# Pin
## Overview
### Pin
The pin, also called pin controller, manages pin resources of system on a chip (SoC) vendors and provides the pin multiplexing function.
### Basic Concepts
Pin, as a software concept, provides APIs for uniformly managing the pins from different SoC vendors, providing the pin multiplexing function, and configuring the electrical features of pins.
- SoC
An SOC is a chip that integrates microprocessors, analog IP cores, digital IP cores, and memory for specific purposes.
- Pin multiplexing
When the number of pins of a chip cannot handle the increasing connection requests, you can set the software registers to make the pins to work in different states.
### Working Principles
In the HDF, the pin module does not support the user mode and therefore does not need to publish services. It uses the service-free mode in interface adaptation. The service-free mode applies to the devices that do not provide user-mode APIs or the OS that does not distinguish the user mode and the kernel mode. The **DevHandle**, a void pointer, directly points to the kernel mode address of the device object.
The pin module is divided into the following layers:
- Interface layer: provides APIs for obtaining a pin, setting or obtaining the pull type, pull strength, and functions of a pin, and releasing a pin.
- Core layer: provides the capabilities of matching pin resources and adding, removing, and managing pin controllers. The core layer interacts with the adaptation layer by using hooks.
- Adaptation layer: instantiates hooks to implement specific functions.
**Figure 1** Service-free mode
![](figures/service-free-mode.png)
### Constraints
Currently, the pin module supports only the kernels (LiteOS) of mini and small systems.
## Development Guidelines
### When to Use
The pin module is used to manage pin resources. When the devices from SoC vendors interconnect with the HDF, the pin driver needs to be adapted.
### Available APIs
The **PinCntlrMethod** APIs are used to call the functions of the pin driver.
**PinCntlrMethod** definition:
```c
struct PinCntlrMethod {
int32_t (*SetPinPull)(struct PinCntlr *cntlr, uint32_t index, enum PinPullType pullType);
int32_t (*GetPinPull)(struct PinCntlr *cntlr, uint32_t index, enum PinPullType *pullType);
int32_t (*SetPinStrength)(struct PinCntlr *cntlr, uint32_t index, uint32_t strength);
int32_t (*GetPinStrength)(struct PinCntlr *cntlr, uint32_t index, uint32_t *strength);
int32_t (*SetPinFunc)(struct PinCntlr *cntlr, uint32_t index, const char *funcName);
int32_t (*GetPinFunc)(struct PinCntlr *cntlr, uint32_t index, const char **funcName);
};
```
**Table 1** APIs for the members in the PinCntlrMethod structure
| API | Input Parameter | Output Parameter | Return Value| Description|
| ------------ | ------------------------------------------- | ------ | ---- | ---- |
| SetPinPull | **cntlr**: structure pointer to the pin controller at the core layer.
**index**: pin index, which is a uint32_t variable.
**pullType**: pull type of the pin. It is an enum constant.| -|HDF_STATUS|Sets the pull type of a pin.|
| GetPinPull | **cntlr**: structure pointer to the pin controller at the core layer.
**index**: pin index, which is a uint32_t variable.| **pullType**: pointer to the pull type of the pin.| HDF_STATUS| Obtains the pull type of a pin.|
| SetPinStrength | **cntlr**: structure pointer to the pin controller at the core layer.
**index**: pin index, which is a uint32_t variable.
**strength**: pull strength of the pin. It is a uint32_t variable.| -| HDF_STATUS| Sets the pull strength of a pin.|
| GetPinStrength | **cntlr**: structure pointer to the pin controller at the core layer.
**index**: pin index, which is a uint32_t variable.| **strength**: pointer to the pull strength of the pin.| HDF_STATUS| Obtains the pull strength of a pin.|
| SetPinFunc | **cntlr**: structure pointer to the pin controller at the core layer.
**index**: pin index, which is a uint32_t variable.
**funcName**: char pointer to the pin function.| -| HDF_STATUS| Sets the pin function.|
| GetPinFunc | **cntlr**: structure pointer to the pin controller at the core layer.
**index**: pin index, which is a uint32_t variable.| **funcName**: char double pointer to the pin function.| HDF_STATUS| Obtains the pin function.|
### How to Develop
The pin module adaptation procedure is as follows:
- Instantiate the driver entry.
- Configure attribute files.
- Instantiate the core layer APIs.
- Debug the driver.
1. Instantiate the driver entry.
- Instantiate the **HdfDriverEntry** structure.
Instantiate the driver entry. The driver entry must be a global variable of the **HdfDriverEntry** type (defined in **hdf_device_desc.h**), and the value of **moduleName** must be the same as that in **device_info.hcs**.
- Call **HDF_INIT** to register the **HdfDriverEntry** instance with the HDF.
Generally, the HDF calls the **Init()** function to load the driver. If **Init()** fails to be called, the HDF calls **Release()** to release driver resources and exit.
```c
static struct HdfDriverEntry g_hi35xxPinDriverEntry = {
.moduleVersion = 1,
.Bind = Hi35xxPinBind,
.Init = Hi35xxPinInit,
.Release = Hi35xxPinRelease,
.moduleName = "hi35xx_pin_driver",// (Mandatory) The value must be the same as that of moduleName in the .hcs file.
};
HDF_INIT(g_hi35xxPinDriverEntry);// Call HDF_INIT to register the driver entry with the HDF.
```
2. Configure attribute files.
- Add the device node description to the **vendor/hisilicon/hispark_taurus/hdf_config/device_info/device_info.hcs** file.
```c
root {
device_info {
platform :: host {
hostName = "platform_host";
priority = 50;
device_pin :: device {
device0:: deviceNode { // Set an HDF device node for each pin controller.
policy = 0; // 2: visible in user mode; 1: visible in kernel mode; 0: no service required.
priority = 10; // Driver startup priority.
permission = 0644; // Permission to create device nodes for the driver.
/* (Mandatory) Driver name, which must be the same as the moduleName in the driver entry. */
moduleName = "hi35xx_pin_driver";
/* (Mandatory) Set the controller private data, which must be same as that in pin_config.hcs. */
deviceMatchAttr = "hisilicon_hi35xx_pin_0";
}
device1 :: deviceNode {
policy = 0;
priority = 10;
permission = 0644;
moduleName = "hi35xx_pin_driver";
deviceMatchAttr = "hisilicon_hi35xx_pin_1";
}
......
}
}
}
}
```
- Add the **pin_config.hcs** file.
Configure the device attributes in the **device/soc/hisilicon/hi3516dv300/sdk_liteos/hdf_config/pin/pin_config.hcs** file. The parameters are set as follows:
```c
root {
platform {
pin_config_hi35xx {
template pin_controller { // (Mandatory) Template configuration. In the template, you can configure the common parameters shared by device nodes.
number = 0; // (Mandatory) Controller ID.
regStartBasePhy = 0; // (Mandatory) Start physical base address of the register.
regSize = 0; // (Mandatory) Register bit width.
PinCount = 0; // (Mandatory) Number of pins.
match_attr = "";
template pin_desc {
pinName = ""; // (Mandatory) Name of the pin.
init = 0; // (Mandatory) Default value of the register.
F0 = ""; // (Mandatory) Function 0.
F1 = ""; // Function 1.
F2 = ""; // Function 2.
F3 = ""; // Function 3.
F4 = ""; // Function 4.
F5 = ""; // Function 5.
}
}
controller_0 :: pin_controller {
number = 0;
regStartBasePhy = 0x10FF0000;
regSize = 0x48;
pinCount = 18;
match_attr = "hisilicon_hi35xx_pin_0";
T1 :: pin_desc {
pinName = "T1";
init = 0x0600;
F0 = "EMMC_CLK";
F1 = "SFC_CLK";
F2 = "SFC_BOOT_MODE";
}
...... // Correspond to the pins of the pin controller. Add pins according to actual situation.
}
...// Each pin controller corresponds to a controller node. If there are multiple pin controllers, add the corresponding controller nodes one by one.
}
}
}
```
3. Instantiate the pin controller object.
- Initialize the **PinCntlr** object.
Call **Hi35xxPinCntlrInit** to initialize the **PinCntlr** members.
```c
struct Hi35xxPinDesc {
// Pin name.
const char *pinName;
// Initial value.
uint32_t init;
// Index of the pin.
uint32_t index;
// Pull type of the pin.
int32_t pullType;
// Pull strength of the pin.
int32_t strength;
// Array of pin function names.
const char *func[HI35XX_PIN_FUNC_MAX];
};
struct Hi35xxPinCntlr {
// Pin controller.
struct PinCntlr cntlr;
// Pointer to the pin description structure.
struct Hi35xxPinDesc *desc;
// Register mapping address.
volatile unsigned char *regBase;
// ID of the pin controller.
uint16_t number;
// Start address of the register physical base addresses.
uint32_t regStartBasePhy;
// Register bit width.
uint32_t regSize;
// Number of pins.
uint32_t pinCount;
};
// PinCntlr is the controller structure at the core layer. Its members are assigned with values by using the Init() function.
struct PinCntlr {
struct IDeviceIoService service;
struct HdfDeviceObject *device;
struct PinCntlrMethod *method;
struct DListHead node; // Node in the linked list.
OsalSpinlock spin; // Spinlock.
uint16_t number; // ID of the pin controller.
uint16_t pinCount; // Number of pins.
struct PinDesc *pins;
void *priv; // Private data.
};
// Initialize PinCntlr.
static int32_t Hi35xxPinCntlrInit(struct HdfDeviceObject *device, struct Hi35xxPinCntlr *hi35xx)
{
struct DeviceResourceIface *drsOps = NULL;
int32_t ret;
// Read the pin controller attributes from the .hcs file.
drsOps = DeviceResourceGetIfaceInstance(HDF_CONFIG_SOURCE);
if (drsOps == NULL || drsOps->GetUint32 == NULL || drsOps->GetUint16 == NULL) {
HDF_LOGE("%s: invalid drs ops fail!", __func__);
return HDF_FAILURE;
}
ret = drsOps->GetUint16(device->property, "number", &hi35xx->number, 0);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: read number failed", __func__);
return ret;
}
ret = drsOps->GetUint32(device->property, "regStartBasePhy", &hi35xx->regStartBasePhy, 0);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: read regStartBasePhy failed", __func__);
return ret;
}
ret = drsOps->GetUint32(device->property, "regSize", &hi35xx->regSize, 0);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: read regSize failed", __func__);
return ret;
}
ret = drsOps->GetUint32(device->property, "pinCount", &hi35xx->pinCount, 0);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: read pinCount failed", __func__);
return ret;
}
// Assign the values read to the members of the pin controller to initialize the pin controller.
hi35xx->cntlr.pinCount = hi35xx->pinCount;
hi35xx->cntlr.number = hi35xx->number;
hi35xx->regBase = OsalIoRemap(hi35xx->regStartBasePhy, hi35xx->regSize); // Pin controller mapping.
if (hi35xx->regBase == NULL) {
HDF_LOGE("%s: remap Pin base failed", __func__);
return HDF_ERR_IO;
}
hi35xx->desc = (struct Hi35xxPinDesc *)OsalMemCalloc(sizeof(struct Hi35xxPinDesc) * hi35xx->pinCount);
hi35xx->cntlr.pins = (struct PinDesc *)OsalMemCalloc(sizeof(struct PinDesc) * hi35xx->pinCount);
return HDF_SUCCESS;
}
```
- Instantiate the callback structure **PinCntlrMethod** in **PinCntlr**. Other members are initialized by using the **Init()** function.
```c
// The members of the PinCntlrMethod structure are all callbacks. Vendors need to implement the corresponding functions according to Table 1.
static struct PinCntlrMethod g_method = {
.SetPinPull = Hi35xxPinSetPull, // Set the pull type.
.GetPinPull = Hi35xxPinGetPull, // Obtains the pull type.
.SetPinStrength = Hi35xxPinSetStrength, // Set the pull strength.
.GetPinStrength = Hi35xxPinGetStrength, // Obtains the pull strength.
.SetPinFunc = Hi35xxPinSetFunc, // Set the pin functions.
.GetPinFunc = Hi35xxPinGetFunc, // Obtain the pin functions.
};
```
- **Init()** function
Input parameters:
**HdfDeviceObject**, an interface parameter exposed by the driver, contains the .hcs information.
Return value:
**HDF\_STATUS** (The following table lists some states. For more details, see **HDF\_STATUS** in **/drivers/framework/include/utils/hdf\_base.h**.)
| **State** | **Description** |
| ---------------------- | -------------- |
| HDF_ERR_INVALID_OBJECT | Invalid controller object.|
| HDF_ERR_MALLOC_FAIL | Failed to allocate memory. |
| HDF_ERR_INVALID_PARAM | Invalid parameter. |
| HDF_ERR_IO | I/O error. |
| HDF_SUCCESS | Initialization successful. |
| HDF_FAILURE | Initialization failed. |
Function description:
Initializes the custom structure object and **PinCntlr** members, and connects to the pin controller by calling the **PinCntlrAdd()** function.
```c
static int32_t Hi35xxPinReadFunc(struct Hi35xxPinDesc *desc, const struct DeviceResourceNode *node, struct DeviceResourceIface *drsOps)
{
int32_t ret;
uint32_t funcNum = 0;
// Read the pin function names of the pin controller child nodes from the .hcs file.
ret = drsOps->GetString(node, "F0", &desc->func[funcNum], "NULL");
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: read F0 failed", __func__);
return ret;
}
funcNum++;
ret = drsOps->GetString(node, "F1", &desc->func[funcNum], "NULL");
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: read F1 failed", __func__);
return ret;
}
funcNum++;
......
return HDF_SUCCESS;
}
static int32_t Hi35xxPinParsePinNode(const struct DeviceResourceNode *node, struct Hi35xxPinCntlr *hi35xx, int32_t index)
{
int32_t ret;
struct DeviceResourceIface *drsOps = NULL;
// Read the pin attributes of the pin controller child nodes from the .hcs file.
drsOps = DeviceResourceGetIfaceInstance(HDF_CONFIG_SOURCE);
if (drsOps == NULL || drsOps->GetUint32 == NULL || drsOps->GetString == NULL) {
HDF_LOGE("%s: invalid drs ops fail!", __func__);
return HDF_FAILURE;
}
ret = drsOps->GetString(node, "pinName", &hi35xx->desc[index].pinName, "NULL");
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: read pinName failed", __func__);
return ret;
}
......
ret = Hi35xxPinReadFunc(&hi35xx->desc[index], node, drsOps);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s:Pin read Func failed", __func__);
return ret;
}
hi35xx->cntlr.pins[index].pinName = hi35xx->desc[index].pinName;
hi35xx->cntlr.pins[index].priv = (void *)node;
......
return HDF_SUCCESS;
}
static int32_t Hi35xxPinInit(struct HdfDeviceObject *device)
{
......
struct Hi35xxPinCntlr *hi35xx = NULL;
......
ret = Hi35xxPinCntlrInit(device, hi35xx); // Initialize the pin controller.
......
DEV_RES_NODE_FOR_EACH_CHILD_NODE(device->property, childNode) { // Traverses each child node of the pin controller.
ret = Hi35xxPinParsePinNode(childNode, hi35xx, index); // Parsing the child nodes.
......
}
hi35xx->cntlr.method = &g_method; // Instantiate method.
ret = PinCntlrAdd(&hi35xx->cntlr); // Connect to the controller.
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: add Pin cntlr: failed", __func__);
ret = HDF_FAILURE;
}
return HDF_SUCCESS;
}
```
- **Release()** function
Input parameters:
**HdfDeviceObject**, an interface parameter exposed by the driver, contains the .hcs information.
Return value:
–
Function description:
Releases memory and deletes the controller. This function assigns a value to the **Release** API in the driver entry structure. If the HDF fails to call the **Init()** function to initialize the driver, the **Release()** function can be called to release driver resources.
```c
static void Hi35xxPinRelease(struct HdfDeviceObject *device)
{
int32_t ret;
uint16_t number;
struct PinCntlr *cntlr = NULL;
struct Hi35xxPinCntlr *hi35xx = NULL;
struct DeviceResourceIface *drsOps = NULL;
if (device == NULL || device->property == NULL) {
HDF_LOGE("%s: device or property is null", __func__);
return;
}
// Read the pin controller ID from the .hcs file.
drsOps = DeviceResourceGetIfaceInstance(HDF_CONFIG_SOURCE);
if (drsOps == NULL || drsOps->GetUint32 == NULL || drsOps->GetString == NULL) {
HDF_LOGE("%s: invalid drs ops", __func__);
return;
}
ret = drsOps->GetUint16(device->property, "number", &number, 0);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: read cntlr number failed", __func__);
return;
}
cntlr = PinCntlrGetByNumber(number); // Obtain the pin controller based on the controller ID.
PinCntlrRemove(cntlr);
hi35xx = (struct Hi35xxPinCntlr *)cntlr;
if (hi35xx != NULL) {
if (hi35xx->regBase != NULL) {
OsalIoUnmap((void *)hi35xx->regBase);
}
OsalMemFree(hi35xx);
}
}
```
4. Debug the driver.
(Optional) Verify basic functionalities of new drivers. For example, verify the information returned when the driver is loaded and whether data is successfully transmitted.