# UART - [概述](#section1761881586154520) - [接口说明](#section752964871810) - [开发步骤](#section944397404154520) - [开发实例](#section774610224154520) ## 概述 UART是通用异步收发传输器(Universal Asynchronous Receiver/Transmitter)的缩写,在HDF框架中,UART的接口适配模式采用独立服务模式。在这种模式下,每一个设备对象会独立发布一个设备服务来处理外部访问,设备管理器收到API的访问请求之后,通过提取该请求的参数,达到调用实际设备对象的相应内部方法的目的。独立服务模式可以直接借助HDFDeviceManager的服务管理能力,但需要为每个设备单独配置设备节点,增加内存占用。 **图 1** UART独立服务模式结构图 ![](figures/UART独立服务模式结构图.png "UART独立服务模式结构图") ## 接口说明 UartHostMethod定义: ``` struct UartHostMethod { int32_t (*Init)(struct UartHost *host); int32_t (*Deinit)(struct UartHost *host); int32_t (*Read)(struct UartHost *host, uint8_t *data, uint32_t size); int32_t (*Write)(struct UartHost *host, uint8_t *data, uint32_t size); int32_t (*GetBaud)(struct UartHost *host, uint32_t *baudRate); int32_t (*SetBaud)(struct UartHost *host, uint32_t baudRate); int32_t (*GetAttribute)(struct UartHost *host, struct UartAttribute *attribute); int32_t (*SetAttribute)(struct UartHost *host, struct UartAttribute *attribute); int32_t (*SetTransMode)(struct UartHost *host, enum UartTransMode mode); int32_t (*pollEvent)(struct UartHost *host, void *filep, void *table); }; ``` **表 1** UartHostMethod结构体成员的回调函数功能说明

函数

入参

出参

返回值

功能

Init

host: 结构体指针,核心层uart控制器;

HDF_STATUS相关状态

初始化Uart设备

Deinit

host: 结构体指针,核心层uart控制器;

HDF_STATUS相关状态

去初始化Uart设备

Read

host: 结构体指针,核心层uart控制器;size:uint32_t,数据大小;

data: uint8_t指针,传出的数据

HDF_STATUS相关状态

接收数据 RX

Write

host: 结构体指针,核心层uart控制器;data:uint8_t指针,传入数据;size:uint32_t,数据大小;

HDF_STATUS相关状态

发送数据 TX

SetBaud

host: 结构体指针,核心层uart控制器;baudRate: uint32_t指针,波特率传入值;

HDF_STATUS相关状态

设置波特率

GetBaud

host: 结构体指针,核心层uart控制器;

baudRate: uint32_t指针,传出的波特率;

HDF_STATUS相关状态

获取当前设置的波特率

GetAttribute

host: 结构体指针,核心层uart控制器;

attribute: 结构体指针,传出的属性值(见uart_if.h中UartAttribute定义)

HDF_STATUS相关状态

获取设备uart相关属性

SetAttribute

host: 结构体指针,核心层uart控制器;attribute: 结构体指针,属性传入值;

HDF_STATUS相关状态

设置设备uart相关属性

SetTransMode

host: 结构体指针,核心层uart控制器;mode: 枚举值(见uart_if.h中UartTransMode定义),传输模式

HDF_STATUS相关状态

设置传输模式

PollEvent

host: 结构体指针,核心层uart控制器;filep: void 指针,file ;table: void 指针,poll_table ;

HDF_STATUS相关状态

poll机制

## 开发步骤 UART模块适配HDF框架的三个环节是配置属性文件,实例化驱动入口,以及实例化核心层接口函数。 1. **实例化驱动入口:** - 实例化HdfDriverEntry结构体成员。 - 调用HDF\_INIT将HdfDriverEntry实例化对象注册到HDF框架中。 2. **配置属性文件:** - 在device\_info.hcs文件中添加deviceNode描述。 - 【可选】添加uart\_config.hcs器件属性文件。 3. **实例化UART控制器对象:** - 初始化UartHost成员。 - 实例化UartHost成员UartHostMethod。 >![](../public_sys-resources/icon-note.gif) **说明:** >实例化UartHost成员UartHostMethod,其定义和成员说明见[接口说明](#section752964871810)。 4. **驱动调试:** 【可选】针对新增驱动程序,建议验证驱动基本功能,例如UART控制状态,中断响应情况等。 ## 开发实例 下方将以uart\_hi35xx.c为示例,展示需要厂商提供哪些内容来完整实现设备功能。 1. 驱动开发首先需要实例化驱动入口,驱动入口必须为HdfDriverEntry(在 hdf\_device\_desc.h 中定义)类型的全局变量,且moduleName要和device\_info.hcs中保持一致。HDF框架会将所有加载的驱动的HdfDriverEntry对象首地址汇总,形成一个类似数组的段地址空间,方便上层调用。 一般在加载驱动时HDF会先调用Bind函数,再调用Init函数加载该驱动。当Init调用异常时,HDF框架会调用Release释放驱动资源并退出。 UART驱动入口参考: ``` struct HdfDriverEntry g_hdfUartDevice = { .moduleVersion = 1, .moduleName = "HDF_PLATFORM_UART",//【必要且与 HCS 里面的名字匹配】 .Bind = HdfUartDeviceBind, //见Bind参考 .Init = HdfUartDeviceInit, //见Init参考 .Release = HdfUartDeviceRelease, //见Release参考 }; //调用HDF_INIT将驱动入口注册到HDF框架中 HDF_INIT(g_hdfUartDevice); ``` 2. 完成驱动入口注册之后,下一步请在device\_info.hcs文件中添加deviceNode信息,并在 uart\_config.hcs 中配置器件属性。deviceNode信息与驱动入口注册相关,器件属性值与核心层UartHost成员的默认值或限制范围有密切关系。 本例只有一个UART控制器,如有多个器件信息,则需要在device\_info文件增加deviceNode信息,以及在uart\_config文件中增加对应的器件属性。 - device\_info.hcs 配置参考。 ``` root { device_info { match_attr = "hdf_manager"; platform :: host { hostName = "platform_host"; priority = 50; device_uart :: device { device0 :: deviceNode { policy = 1; //驱动服务发布的策略,policy大于等于1(用户态可见为2,仅内核态可见为1); priority = 40; //驱动启动优先级 permission = 0644; //驱动创建设备节点权限 moduleName = "HDF_PLATFORM_UART"; //驱动名称,该字段的值必须和驱动入口结构的moduleName值一致 serviceName = "HDF_PLATFORM_UART_0";//驱动对外发布服务的名称,必须唯一,必须要按照HDF_PLATFORM_UART_X的格式,X为UART控制器编号 deviceMatchAttr = "hisilicon_hi35xx_uart_0";//驱动私有数据匹配的关键字,必须和驱动私有数据配置表中的match_attr值一致 } device1 :: deviceNode { policy = 2; permission = 0644; priority = 40; moduleName = "HDF_PLATFORM_UART"; serviceName = "HDF_PLATFORM_UART_1"; deviceMatchAttr = "hisilicon_hi35xx_uart_1"; } ... } } } } ``` - uart\_config.hcs 配置参考。 ``` root { platform { template uart_controller {//模板公共参数, 继承该模板的节点如果使用模板中的默认值, 则节点字段可以缺省 match_attr = ""; num = 0; //【必要】设备号 baudrate = 115200; //【必要】波特率,数值可按需填写 fifoRxEn = 1; //【必要】使能接收FIFO fifoTxEn = 1; //【必要】使能发送FIFO flags = 4; //【必要】标志信号 regPbase = 0x120a0000; //【必要】地址映射需要 interrupt = 38; //【必要】中断号 iomemCount = 0x48; //【必要】地址映射需要 } controller_0x120a0000 :: uart_controller { match_attr = "hisilicon_hi35xx_uart_0";//【必要】必须和device_info.hcs中对应的设备的deviceMatchAttr值一致 } controller_0x120a1000 :: uart_controller { num = 1; baudrate = 9600; regPbase = 0x120a1000; interrupt = 39; match_attr = "hisilicon_hi35xx_uart_1"; } ... // 【可选】可新增,但需要在 device_info.hcs 添加对应的节点 } } ``` 3. 完成驱动入口注册之后,最后一步就是以核心层UartHost对象的初始化为核心,包括厂商自定义结构体(传递参数和数据),实例化UartHost成员UartHostMethod(让用户可以通过接口来调用驱动底层函数),实现HdfDriverEntry成员函数(Bind,Init,Release)。 - 自定义结构体参考。 从驱动的角度看,自定义结构体是参数和数据的载体,而且uart\_config.hcs文件中的数值会被HDF读入通过DeviceResourceIface来初始化结构体成员,一些重要数值也会传递给核心层对象,例如设备号等。 ``` struct UartPl011Port { //接口相关的结构体 int32_t enable; unsigned long physBase; //物理地址 uint32_t irqNum; //中断号 uint32_t defaultBaudrate;//默认波特率 uint32_t flags; //标志信号,下面三个宏与之相关 #define PL011_FLG_IRQ_REQUESTED (1 << 0) #define PL011_FLG_DMA_RX_REQUESTED (1 << 1) #define PL011_FLG_DMA_TX_REQUESTED (1 << 2) struct UartDmaTransfer *rxUdt; //DMA传输相关 struct UartDriverData *udd; //见下 }; struct UartDriverData { //数据传输相关的结构体 uint32_t num; uint32_t baudrate; //波特率(可设置) struct UartAttribute attr; //数据位、停止位等传输属性相关 struct UartTransfer *rxTransfer; //缓冲区相关,可理解为FIFO结构 wait_queue_head_t wait; //条件变量相关的排队等待信号 int32_t count; //数据数量 int32_t state; //uart控制器状态 #define UART_STATE_NOT_OPENED 0 #define UART_STATE_OPENING 1 #define UART_STATE_USEABLE 2 #define UART_STATE_SUSPENED 3 uint32_t flags; //状态标志 #define UART_FLG_DMA_RX (1 << 0) #define UART_FLG_DMA_TX (1 << 1) #define UART_FLG_RD_BLOCK (1 << 2) RecvNotify recv; //函数指针类型,指向串口数据接收函数 struct UartOps *ops; //自定义函数指针结构体,详情见device/hisilicon/drivers/uart/uart_pl011.c void *private; //一般用来存储UartPl011Port首地址,方便调用 }; // UartHost是核心层控制器结构体,其中的成员在Init函数中会被赋值 struct UartHost { struct IDeviceIoService service; struct HdfDeviceObject *device; uint32_t num; OsalAtomic atom; void *priv; //一般存储厂商自定义结构体首地址,方便后者被调用 struct UartHostMethod *method; //核心层钩子函数,厂商需要实现其成员函数功能并实例化 }; ``` - UartHost成员回调函数结构体UartHostMethod的实例化,其他成员在Bind函数中初始化。 ``` // uart_hi35xx.c 中的示例:钩子函数的实例化 struct UartHostMethod g_uartHostMethod = { .Init = Hi35xxInit, .Deinit = Hi35xxDeinit, .Read = Hi35xxRead, .Write = Hi35xxWrite, .SetBaud = Hi35xxSetBaud, .GetBaud = Hi35xxGetBaud, .SetAttribute = Hi35xxSetAttribute, .GetAttribute = Hi35xxGetAttribute, .SetTransMode = Hi35xxSetTransMode, .pollEvent = Hi35xxPollEvent, }; ``` - Bind函数参考 入参: HdfDeviceObject 这个是整个驱动对外暴露的接口参数,具备 HCS 配置文件的信息。 **返回值:** HDF\_STATUS相关状态 (下表为部分展示,如需使用其他状态,可见//drivers/framework/include/utils/hdf\_base.h中HDF\_STATUS 定义)。 **表 2** Bind函数入参和返回值

状态(值)

问题描述

HDF_ERR_INVALID_OBJECT

控制器对象非法

HDF_ERR_MALLOC_FAIL

内存分配失败

HDF_ERR_INVALID_PARAM

参数非法

HDF_ERR_IO

I/O 错误

HDF_SUCCESS

初始化成功

HDF_FAILURE

初始化失败

函数说明: 初始化自定义结构体对象,初始化UartHost成员。 ``` //uart_hi35xx.c static int32_t HdfUartDeviceBind(struct HdfDeviceObject *device) { ... return (UartHostCreate(device) == NULL) ? HDF_FAILURE : HDF_SUCCESS;//【必须做】调用核心层函数 UartHostCreate } //uart_core.c 核心层 UartHostCreate 函数说明 struct UartHost *UartHostCreate(struct HdfDeviceObject *device) { struct UartHost *host = NULL; //新建 UartHost ... host = (struct UartHost *)OsalMemCalloc(sizeof(*host));//分配内存 ... host->device = device; //【必要】使HdfDeviceObject与UartHost可以相互转化的前提 device->service = &(host->service);//【必要】使HdfDeviceObject与UartHost可以相互转化的前提 host->device->service->Dispatch = UartIoDispatch;//为 service 成员的 Dispatch 方法赋值 OsalAtomicSet(&host->atom, 0); //原子量初始化或者原子量设置 host->priv = NULL; host->method = NULL; return host; } ``` - Init函数参考 入参**:** HdfDeviceObject 是整个驱动对外暴露的接口参数,具备 HCS 配置文件的信息。 返回值: HDF\_STATUS相关状态。 函数说明: 初始化自定义结构体对象,初始化UartHost成员,调用核心层UartAddDev函数,接入VFS。 ``` int32_t HdfUartDeviceInit(struct HdfDeviceObject *device) { int32_t ret; struct UartHost *host = NULL; HDF_LOGI("%s: entry", __func__); ... host = UartHostFromDevice(device);//通过service成员后强制转为UartHost,赋值是在Bind函数中 ... ret = Hi35xxAttach(host, device); //完成UartHost对象的初始化,见下 ... host->method = &g_uartHostMethod; //UartHostMethod的实例化对象的挂载 return ret; } //完成 UartHost 对象的初始化 static int32_t Hi35xxAttach(struct UartHost *host, struct HdfDeviceObject *device) { int32_t ret; //udd 和 port 对象是厂商自定义的结构体对象,可根据需要实现相关功能 struct UartDriverData *udd = NULL; struct UartPl011Port *port = NULL; ... // 【必要相关功能】步骤【1】~【7】主要实现对 udd 对象的实例化赋值,然后赋值给核心层UartHost对象上 udd = (struct UartDriverData *)OsalMemCalloc(sizeof(*udd));//【1】 ... port = (struct UartPl011Port *)OsalMemCalloc(sizeof(struct UartPl011Port));//【2】 ... udd->ops = Pl011GetOps();//【3】设备开启、关闭、属性设置、发送操作等函数挂载 udd->recv = PL011UartRecvNotify;//【4】数据接收通知函数(条件锁机制)挂载 udd->count = 0; //【5】 port->udd = udd; //【6】使UartPl011Port与UartDriverData可以相互转化的前提 ret = UartGetConfigFromHcs(port, device->property);//【必要】 此步骤是将 HdfDeviceObject 的属性传递给厂商自定义结构体 // 用于相关操作,示例代码见下 ... udd->private = port; //【7】 host->priv = udd; //【必要】使UartHost与UartDriverData可以相互转化的前提 host->num = udd->num;//【必要】uart 设备号 UartAddDev(host); //【必要】核心层uart_dev.c 中的函数,作用:注册了一个字符设备节点到vfs, 这样从用户态可以通过这个虚拟文件节点访问uart return HDF_SUCCESS; } static int32_t UartGetConfigFromHcs(struct UartPl011Port *port, const struct DeviceResourceNode *node) { uint32_t tmp, regPbase, iomemCount; struct UartDriverData *udd = port->udd; struct DeviceResourceIface *iface = DeviceResourceGetIfaceInstance(HDF_CONFIG_SOURCE); ... //通过请求参数提取相应的值,并赋值给厂商自定义的结构体 if (iface->GetUint32(node, "num", &udd->num, 0) != HDF_SUCCESS) { HDF_LOGE("%s: read busNum fail", __func__); return HDF_FAILURE; } ... return 0; } ``` - Release函数参考 入参: HdfDeviceObject 是整个驱动对外暴露的接口参数,具备 HCS 配置文件的信息。 返回值: 无。 函数说明: 该函数需要在驱动入口结构体中赋值给 Release 接口, 当HDF框架调用Init函数初始化驱动失败时,可以调用 Release 释放驱动资源, 该函数中需包含释放内存和删除控制器等操作。所有强制转换获取相应对象的操作**前提**是在Init函数中具备对应赋值的操作。 ``` void HdfUartDeviceRelease(struct HdfDeviceObject *device) { struct UartHost *host = NULL; ... host = UartHostFromDevice(device);//这里有HdfDeviceObject到UartHost的强制转化,通过service成员,赋值见Bind函数 ... if (host->priv != NULL) { Hi35xxDetach(host); //厂商自定义的内存释放函数,见下 } UartHostDestroy(host); //调用核心层函数释放host } static void Hi35xxDetach(struct UartHost *host) { struct UartDriverData *udd = NULL; struct UartPl011Port *port = NULL; ... udd = host->priv; //这里有UartHost到UartDriverData的转化 ... UartRemoveDev(host);//VFS注销 port = udd->private;//这里有UartDriverData到UartPl011Port的转化 if (port != NULL) { if (port->physBase != 0) { OsalIoUnmap((void *)port->physBase);//地址反映射 } (void)OsalMemFree(port); udd->private = NULL; } (void)OsalMemFree(udd);//释放UartDriverData host->priv = NULL; } ```