set to 1 (thus unchanged), and ICC2.C would be
unaffected (ie: 0).
(7) If interrupts were then restored from state (6) (local_irq_restore): (7) If interrupts were then restored from state (6) (local_irq_restore):
ICC2.Z would be set to indicate the result of XOR'ing the saved value (ie: 1) with 1, which ICC2.Z would be set to indicate the result of XOR'ing the saved
gives a result of 0 - thus leaving ICC2.Z set. value (ie: 1) with 1, which gives a result of 0 - thus leaving
ICC2.Z set.
ICC2.C would remain unaffected (ie: 0). ICC2.C would remain unaffected (ie: 0).
A TIHI #2 instruction would be used to again assay the current state, but this would do A TIHI #2 instruction would be used to again assay the current state,
nothing as Z==1. but this would do nothing as Z==1.
(8) If interrupts were then enabled (local_irq_enable): (8) If interrupts were then enabled (local_irq_enable):
ICC2.Z would be cleared. ICC2.C would be left unaffected. Both flags would now be 0. ICC2.Z would be cleared. ICC2.C would be left unaffected. Both
flags would now be 0.
A TIHI #2 instruction again issued to assay the current state would then trap as both Z==0 A TIHI #2 instruction again issued to assay the current state would
[interrupts virtually enabled] and C==0 [interrupts really disabled] would then be true. then trap as both Z==0 [interrupts virtually enabled] and C==0
[interrupts really disabled] would then be true.
(9) The trap #2 handler would simply enable hardware interrupts (set PSR.PIL to 0), set ICC2.C to (9) The trap #2 handler would simply enable hardware interrupts
1 and return. (set PSR.PIL to 0), set ICC2.C to 1 and return.
(10) Immediately upon returning, the pending interrupt would be taken. (10) Immediately upon returning, the pending interrupt would be taken.
(11) The interrupt handler would take the path of actually processing the interrupt (ICC2.Z is (11) The interrupt handler would take the path of actually processing the
clear, BEQ fails as per step (2)). interrupt (ICC2.Z is clear, BEQ fails as per step (2)).
(12) The interrupt handler would then set ICC2.C to 1 since hardware interrupts are definitely (12) The interrupt handler would then set ICC2.C to 1 since hardware
enabled - or else the kernel wouldn't be here. interrupts are definitely enabled - or else the kernel wouldn't be here.
(13) On return from the interrupt handler, things would be back to state (1). (13) On return from the interrupt handler, things would be back to state (1).
This trap (#2) is only available in kernel mode. In user mode it will result in SIGILL. This trap (#2) is only available in kernel mode. In user mode it will
result in SIGILL.
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册