**标准系统方案之瑞芯微RK3568移植案例** ​ 本文章是基于瑞芯微RK3568芯片的DAYU200开发板,进行标准系统相关功能的移植,主要包括产品配置添加,内核启动、升级,音频ADM化,Camera,TP,LCD,WIFI,BT,vibrator、sensor、图形显示模块的适配案例总结,以及相关功能的适配。 ## 产品配置和目录规划 ### 产品配置 在产品`//productdefine/common/device`目录下创建以rk3568名字命名的json文件,并指定CPU的架构。`//productdefine/common/device/rk3568.json`配置如下: ``` { "device_name": "rk3568", "device_company": "rockchip", "target_os": "ohos", "target_cpu": "arm", "kernel_version": "", "device_build_path": "device/board/hihope/rk3568", "enable_ramdisk": true, //是否支持ramdisk二级启动 "build_selinux": true // 是否支持selinux权限管理 } ``` 在`//productdefine/common/products`目录下创建以产品名命名的rk3568.json文件。该文件用于描述产品所使用的SOC 以及所需的子系统。配置如下 ``` { "product_name": "rk3568", "product_company" : "hihope", "product_device": "rk3568", "version": "2.0", "type": "standard", "parts":{ "ace:ace_engine_standard":{}, "ace:napi":{}, ... "xts:phone_tests":{} } } ``` 主要的配置内容包括: 1. product_device:配置所使用的SOC。 2. type:配置系统的级别, 这里直接standard即可。 3. parts:系统需要启用的子系统。子系统可以简单理解为一块独立构建的功能块。 已定义的子系统可以在`//build/subsystem_config.json`中找到。当然你也可以定制子系统。 这里建议先拷贝Hi3516DV300开发板的配置文件,删除掉hisilicon_products这个子系统。这个子系统为Hi3516DV300 SOC编译内核,不适合rk3568。 ### 目录规划 参考[Board和SoC解耦的设计思路](https://gitee.com/openharmony-sig/sig-content/blob/master/devboard/docs/board-soc-arch-design.md),并把芯片适配目录规划为: ``` device ├── board --- 单板厂商目录 │ └── hihope --- 单板厂商名字: │ └── rk3568 --- 单板名:rk3568,主要放置开发板相关的驱动业务代码 └── soc --- SoC厂商目录 └── rockchip --- SoC厂商名字:rockchip └── rk3568 --- SoC Series名:rk3568,主要为芯片原厂提供的一些方案,以及闭源库等 ``` ``` vendor └── hihope └── rk3568 --- 产品名字:产品、hcs以及demo相关 ``` ## **内核启动** ### 二级启动 二级启动简单来说就是将之前直接挂载sytem,从system下的init启动,改成先挂载ramdsik,从ramdsik中的init 启动,做些必要的初始化动作,如挂载system,vendor等分区,然后切到system下的init 。 Rk3568适配主要是将主线编译出来的ramdisk 打包到boot_linux.img中,主要有以下工作: 1.使能二级启动 在productdefine/common/device/rk3568.json 中使能enable_ramdisk。 ``` { "device_name": "rk3568", "device_company": "hihope", "target_os": "ohos", "target_cpu": "arm", "kernel_version": "", "device_build_path": "device/hihope/build", "enable_ramdisk": true, "build_selinux": true } ``` 2.把主线编译出来的ramdsik.img 打包到boot_linux.img 配置: 由于rk 启动uboot 支持从ramdisk 启动,只需要在打包boot_linux.img 的配置文件中增加ramdisk.img ,因此没有使用主线的its格式,具体配置就是在内核编译脚本make-ohos.sh 中增加: ``` function make_extlinux_conf() { dtb_path=$1 uart=$2 image=$3 echo "label rockchip-kernel-5.10" > ${EXTLINUX_CONF} echo " kernel /extlinux/${image}" >> ${EXTLINUX_CONF} echo " fdt /extlinux/${TOYBRICK_DTB}" >> ${EXTLINUX_CONF} if [ "enable_ramdisk" == "${ramdisk_flag}" ]; then echo " initrd /extlinux/ramdisk.img" >> ${EXTLINUX_CONF} fi cmdline="append earlycon=uart8250,mmio32,${uart} root=PARTUUID=614e0000-0000-4b53-8000-1d28000054a9 rw rootwait rootfstype=ext4" echo " ${cmdline}" >> ${EXTLINUX_CONF} } ``` ### 打包 增加了打包boot镜像的脚本make-boot.sh,供编译完ramdisk,打包boot 镜像时调用, 主要内容: ``` genext2fs -B ${blocks} -b ${block_size} -d boot_linux -i 8192 -U boot_linux.img ``` 调用make-boot.sh 的修改可以参考如下pr: https://gitee.com/openharmony/build/pulls/569/files ### INIT配置 init相关配置请参考[启动子系统的规范要求](https://gitee.com/openharmony/docs/blob/master/zh-cn/readme/%E5%90%AF%E5%8A%A8%E6%81%A2%E5%A4%8D%E5%AD%90%E7%B3%BB%E7%BB%9F.md)即可 ## **音频** ### RK3568 Audio总体结构图 ![dayu200-audio-01.png](figures/dayu200/dayu200-audio-01.png) ### ADM适配方案介绍 #### RK3568平台适配ADM框架图 ![](figures/dayu200/dayu200-audio-02.png) 1. ADM Drivers adapter 主要完成Codec/DMA/I2S驱动注册,使得ADM可以加载驱动节点;并注册ADM与Drivers交互的接口函数 2. ADM Drivers impl 主要完成ADM Drivers adapter接口函数的实现,以及Codec_config.hcs/dai_config.hcs等配置信息的获取,并注册到对应的设备 3. Linux Drivers ADM Drivers impl可以直接阅读硬件手册,完成驱动端到端的配置;也可以借用Linux原生驱动实现与接口,减少开发者工作量。 #### 目录结构 ``` ./device/board/hihope/rk3568/audio_drivers ├── codec │ └── rk809_codec │ ├── include │ │ ├── rk809_codec_impl.h │ │ └── rk817_codec.h │ └── src │ ├── rk809_codec_adapter.c │ ├── rk809_codec_linux_driver.c │ └── rk809_codec_ops.c ├── dai │ ├── include │ │ ├── rk3568_dai_linux.h │ │ └── rk3568_dai_ops.h │ └── src │ ├── rk3568_dai_adapter.c │ ├── rk3568_dai_linux_driver.c │ └── rk3568_dai_ops.c ├── dsp │ ├── include │ │ └── rk3568_dsp_ops.h │ └── src │ ├── rk3568_dsp_adapter.c │ └── rk3568_dsp_ops.c ├── include │ ├── audio_device_log.h │ └── rk3568_audio_common.h └── soc ├── include │ └── rk3568_dma_ops.h └── src ├── rk3568_dma_adapter.c └── rk3568_dma_ops.c ``` ### RK3568适配ADM详细过程 #### 梳理平台Audio框架 梳理目标平台的Audio结构,明确数据流与控制流通路。 1. 针对RK3568平台,Audio的结构相对简单见RK3568 Audio总体结构图,Codec作为一个独立设备。I2C完成对设备的控制,I2S完成Codec设备与CPU之间的交互。 2. 结合原理图整理I2S通道号,对应的引脚编号;I2C的通道号,地址等硬件信息。 3. 获取Codec对应的datasheet,以及RK3568平台的Datasheet(包含I2S/DMA通道等寄存器的介绍)。 #### 熟悉并了解ADM结构 ADM结构框图如下,Audio Peripheral Drivers和Platform Drivers为平台适配需要完成的工作。 dayu200-audio-03.png 结合第1步梳理出来的Audio结构分析,Audio Peripheral Drivers包含Rk809的驱动,Platform Drivers包含DMA驱动和I2S驱动。 | 需要适配的驱动 | ADM对应模块 | 接口文件路径 | | -------------- | ----------- | ---------------------------------------------------- | | RK809驱动 | Accessory | drivers/framework/include/audio/audio_accessory_if.h | | DMA驱动 | platform | drivers/framework/include/audio/audio_platform_if.h | | I2S驱动 | DAI | drivers/framework/include/audio/audio_dai_if.h.h | #### 搭建驱动代码框架 ##### 配置HCS文件 在device_info.hcs文件中Audio下注册驱动节点 ```c audio :: host { hostName = "audio_host"; priority = 60; device_dai0 :: device { device0 :: deviceNode { policy = 1; priority = 50; preload = 0; permission = 0666; moduleName = "DAI_RK3568"; serviceName = "dai_service"; deviceMatchAttr = "hdf_dai_driver"; } } device_codec :: device { device0 :: deviceNode { policy = 1; priority = 50; preload = 0; permission = 0666; moduleName = "CODEC_RK809"; serviceName = "codec_service_0"; deviceMatchAttr = "hdf_codec_driver"; } } device_codec_ex :: device { device0 :: deviceNode { policy = 1; priority = 50; preload = 0; permission = 0666; moduleName = "CODEC_RK817"; serviceName = "codec_service_1"; deviceMatchAttr = "hdf_codec_driver_ex"; } } device_dsp :: device { device0 :: deviceNode { policy = 1; priority = 50; preload = 0; permission = 0666; moduleName = "DSP_RK3568"; serviceName = "dsp_service_0"; deviceMatchAttr = "hdf_dsp_driver"; } } device_dma :: device { device0 :: deviceNode { policy = 1; priority = 50; preload = 0; permission = 0666; moduleName = "DMA_RK3568"; serviceName = "dma_service_0"; deviceMatchAttr = "hdf_dma_driver"; } } ...... } ``` 根据接入的设备,选择Codec节点还是Accessory节点,配置硬件设备对应的私有属性(包含寄存器首地址,相关control寄存器地址)涉及Codec_config.hcs和DAI_config.hcs 配置相关介绍见[Audio](https://gitee.com/openharmony/docs/blob/master/zh-cn/device-dev/driver/driver-peripherals-audio-des.md) hcs配置章节以及ADM框架的audio_parse模块代码。 ##### codec/accessory模块 1. 将驱动注册到HDF框架中,代码片段如下,启动moduleName与HCS文件的中moduleName一致 ``` struct HdfDriverEntry g_codecDriverEntry = { .moduleVersion = 1, .moduleName = "CODEC_HI3516", .Bind = CodecDriverBind, .Init = CodecDriverInit, .Release = CodecDriverRelease, }; HDF_INIT(g_codecDriverEntry); ``` 2. Codec模块需要填充: g_codecData:codec设备的操作函数集和私有数据集。 g_codecDaiDeviceOps:codecDai的操作函数集,包括启动传输和参数配置等函数接口。 g_codecDaiData:codec的数字音频接口的操作函数集和私有数据集。 3. 完成 bind、init和release函数的实现 4. 验证 在bind和init函数加调试日志,编译版本并获取系统系统日志: ``` [ 1.548624] [E/"rk809_codec_adapter"] [Rk809DriverBind][line:258]: enter [ 1.548635] [E/"rk809_codec_adapter"] [Rk809DriverBind][line:260]: success [ 1.548655] [E/"rk809_codec_adapter"] [Rk809DriverInit][line:270]: enter [ 1.549050] [E/"rk809_codec_adapter"] [GetServiceName][line:226]: enter [ 1.549061] [E/"rk809_codec_adapter"] [GetServiceName][line:250]: success [ 1.549072] [E/"rk809_codec_adapter"] [Rk809DriverInit][line:316]: g_chip->accessory.drvAccessoryName = codec_service_1 [ 1.549085] [E/audio_core] [AudioSocRegisterDai][line:86]: Register [accessory_dai] success. [ 1.549096] [E/audio_core] [AudioRegisterAccessory][line:120]: Register [codec_service_1] success. [ 1.549107] [E/"rk809_codec_adapter"] [Rk809DriverInit][line:323]: success! ``` ##### DAI模块 1. 将I2S驱动注册到HDF框架中,代码片段如下,启动moduleName与HCS文件的中moduleName一致 ```c struct HdfDriverEntry g_daiDriverEntry = { .moduleVersion = 1, .moduleName = "DAI_RK3568", .Bind = DaiDriverBind, .Init = DaiDriverInit, .Release = DaiDriverRelease, }; HDF_INIT(g_daiDriverEntry); ``` 2. DAI模块填充: ```c struct AudioDaiOps g_daiDeviceOps = { .Startup = Rk3568DaiStartup, .HwParams = Rk3568DaiHwParams, .Trigger = Rk3568NormalTrigger, }; struct DaiData g_daiData = { .Read = Rk3568DeviceReadReg, .Write = Rk3568DeviceWriteReg, .DaiInit = Rk3568DaiDeviceInit, .ops = &g_daiDeviceOps, }; ``` 3. 完成 bind、init和release函数的实现 4. 验证 在bind/init函数加调试日志,编译版本并获取系统系统日志 ``` [ 1.549193] [I/device_node] launch devnode dai_service [ 1.549204] [E/HDF_LOG_TAG] [DaiDriverBind][line:38]: entry! [ 1.549216] [E/HDF_LOG_TAG] [DaiDriverBind][line:55]: success! [ 1.549504] [E/audio_core] [AudioSocRegisterDai][line:86]: Register [dai_service] success. [ 1.549515] [E/HDF_LOG_TAG] [DaiDriverInit][line:116]: success. ``` ##### Platform模块 1. 将DMA驱动注册到HDF框架中,代码片段如下,启动moduleName与HCS文件的中moduleName一致 ``` struct HdfDriverEntry g_platformDriverEntry = { .moduleVersion = 1, .moduleName = "DMA_RK3568", .Bind = PlatformDriverBind, .Init = PlatformDriverInit, .Release = PlatformDriverRelease, }; HDF_INIT(g_platformDriverEntry); ``` 2. DMA模块需要填充: ```c struct AudioDmaOps g_dmaDeviceOps = { .DmaBufAlloc = Rk3568DmaBufAlloc, .DmaBufFree = Rk3568DmaBufFree, .DmaRequestChannel = Rk3568DmaRequestChannel, .DmaConfigChannel = Rk3568DmaConfigChannel, .DmaPrep = Rk3568DmaPrep, .DmaSubmit = Rk3568DmaSubmit, .DmaPending = Rk3568DmaPending, .DmaPause = Rk3568DmaPause, .DmaResume = Rk3568DmaResume, .DmaPointer = Rk3568PcmPointer, }; struct PlatformData g_platformData = { .PlatformInit = AudioDmaDeviceInit, .ops = &g_dmaDeviceOps, }; ``` 3. 完成 bind、init和release函数的实现 4. 验证 在bind和init函数加调试日志,编译版本并获取系统系统日志 ``` [ 1.548469] [E/rk3568_platform_adapter] [PlatformDriverBind][line:42]: entry! [ 1.548481] [E/rk3568_platform_adapter] [PlatformDriverBind][line:58]: success! [ 1.548492] [E/rk3568_platform_adapter] [PlatformDriverInit][line:100]: entry. [ 1.548504] [E/rk3568_platform_adapter] [PlatformGetServiceName][line:67]: entry! [ 1.548515] [E/rk3568_platform_adapter] [PlatformGetServiceName][line:91]: success! [ 1.548528] [E/audio_core] [AudioSocRegisterPlatform][line:63]: Register [dma_service_0] success. [ 1.548536] [E/rk3568_platform_adapter] [PlatformDriverInit][line:119]: success. ``` #### 驱动适配 ##### code/accessory模块 1. 读取DTS文件,获取到对应设备节点,使用Linux原生的驱动注册函数,获取到对应device。 ``` static int rk817_platform_probe(struct platform_device *pdev) { rk817_pdev = pdev; dev_info(&pdev->dev, "got rk817-codec platform_device"); return 0; } static struct platform_driver rk817_codec_driver = { .driver = { .name = "rk817-codec", // codec node in dts file .of_match_table = rk817_codec_dt_ids, }, .probe = rk817_platform_probe, .remove = rk817_platform_remove, }; ``` 2. 读写寄存器函数封装 根据上述获取到的device, 使用Linux的regmap函数,开发者不需要获取模块的基地址 获取rk817的regmap代码段 ``` g_chip = devm_kzalloc(&rk817_pdev->dev, sizeof(struct Rk809ChipData), GFP_KERNEL); if (!g_chip) { AUDIO_DEVICE_LOG_ERR("no memory"); return HDF_ERR_MALLOC_FAIL; } g_chip->pdev = rk817_pdev; struct rk808 *rk808 = dev_get_drvdata(g_chip->pdev->dev.parent); if (!rk808) { AUDIO_DEVICE_LOG_ERR("%s: rk808 is NULL\n", __func__); ret = HDF_FAILURE; RK809ChipRelease(); return ret; } g_chip->regmap = devm_regmap_init_i2c(rk808->i2c, &rk817_codec_regmap_config); if (IS_ERR(g_chip->regmap)) { AUDIO_DEVICE_LOG_ERR("failed to allocate regmap: %ld\n", PTR_ERR(g_chip->regmap)); RK809ChipRelease(); return ret; } ``` 寄存器读写函数代码段 ``` int32_t Rk809DeviceRegRead(uint32_t reg, uint32_t *val) { if (regmap_read(g_chip->regmap, reg, val)) { AUDIO_DRIVER_LOG_ERR("read register fail: [%04x]", reg); return HDF_FAILURE; } return HDF_SUCCESS; } int32_t Rk809DeviceRegWrite(uint32_t reg, uint32_t value) { if (regmap_write(g_chip->regmap, reg, value)) { AUDIO_DRIVER_LOG_ERR("write register fail: [%04x] = %04x", reg, value); return HDF_FAILURE; } return HDF_SUCCESS; } int32_t Rk809DeviceRegUpdatebits(uint32_t reg, uint32_t mask, uint32_t value) { if (regmap_update_bits(g_chip->regmap, reg, mask, value)) { AUDIO_DRIVER_LOG_ERR("update register bits fail: [%04x] = %04x", reg, value); return HDF_FAILURE; } return HDF_SUCCESS; } ``` 3. 寄存器初始化函数 因为使用Linux的regmap函数,所以需要自行定义RegDefaultInit函数,读取hcs中initSeqConfig的寄存器以及数值来进行配置 RK809RegDefaultInit代码段 ```c int32_t RK809RegDefaultInit(struct AudioRegCfgGroupNode **regCfgGroup) { int32_t i; struct AudioAddrConfig *regAttr = NULL; if (regCfgGroup == NULL || regCfgGroup[AUDIO_INIT_GROUP] == NULL || regCfgGroup[AUDIO_INIT_GROUP]->addrCfgItem == NULL || regCfgGroup[AUDIO_INIT_GROUP]->itemNum <= 0) { AUDIO_DEVICE_LOG_ERR("input invalid parameter."); return HDF_ERR_INVALID_PARAM; } regAttr = regCfgGroup[AUDIO_INIT_GROUP]->addrCfgItem; for (i = 0; i < regCfgGroup[AUDIO_INIT_GROUP]->itemNum; i++) { Rk809DeviceRegWrite(regAttr[i].addr, regAttr[i].value); } return HDF_SUCCESS; } ``` 4. 封装控制接口的读写函数 设置控制读写函数为RK809CodecReadReg和RK809CodecWriteReg ```c struct CodecData g_rk809Data = { .Init = Rk809DeviceInit, .Read = RK809CodecReadReg, .Write = RK809CodecWriteReg, }; struct AudioDaiOps g_rk809DaiDeviceOps = { .Startup = Rk809DaiStartup, .HwParams = Rk809DaiHwParams, .Trigger = RK809NormalTrigger, }; struct DaiData g_rk809DaiData = { .DaiInit = Rk809DaiDeviceInit, .ops = &g_rk809DaiDeviceOps, }; ``` 封装控制接口的读写函数 因为原来的读写原型,涉及三个参数(unsigned long virtualAddress,uint32_t reg, uint32_t *val),其中virtualAddress我们并不需要用到,所以封装个接口即可,封装如下 ```c int32_t RK809CodecReadReg(unsigned long virtualAddress,uint32_t reg, uint32_t *val) { if (val == NULL) { AUDIO_DRIVER_LOG_ERR("param val is null."); return HDF_FAILURE; } if (Rk809DeviceRegRead(reg, val)) { AUDIO_DRIVER_LOG_ERR("read register fail: [%04x]", reg); return HDF_FAILURE; } ADM_LOG_ERR("read reg 0x[%02x] = 0x[%02x]",reg,*val); return HDF_SUCCESS; } int32_t RK809CodecWriteReg(unsigned long virtualAddress,uint32_t reg, uint32_t value) { if (Rk809DeviceRegWrite(reg, value)) { AUDIO_DRIVER_LOG_ERR("write register fail: [%04x] = %04x", reg, value); return HDF_FAILURE; } ADM_LOG_ERR("write reg 0x[%02x] = 0x[%02x]",reg,value); return HDF_SUCCESS; } ``` 5. 其他ops函数 - Rk809DeviceInit,读取hcs文件,初始化Codec寄存器,同时将对应的control配置(/* reg, rreg, shift, rshift, min, max, mask, invert, value */添加到kcontrol,便于dispatch contro进行控制 - Rk809DaiStartup, 读取hcs文件,配置可选设备(codec/accessory)的控制寄存器 - Rk809DaiHwParams, 根据hal下发的audio attrs(采样率、format、channel等),配置对应的寄存器 - RK809NormalTrigger,根据hal下发的操作命令码,操作对应的寄存器,实现Codec的启动停止、录音和放音的切换等 ##### DAI(i2s)模块 1. 读写寄存器函数 思路与Codec模块的一致,读取Linux DTS文件,使用Linux的regmap函数完成寄存器的读写操作 ```c int32_t Rk3568DeviceReadReg(unsigned long regBase, uint32_t reg, uint32_t *val) { AUDIO_DEVICE_LOG_ERR("entry"); (void)regBase; struct device_node *dmaOfNode = of_find_node_by_path("/i2s@fe410000"); if(dmaOfNode == NULL) { AUDIO_DEVICE_LOG_ERR("of_node is NULL."); } struct platform_device *platformdev = of_find_device_by_node(dmaOfNode); struct rk3568_i2s_tdm_dev *i2s_tdm = dev_get_drvdata(&platformdev->dev); (void)regBase; if (regmap_read(i2s_tdm->regmap, reg, val)) { AUDIO_DEVICE_LOG_ERR("read register fail: [%04x]", reg); return HDF_FAILURE; } return HDF_SUCCESS; } int32_t Rk3568DeviceWriteReg(unsigned long regBase, uint32_t reg, uint32_t value) { AUDIO_DEVICE_LOG_ERR("entry"); (void)regBase; struct device_node *dmaOfNode = of_find_node_by_path("/i2s@fe410000"); if(dmaOfNode == NULL) { AUDIO_DEVICE_LOG_ERR("of_node is NULL."); } struct platform_device *platformdev = of_find_device_by_node(dmaOfNode); struct rk3568_i2s_tdm_dev *i2s_tdm = dev_get_drvdata(&platformdev->dev); if (regmap_write(i2s_tdm->regmap, reg, value)) { AUDIO_DEVICE_LOG_ERR("write register fail: [%04x] = %04x", reg, value); return HDF_FAILURE; } return HDF_SUCCESS; } ``` 2. 其他ops函数 - Rk3568DaiDeviceInit 原始框架,主要完成DAI_config.hcs参数列表的读取,与HwParams结合,完成参数的设置。 - Rk3568DaiHwParams 主要完成I2S MCLK/BCLK/LRCLK时钟配置。 1. 根据不同采样率计算MCLK ```c int32_t RK3568I2sTdmSetSysClk(struct rk3568_i2s_tdm_dev *i2s_tdm, const struct AudioPcmHwParams *param) { /* Put set mclk rate into rockchip_i2s_tdm_set_mclk() */ uint32_t sampleRate = param->rate; uint32_t mclk_parent_freq = 0; switch (sampleRate) { case AUDIO_DEVICE_SAMPLE_RATE_8000: case AUDIO_DEVICE_SAMPLE_RATE_16000: case AUDIO_DEVICE_SAMPLE_RATE_24000: case AUDIO_DEVICE_SAMPLE_RATE_32000: case AUDIO_DEVICE_SAMPLE_RATE_48000: case AUDIO_DEVICE_SAMPLE_RATE_64000: case AUDIO_DEVICE_SAMPLE_RATE_96000: mclk_parent_freq = i2s_tdm->bclk_fs * AUDIO_DEVICE_SAMPLE_RATE_192000; break; case AUDIO_DEVICE_SAMPLE_RATE_11025: case AUDIO_DEVICE_SAMPLE_RATE_22050: case AUDIO_DEVICE_SAMPLE_RATE_44100: mclk_parent_freq = i2s_tdm->bclk_fs * AUDIO_DEVICE_SAMPLE_RATE_176400; break; default: AUDIO_DEVICE_LOG_ERR("Invalid LRCK freq: %u Hz\n", sampleRate); return HDF_FAILURE; } i2s_tdm->mclk_tx_freq = mclk_parent_freq; i2s_tdm->mclk_rx_freq = mclk_parent_freq; return HDF_SUCCESS; } ``` 2. 根据获取的mclk,计算BCLK/LRclk分频系数 - Rk3568NormalTrigger 根据输入输出类型,以及cmd(启动/停止/暂停/恢复),完成一系列配置: 1. mclk的启停 2. DMA搬运的启停 3. 传输的启停 详细实现见代码,参考Linux原生I2s驱动对应接口函数 ```c // 启动/恢复流程 if (streamType == AUDIO_RENDER_STREAM) { clk_prepare_enable(i2s_tdm->mclk_tx); regmap_update_bits(i2s_tdm->regmap, I2S_DMACR, I2S_DMACR_TDE_ENABLE, I2S_DMACR_TDE_ENABLE); } else { clk_prepare_enable(i2s_tdm->mclk_rx); regmap_update_bits(i2s_tdm->regmap, I2S_DMACR, I2S_DMACR_RDE_ENABLE, I2S_DMACR_RDE_ENABLE); if (regmap_read(i2s_tdm->regmap, I2S_DMACR, &val)) { AUDIO_DEVICE_LOG_ERR("read register fail: [%04x]", I2S_DMACR); return ; } AUDIO_DEVICE_LOG_ERR("i2s reg: 0x%x = 0x%x ", I2S_DMACR, val); } if (atomic_inc_return(&i2s_tdm->refcount) == 1) { regmap_update_bits(i2s_tdm->regmap, I2S_XFER, I2S_XFER_TXS_START | I2S_XFER_RXS_START, I2S_XFER_TXS_START | I2S_XFER_RXS_START); if (regmap_read(i2s_tdm->regmap, I2S_XFER, &val)) { AUDIO_DEVICE_LOG_ERR("read register fail: [%04x]", I2S_XFER); return ; } AUDIO_DEVICE_LOG_ERR("i2s reg: 0x%x = 0x%x ", I2S_XFER, val); } ``` ##### Platform(DMA)模块 ops函数相关函数 1. Rk3568DmaBufAlloc/Rk3568DmaBufFree 获取DMA设备节点,参考I2s设备获取方式,使用系统函数dma_alloc_wc/dma_free_wc,完成DMA虚拟内存与物理内存的申请/释放 2. Rk3568DmaRequestChannel 使用Linux DMA原生接口函数获取DMA传输通道,dma_request_slave_channel ``` dmaRtd->dmaChn[streamType] = dma_request_slave_channel(dmaDevice, dmaChannelNames[streamType]); ``` 3. Rk3568DmaConfigChannel ``` //设置通道配置参数 // 放音通道参数配置 slave_config.direction = DMA_MEM_TO_DEV; slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; slave_config.dst_addr = I2S1_ADDR + I2S_TXDR; slave_config.dst_maxburst = 8; // 录音通道参数配置 slave_config.direction = DMA_DEV_TO_MEM; slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; slave_config.src_addr = I2S1_ADDR + I2S_RXDR; slave_config.src_maxburst = 8; //使用Linux DMA原生接口函数完成DMA通道配置 ret = dmaengine_slave_config(dmaChan, &slave_config); if (ret != 0) { AUDIO_DEVICE_LOG_ERR("dmaengine_slave_config failed"); return HDF_FAILURE; } ``` 4. Rk3568DmaSubmit/Rk3568DmaPending 使用Linux DMA原生接口函数dmaengine_prep_dma_cyclic,初始化一个具体的周期性的DMA传输描述符dmaengine_submit接口将该描述符放到传输队列上,然后调用dma_async_issue_pending接口,启动传输。 5. Rk3568PcmPointer 第4步完成之后,ADM框架调用Rk3568PcmPointer,循环写cirBuf,计算pointer ``` dma_chn = dmaRtd->dmaChn[DMA_TX_CHANNEL]; buf_size = data->renderBufInfo.cirBufSize; dmaengine_tx_status(dma_chn, dmaRtd->cookie[DMA_TX_CHANNEL], &dma_state); if (dma_state.residue) { currentPointer = buf_size - dma_state.residue; *pointer = BytesToFrames(data->pcmInfo.frameSize, currentPointer); } else { *pointer = 0; } ``` 6. Rk3568DmaPause 使用Linux DMA原生接口函数dmaengine_terminate_async,停止DMA传输 ``` dmaengine_terminate_async(dmaChan); ``` 7. Rk3568DmaResume 暂停使用的DMA停止函数,对应恢复,相当于重启DMA传输,执行Rk3568DmaSubmit/Rk3568DmaPending相关操作即可完成 ##### 适配中遇到问题与解决方案 1. 播放一段时间后,停止播放,持续有尖锐的很小的声音 问题原因:播放停止后,Codec相关器件没有下电 解决方案:注册Codec的trigger函数,当接收到Cmd为Stop时,对Codec进行下电 2. 播放一段时间后,停止播放,然后重新播放没有声音 问题原因:DMA驱动的PAUSE接口函数,并未停止DMA传输 解决方案:暂停状态不再使用DMA的PAUSE函数,而是使用DAM传输停止接口; 相对应的,恢复函数的业务逻辑相当于重启DMA传输,执行 Rk3568DmaSubmit/Rk3568DmaPending相关操作即可完成 3. 播放存在杂音 问题原因:DMA数据搬运pointer位置不正确 解决方案:Rk3568PcmPointer函数返回值为DMA搬运的内存位置,用缓存区buf与dma_state.residue的差值计算 4. 可以放音,但Mclk引脚没有时钟信号 问题原因:DTS文件pin-ctrl没有配置mclk的引脚 解决方案:修改DTS文件 ### Camera **基本概念** OpenHarmony相机驱动框架模型对上实现相机HDI接口,对下实现相机Pipeline模型,管理相机各个硬件设备。各层的基本概念如下。 1. HDI实现层:对上实现OHOS相机标准南向接口。 2. 框架层:对接HDI实现层的控制、流的转发,实现数据通路的搭建、管理相机各个硬件设备等功能。 3. 适配层:屏蔽底层芯片和OS差异,支持多平台适配。 ### Camera驱动框架介绍 #### 源码框架介绍 Camera 驱动框架所在的仓为:drivers_peripheral,源码目录为:“drivers/peripheral/camera”。 ``` |-- README_zh.md |-- figures | -- logic-view-of-modules-related-to-this-repository_zh.png |-- hal | |-- BUILD.gn #Camera驱动框架构建入口 | |-- adapter #平台适配层,适配平台 | |-- buffer_manager | |-- camera.gni #定义组件所使用的全局变量 | |-- device_manager | |-- hdi_impl | |-- include | |-- init #demo sample | |-- pipeline_core | |-- test #测试代码 | |-- utils |-- hal_c #为海思平台提供专用C接口 | |-- BUILD.gn | |-- camera.gni | |-- hdi_cif | |-- include |-- interfaces #HDI接口 |-- hdi_ipc |-- hdi_passthrough |-- include ``` Camera hcs文件是每个chipset可配置的。所以放在chipset相关的仓下。以rk3568为例。仓名为: vendor_hihope,源码目录为:“vendor/hihope/rk3568/hdf_config/uhdf/camera”。 ├── hdi_impl │   └── camera_host_config.hcs └── pipeline_core ├── config.hcs ├── ipp_algo_config.hcs └── params.hcs Camera chipset 相关代码路径以3568为例仓名为:device_hihope。路径为:device/board/hihope/rk3568/camera/ ``` ├── BUILD.gn ├── demo │   └── include │   └── project_camera_demo.h ├── device_manager │   ├── BUILD.gn │   ├── include │   │   ├── imx600.h │   │   ├── project_hardware.h │   │   └── rkispv5.h │   └── src │   ├── imx600.cpp │   └── rkispv5.cpp ├── driver_adapter │   └── test │   ├── BUILD.gn │   ├── unittest │   │   ├── include │   │   │   └── utest_v4l2_dev.h │   │   └── src │   │   └── utest_v4l2_dev.cpp │   └── v4l2_test │   └── include │   └── project_v4l2_main.h └── pipeline_core ├── BUILD.gn └── src ├── ipp_algo_example │   └── ipp_algo_example.c └── node ├── rk_codec_node.cpp └── rk_codec_node.h ``` #### Camera 驱动框架配置 RK3568 配置文件路径: “vendor/hihope/rk3568/hdf_config/uhdf/device_info.hcs”。说明:其他平台可参考RK3568适配。 ``` hdi_server :: host { hostName = "camera_host"; priority = 50; caps = ["DAC_OVERRIDE", "DAC_READ_SEARCH"]; camera_device :: device { device0 :: deviceNode { policy = 2; priority = 100; moduleName = "libcamera_hdi_impl.z.so"; serviceName = "camera_service"; } } ... } ``` 参数说明: Host:一个host节点即为一个独立进程,如果需要独立进程,新增属于自己的host节点。 Policy: 服务发布策略,HDI服务请设置为“**2**” moduleName: 驱动实现库名。 serviceName:服务名称,请保持全局唯一性。 Camera_host驱动实现入口 文件路径:drivers/peripheral/camera/interfaces/hdi_ipc/server/src/camera_host_driver.cpp 分发设备服务消息 cmd Id:请求消息命令字。 Data:其他服务或者IO请求数据。 Reply:存储返回消息内容数据。 ``` static int32_t CameraServiceDispatch(struct HdfDeviceIoClient *client, int cmdId, struct HdfSBuf *data, struct HdfSBuf *reply) { HdfCameraService *hdfCameraService = CONTAINER_OF(client->device->service, HdfCameraService, ioservice); return CameraHostServiceOnRemoteRequest(hdfCameraService->instance, cmdId, data, reply); } ``` 绑定设备服务:初始化设备服务对象和资源对象。 ``` int HdfCameraHostDriverBind(HdfDeviceObject *deviceObject) { HDF_LOGI("HdfCameraHostDriverBind enter!"); if (deviceObject == nullptr) { HDF_LOGE("HdfCameraHostDriverBind: HdfDeviceObject is NULL !"); return HDF_FAILURE; } ``` 驱动初始化函数: 探测并初始化驱动程序 ``` int HdfCameraHostDriverInit(struct HdfDeviceObject *deviceObject) { return HDF_SUCCESS; } ``` 驱动资源释放函数 : 如已经绑定的设备服务对象 ``` void HdfCameraHostDriverRelease(HdfDeviceObject *deviceObject) { if (deviceObject == nullptr || deviceObject->service == nullptr) { HDF_LOGE("%{public}s deviceObject or deviceObject->service is NULL!", __FUNCTION__); return; } HdfCameraService *hdfCameraService = CONTAINER_OF(deviceObject->service, HdfCameraService, ioservice); if (hdfCameraService == nullptr) { HDF_LOGE("%{public}s hdfCameraService is NULL!", __FUNCTION__); return; } ``` 定义驱动描述符:将驱动代码注册给驱动框架。 struct HdfDriverEntry g_cameraHostDriverEntry = { .moduleVersion = 1, .moduleName = "camera_service", .Bind = HdfCameraHostDriverBind, .Init = HdfCameraHostDriverInit, .Release = HdfCameraHostDriverRelease, }; #### Camera配置信息介绍 Camera模块内部,所有配置文件使用系统支持的HCS类型的配置文件,HCS类型的配置文件,在编译时,会转成HCB文件,最终烧录到开发板里的配置文件即为HCB格式,代码中通过HCS解析接口解析HCB文件,获取配置文件中的信息。 hc_gen("build_camera_host_config") { sources = [ rebase_path( "$camera_product_name_path/hdf_config/uhdf/camera/hdi_impl/camera_host_config.hcs") ] } ohos_prebuilt_etc("camera_host_config.hcb") { deps = [ ":build_camera_host_config" ] hcs_outputs = get_target_outputs(":build_camera_host_config") source = hcs_outputs[0] relative_install_dir = "hdfconfig" install_images = [ chipset_base_dir ] subsystem_name = "hdf" part_name = "camera_device_driver" } ### Camera适配介绍 #### 新产品平台适配简介 drivers/peripheral/camera/hal/camera.gni 文件中可根据编译时传入的product_company product_name和device_name调用不同chipset的product.gni if (defined(ohos_lite)) { import("//build/lite/config/component/lite_component.gni") import( "//device/soc/hisilicon/common/hal/media/camera/hi3516dv300/linux_standard/camera/product.gni") } else { import("//build/ohos.gni") if ("${product_name}" == "ohos-arm64") { import( "//drivers/peripheral/camera/hal/adapter/chipset/rpi/rpi3/device/camera/product.gni") } else if ("${product_name}" == "Hi3516DV300") { import( "//device/soc/hisilicon/common/hal/media/camera/hi3516dv300/linux_standard/camera/product.gni") } else if ("${product_name}" == "watchos") { import( "//device/soc/hisilicon/common/hal/media/camera/hi3516dv300/linux_standard/camera/product.gni") } else { import( "//device/board/${product_company}/${device_name}/camera/product.gni") } } 在如下路径的product.gni指定了编译不同chipset相关的代码的路径: ``` device/${product_company}/${device_name}/camera/ ``` 如下是rk3568的product.gni: camera_device_name_path = "//device/board/${product_company}/${device_name}" is_support_v4l2 = true if (is_support_v4l2) { is_support_mpi = false defines += [ "SUPPORT_V4L2" ] chipset_build_deps = "$camera_device_name_path/camera/:chipset_build" camera_device_manager_deps = "$camera_device_name_path/camera/src/device_manager:camera_device_manager" camera_pipeline_core_deps = "$camera_device_name_path/camera/src/pipeline_core:camera_pipeline_core" } product.gni中指定了chipset_build_deps camera_device_manager_deps 和 camera_pipeline_core_deps 三个代码编译路径。该路径在drivers/peripheral/camera/hal/BUILD.gn中会被使用 #### 框架适配介绍 ​ img ​ 以V4l2为例,pipeline的连接方式是在HCS配置文件中配置连接,数据源我们称之为SourceNode,主要包括硬件设备的控制、数据流的轮转等。 ISPNode可根据需要确定是否添加此Node,因为在很多操作上其都可以和SensorNode统一为SourceNode。SinkNode为pipeline中数据传输的重点,到此处会将数据传输回buffer queue中。 ​ pipeline中的Node是硬件/软件模块的抽象,所以对于其中硬件模块Node,其是需要向下控制硬件模块的,在控制硬件模块前,需要先获取其对应硬件模块的deviceManager,通过deviceManager向下传输控制命令/数据buffer,所以deviceManager中有一个v4l2 device manager抽象模块,用来创建各个硬件设备的manager、controller.如上sensorManager、IspManager,sensorController等,所以v4l2 device manager其实是各个硬件设备总的一个管理者。 deviceManager中的controller和驱动适配层直接交互。 基于以上所描述,如需适配一款以linux v4l2框架的芯片平台,只需要修改适配如上图中颜色标记模块及HCS配置文件(如为标准v4l2框架,基本可以延用当前已适配代码),接下来单独介绍修改模块。 主要适配添加如下目录: ​ “vendor/hihope/rk3568/hdf_config/uhdf/camera/”:当前芯片产品的HCS配置文件目录。 ​ “device/hihope/rk3568/camera/”:当前芯片产品的代码适配目录。 ​ “drivers/peripheral/camera/hal/adapter/platform/v4l2”:平台通用公共代码。 #### HCS配置文件适配介绍 ``` ├── hdi_impl │   └── camera_host_config.hcs └── pipeline_core ├── config.hcs ├── ipp_algo_config.hcs └── params.hcs ``` 以RK3568开发板为例,其hcs文件应该放在对应的路径中。 ``` vendor/${product_company}/${product_name}/ hdf_config/uhdf/camera/ ``` ``` template ability { logicCameraId = "lcam001"; physicsCameraIds = [ "CAMERA_FIRST", "CAMERA_SECOND" ]; metadata { aeAvailableAntiBandingModes = [ "OHOS_CONTROL_AE_ANTIBANDING_MODE_OFF", "OHOS_CONTROL_AE_ANTIBANDING_MODE_50HZ", "OHOS_CONTROL_AE_ANTIBANDING_MODE_60HZ", "OHOS_CONTROL_AE_ANTIBANDING_MODE_AUTO" ]; ``` hdi_impl下的“camera_host_config.hcs”为物理/逻辑Camera配置、能力配置,此处的物理/逻辑Camera配置,需要在hal内部使用,逻辑Camera及能力配置需要上报给上层,请按照所适配的芯片产品添加其能力配置。其中所用的能力值为键值对,定义在//drivers/peripheral/camera/hal/hdi_impl/include/camera_host/metadata_enum_map.h中。 ``` normal_preview :: pipeline_spec { name = "normal_preview"; v4l2_source :: node_spec { name = "v4l2_source#0"; status = "new"; out_port_0 :: port_spec { name = "out0"; peer_port_name = "in0"; peer_port_node_name = "sink#0"; direction = 1; width = 0; height = 0; format = 0; } } sink :: node_spec { name = "sink#0"; status = "new"; stream_type = "preview"; in_port_0 :: port_spec { name = "in0"; peer_port_name = "out0"; peer_port_node_name = "v4l2_source#0"; direction = 0; } } } ``` pipeline_core下的“config.hcs”为pipeline的连接方式,按场景划分每一路流由哪些Node组成,其连接方式是怎样的。 上面为preview场景的示例,normal_preview为该场景的名称,source和sink为Node,source为数据数据源端,sink为末端,source为第一个node,node的名称是source#0,status、in/out_port分别为Node状态及输入/输出口的配置。 以in_port_0为例,name = “in0”代表它的输入为“port0”,它的对端为source node的port口out0口,direction为它的源Node和对端Node是否为直连方式。如新添加芯片产品,必须按实际连接方式配置此文件。 新增功能node时需继承NodeBase类,且在cpp文件中注册该node。具体可参考//drivers/peripheral/camera/hal/pipeline_core/nodes/src下已经实现的node。 root { module = ""; template stream_info { id = 0; name = ""; } template scene_info { id = 0; name = ""; } preview :: stream_info { id = 0; name = "preview"; } video :: stream_info { id = 1; name = "video"; } param.hcs为场景、流类型名及其id定义,pipeline内部是以流id区分流类型的,所以此处需要添加定义。 #### Chipset 和Platform适配介绍 platform为平台性公共代码,如linux标准v4l2适配接口定义,为v4l2框架适配的通用node.以及为v4l2框架适配的通用device_manager等。目录结构如下: drivers/peripheral/camera/hal/adapter/platform ├── mpp │   └── src │   ├── device_manager │   └── pipeline_core └── v4l2 └── src ├── device_manager ├── driver_adapter └── pipeline_core “platform”目录下的“v4l2”包含了“src”, “src”中“driver_adapter”为linux v4l2标准适配接口,如有定制化功能需求,可继承driver_adapter,将定制化的具体功能接口放在chipset中实现。如无芯片定制化功能,可直接使用已有的driver_adapter。 platform目录下的Nodes为依据linux v4l2标准实现的硬件模块v4l2_source_node和uvc_node(usb热插拔设备,此模块也为linux标准接口,可直接使用),如下图为v4l2_source_node的接口声明头文件。 namespace OHOS::Camera { class V4L2SourceNode : public SourceNode { public: V4L2SourceNode(const std::string& name, const std::string& type); ~V4L2SourceNode() override; RetCode Init(const int32_t streamId) override; RetCode Start(const int32_t streamId) override; RetCode Flush(const int32_t streamId) override; RetCode Stop(const int32_t streamId) override; RetCode GetDeviceController(); void SetBufferCallback() override; RetCode ProvideBuffers(std::shared_ptr frameSpec) override; private: std::mutex requestLock_; std::map> captureRequests_ = {}; std::shared_ptr sensorController_ = nullptr; std::shared_ptr deviceManager_ = nullptr; }; } // namespace OHOS::Camera Init接口为模块初始化接口。 Start为使能接口,比如start stream功能等。 Stop为停止接口。 GetDeviceController为获取deviceManager对应的controller接口。 chipset为具体某芯片平台相关代码,例如,如和“rk3568”开发板 为例。device_manager目录下可存放该开发板适配过的sensor的相关配置文件。pipeline_core路径下可以存放由chipset开发者为满足特点需求增加的pipeline node等。 ``` device/board/hihope/rk3568/camera ├── BUILD.gn ├── camera_demo │ └── project_camera_demo.h ├── include │ └── device_manager ├── product.gni └── src ├── device_manager ├── driver_adapter └── pipeline_core ``` device/board/hihope/rk3568/camera/目录包含了“include”和“src”,“camera_demo”“src”中“device­­_manager”中包含了chipset 适配的sensor的文件,配合platform下device_manager的设备管理目录,主要对接pipeline,实现平台特有的硬件处理接口及数据buffer的下发和上报、metadata的交互。 下图为device_manager的实现框图,pipeline控制管理各个硬件模块,首先要获取对应设备的manager,通过manager获取其对应的controller,controller和对应的驱动进行交互 。 ![img](figures/dayu200/dayu200-camera-02.png) deviceManager中需要实现关键接口介绍。 ``` class SensorController : public IController { public: SensorController(); explicit SensorController(std::string hardwareName); virtual ~SensorController(); RetCode Init(); RetCode PowerUp(); RetCode PowerDown(); RetCode Configure(std::shared_ptr meta); RetCode Start(int buffCont, DeviceFormat& format); RetCode Stop(); RetCode SendFrameBuffer(std::shared_ptr buffer); void SetNodeCallBack(const NodeBufferCb cb); void SetMetaDataCallBack(const MetaDataCb cb); void BufferCallback(std::shared_ptr buffer); void SetAbilityMetaDataTag(std::vector abilityMetaDataTag); } ``` PowerUp为上电接口,OpenCamera时调用此接口进行设备上电操作。 PowerDown为下电接口,CloseCamera时调用此接口进行设备下电操作。 Configures为Metadata下发接口,如需设置metadata参数到硬件设备,可实现此接口进行解析及下发。 Start为硬件模块使能接口,pipeline中的各个node进行使能的时候,会去调用,可根据需要定义实现,比如sensor的起流操作就可放在此处进行实现。 Stop和Start为相反操作,可实现停流操作。 SendFrameBuffer为每一帧buffer下发接口,所有和驱动进行buffer交互的操作,都是通过此接口进行的。 SetNodeCallBack为pipeline,通过此接口将buffer回调函数设置到devicemanager。 SetMetaDataCallBack为metadata回调接口,通过此接口将从底层获取的metadata数据上报给上层。 BufferCallback上传每一帧已填充数据buffer的接口,通过此接口将buffer上报给pipeline。 SetAbilityMetaDataTag设置需要从底层获取哪些类型的metadata数据,因为框架支持单独获取某一类型或多类型的硬件设备信息,所以可以通过此接口,获取想要的metadata数据。 其余接口可参考“drivers/peripheral/camera/hal/adapter/platform/v4l2/src/device_manager/” #### IPP适配介绍 IPP是pipeline 中的一个算法插件模块,由ippnode加载,对流数据进行算法处理,ippnode支持同时多路数据输入,只支持一路数据输出。ippnode加载算法插件通过如下hcs文件指定: vendor/${product_company}/${product_name}/hdf_config/uhdf/camera/pipeline_core/ipp_algo_config.hcs 其中: ``` root { module="sample"; ipp_algo_config { algo1 { name = "example"; description = "example algorithm"; path = "libcamera_ipp_algo_example.z.so"; mode = "IPP_ALGO_MODE_NORMAL"; } } } ``` name:算法插件名称 description:描述算法插件的功能 path:算法插件所在路径 mode:算法插件所运行的模式 算法插件可运行的模式由 drivers/peripheral/camera/hal/pipeline_core/ipp/include/ipp_algo.h中的IppAlgoMode提供,可以根据需要进行扩展。 ``` enum IppAlgoMode { IPP_ALGO_MODE_BEGIN, IPP_ALGO_MODE_NORMAL = IPP_ALGO_MODE_BEGIN, IPP_ALGO_MODE_BEAUTY, IPP_ALGO_MODE_HDR, IPP_ALGO_MODE_END }; ``` 算法插件由gn文件 device/${product_company}/${device_name}/camera/BUILD.gn进行编译,算法插件需实现如下接口(接口由ipp_algo.h指定)供ippnode调用: typedef struct IppAlgoFunc { int (*Init)(IppAlgoMeta* meta); int (*Start)(); int (*Flush)(); int (*Process)(IppAlgoBuffer* inBuffer[], int inBufferCount, IppAlgoBuffer* outBuffer, IppAlgoMeta* meta); int (*Stop)(); } IppAlgoFunc; 1) Init : 算法插件初始化接口,在起流前被ippnode 调用,其中IppAlgoMeta 定义在ipp_algo.h 中,为ippnode和算法插件提供非图像数据的传递通道,如当前运行的场景,算法处理后输出的人脸坐标等等,可根据实际需求进行扩展。 2) Start:开始接口,起流时被ippnode 调用 3) Flush:刷新数据的接口,停流之前被ippnode 调用。此接口被调用时,算法插件需尽可能快地停止处理。 4) Process: 数据处理接口,每帧数据都通过此接口输入至算法插件进行处理。inBuffer是一组输入buffer,inBufferCount是输入buffer 的个数,outBuffer是输出buffer,meta是算法处理时产生的非图像数据,IppAlgoBuffer在ipp_algo.h中定义 5) Stop:停止处理接口,停流时被ippnode调用 ``` typedef struct IppAlgoBuffer { void* addr; unsigned int width; unsigned int height; unsigned int stride; unsigned int size; int id; } IppAlgoBuffer; ``` 其中上边代码中的id指的是和ippnode对应的port口id,比如inBuffer[0]的id为0,则对应的是ippnode 的第0个输入port口。需要注意的是outBuffer可以为空,此时其中一个输入buffer 被ippnode作为输出buffer传递到下个node,inBuffer至少有一个buffer不为空。输入输出buffer 由pipeline配置决定。 比如在普通预览场景无算法处理且只有一路拍照数据传递到ippnode的情况下,输入buffer只有一个,输出buffer为空,即对于算法插件输入buffer 进行了透传; 比如算法插件进行两路预览图像数据进行合并的场景,第一路buffer需要预览送显示。把第二路图像拷贝到第一路的buffer即可,此时输入buffer有两个,输出buffer为空; 比如在算法插件中进行预览数据格式转换的场景,yuv转换为RGBA,那么只有一个yuv格式的输入buffer的情况下无法完成RGBA格式buffer的输出,此时需要一个新的buffer,那么ippnode的输出port口buffer作为outBuffer传递到算法插件。也即输入buffer只有一个,输出buffer也有一个。 ippnode的port口配置请查看3.3小节的config.hcs的说明。 #### 适配V4L2驱动实例 本章节目的是在v4l2框架下适配RK3568开发板。 区分V4L2 platform相关代码并将其放置“drivers/peripheral/camera/hal/adapter/platform/v4l2”目录下,该目录中包含了“device_manager”“driver_adapter”和“pipeline_core”三个目录。其中“driver_adapter”目录中存放着v4l2协议相关代码。可通过它们实现与v4l2底层驱动交互。该目录下“Pipeline_core”目录与“drivers/peripheral/camera/hal/pipeline_core”中代码组合为pipeline框架。v4l2_source_node 和 uvc_node为v4l2专用Node。device_manager目录存放着向北与pipeline向南与v4l2 adapter交互的代码 ``` drivers/peripheral/camera/hal/adapter/platform/v4l2/src/ ├── device_manager │ ├── enumerator_manager.cpp │ ├── flash_controller.cpp │ ├── flash_manager.cpp │ ├── idevice_manager.cpp │ ├── include │ ├── isp_controller.cpp │ ├── isp_manager.cpp │ ├── sensor_controller.cpp │ ├── sensor_manager.cpp │ └── v4l2_device_manager.cpp ├── driver_adapter │ ├── BUILD.gn │ ├── include │ ├── main_test │ └── src └── pipeline_core └── nodes ``` 区分V4L2 chipset相关代码并将其放置在“device/ ${product_company}/${device_name} /camera”目录下。 ``` ├── BUILD.gn ├── camera_demo │ └── project_camera_demo.h ├── include │ └── device_manager ├── product.gni └── src ├── device_manager ├── driver_adapter └── pipeline_core ``` 其中“driver_adapter”目录中包含了关于RK3568 driver adapter的测试用例头文件。Camera_demo目录存放了camera hal 中demo测试用例的chipset相关的头文件。device_manager存放了RK3568适配的camera sensor 读取设备能力的代码 其中,project_hardware.h 比较关键,存放了device_manager支持当前chipset的设备列表。如下: ``` namespace OHOS::Camera { std::vector hardware = { {CAMERA_FIRST, DM_M_SENSOR, DM_C_SENSOR, (std::string) "rkisp_v5"}, {CAMERA_FIRST, DM_M_ISP, DM_C_ISP, (std::string) "isp"}, {CAMERA_FIRST, DM_M_FLASH, DM_C_FLASH, (std::string) "flash"}, {CAMERA_SECOND, DM_M_SENSOR, DM_C_SENSOR, (std::string) "Imx600"}, {CAMERA_SECOND, DM_M_ISP, DM_C_ISP, (std::string) "isp"}, {CAMERA_SECOND, DM_M_FLASH, DM_C_FLASH, (std::string) "flash"} }; } // namespace OHOS::Camera ``` 修改编译选项来达到根据不同的编译chipset来区分v4l2和其他框架代码编译。增加device/${product_company}/${device_name}/camera/product.gni ``` camera_product_name_path = "//vendor/${product_company}/${product_name}" camera_device_name_path = "//device/board/${product_company}/${device_name}" is_support_v4l2 = true if (is_support_v4l2) { is_support_mpi = false defines += [ "SUPPORT_V4L2" ] chipset_build_deps = "$camera_device_name_path/camera/:chipset_build" camera_device_manager_deps = "$camera_device_name_path/camera/src/device_manager:camera_device_manager" camera_pipeline_core_deps = "$camera_device_name_path/camera/src/pipeline_core:camera_pipeline_core" } ``` 当“product.gni”被// drivers/peripheral/camera/hal/camera.gni加载,就说明要编译v4l2相关代码。在//drivers/peripheral/camera/hal/camera.gni中根据编译时传入的product_name和device_name名来加载相应的gni文件。 ``` import("//build/ohos.gni") if ("${product_name}" == "ohos-arm64") { import( "//drivers/peripheral/camera/hal/adapter/chipset/rpi/rpi3/device/camera/product.gni") } else if ("${product_name}" == "Hi3516DV300") { import( "//device/soc/hisilicon/common/hal/media/camera/hi3516dv300/linux_standard/camera/product.gni") ``` “drivers/peripheral/camera/hal/BUILD.gn”中会根据 chipset_build_deps camera_device_manager_deps 和 camera_pipeline_core_deps来编译不同的chipset print("product_name : , ${product_name}") group("camera_hal") { if (is_standard_system) { deps = [ "$camera_path/../interfaces/hdi_ipc/client:libcamera_client", "buffer_manager:camera_buffer_manager", "device_manager:camera_device_manager", "hdi_impl:camera_hdi_impl", "init:ohos_camera_demo", "pipeline_core:camera_pipeline_core", "utils:camera_utils", ] deps += [ "${chipset_build_deps}" ] } Camera hal层向下屏蔽了平台及芯片差异,对外(Camera service或者测试程序)提供统一接口,其接口定义在“drivers/peripheral/camera/interfaces/include”目录下: ├── icamera_device_callback.h ├── icamera_device.h ├── icamera_host_callback.h ├── icamera_host.h ├── ioffline_stream_operator.h ├── istream_operator_callback.h ├── istream_operator.h 测试时,只需要针对所提供的对外接口进行测试,即可完整测试Camera hal层代码,具体接口说明,可参考“drivers/peripheral/camera/interfaces”目录下的“README_zh.md”和头文件接口定义。具体的调用流程,可参考测试demo:drivers/peripheral/camera/hal/init。 ### camera适配过程中问题以及解决方案 #### 修改SUBWINDOW_TYPE和送显format 修改RGBA888送显,模式由video 改为 SUBWINDOW_TYPE为normal模式: 由于openharmony 较早实现的是3516平台camera, 该平台采用PIXEL_FMT_YCRCB_420_SP格式送显,而RK3568需将预览流由yuv420转换为PIXEL_FMT_RGBA_8888送上屏幕才可被正确的显示。具体需修改foundation/ace/ace_engine/frameworks/core/components/camera/standard_system/camera.cpp 文件中如下内容,该文件被编译在libace.z.so中 #ifdef PRODUCT_RK previewSurface_->SetUserData(SURFACE_FORMAT, std::to_string(PIXEL_FMT_RGBA_8888)); previewSurface_->SetUserData(CameraStandard::CameraManager::surfaceFormat, std::to_string(OHOS_CAMERA_FORMAT_RGBA_8888)); #else previewSurface_->SetUserData(SURFACE_FORMAT, std::to_string(PIXEL_FMT_YCRCB_420_SP)); previewSurface_->SetUserData(CameraStandard::CameraManager::surfaceFormat, std::to_string(OHOS_CAMERA_FORMAT_YCRCB_420_SP)); #endif foundation/multimedia/camera_standard/services/camera_service/src/hstream_repeat.cpp 文件中如下内容,该文件被编译在libcamera_service.z.so中 ``` void HStreamRepeat::SetStreamInfo(std::shared_ptr streamInfo) { int32_t pixelFormat; auto it = g_cameraToPixelFormat.find(format_); if (it != g_cameraToPixelFormat.end()) { pixelFormat = it->second; } else { #ifdef RK_CAMERA pixelFormat = PIXEL_FMT_RGBA_8888; #else pixelFormat = PIXEL_FMT_YCRCB_420_SP; #endif ``` 如上3516平台是使用VO通过VO模块驱动直接送显,所以在ace中配置的subwindows模式为SUBWINDOW_TYPE_VIDEO. 需在foundation/ace/ace_engine/frameworks/core/components/camera/standard_system/camera.cpp文件中做如下修改,该文件被编译在libace.z.so中 #ifdef PRODUCT_RK option->SetWindowType(SUBWINDOW_TYPE_NORMAL); #else option->SetWindowType(SUBWINDOW_TYPE_VIDEO); #endif #### 增加rk_codec_node 在该node中完成rgb转换,jpeg和h264压缩编解码前文讲过camera hal的pipeline模型的每一个node都是camera数据轮转过程中的一个节点,由于当前camera hal v4l2 adapter只支持一路流进行数据轮转,那么拍照和录像流就必须从单一的预览流中拷贝。现阶段openharmony也没有专门的服务端去做codec和rgb转换jpeg压缩的工作。那么只能在camera hal中开辟一个专有node去做这些事情,也就是rk_codec_node。 Hcs中增加rk_codec_node连接模型: 修改vendor/hihope/rk3568/hdf_config/uhdf/camera/pipeline_core/config.hcs文件 normal_preview_snapshot :: pipeline_spec { name = "normal_preview_snapshot"; v4l2_source :: node_spec { name = "v4l2_source#0"; status = "new"; out_port_0 :: port_spec { name = "out0"; peer_port_name = "in0"; peer_port_node_name = "fork#0"; direction = 1; } } fork :: node_spec { name = "fork#0"; status = "new"; in_port_0 :: port_spec { name = "in0"; peer_port_name = "out0"; peer_port_node_name = "v4l2_source#0"; direction = 0; } out_port_0 :: port_spec { name = "out0"; peer_port_name = "in0"; peer_port_node_name = "RKCodec#0"; direction = 1; } out_port_1 :: port_spec { name = "out1"; peer_port_name = "in0"; peer_port_node_name = "RKCodec#1"; direction = 1; } } RKCodec_1 :: node_spec { name = "RKCodec#0"; status = "new"; in_port_0 :: port_spec { name = "in0"; peer_port_name = "out0"; peer_port_node_name = "fork#0"; direction = 0; } out_port_0 :: port_spec { name = "out0"; peer_port_name = "in0"; peer_port_node_name = "sink#0"; direction = 1; } } RKCodec_2 :: node_spec { name = "RKCodec#1"; 以预览加拍照双路流为列,v4l2_source_node为数据源,流向了fork_node,rork_node将预览数据直接送给RKCodec node, 将拍照数据流拷贝一份也送给RKCodec node进行转换。转换完成的数据将送给sink node后交至buffer的消费端。 device/board/hihope/rk3568/camera/src/pipeline_core/BUILD.gn中添加rk_codec_node.cpp和相关依赖库的编译。其中librga为yuv到rgb格式转换库,libmpp为yuv到H264编解码库,libjpeg为yuv到jpeg照片的压缩库。 ohos_shared_library("camera_pipeline_core") { sources = [ "$camera_device_name_path/camera/src/pipeline_core/node/rk_codec_node.cpp", "$camera_path/adapter/platform/v4l2/src/pipeline_core/nodes/uvc_node/uvc_node.cpp", "$camera_path/adapter/platform/v4l2/src/pipeline_core/nodes/v4l2_source_node/v4l2_source_node.cpp", deps = [ "$camera_path/buffer_manager:camera_buffer_manager", "$camera_path/device_manager:camera_device_manager", "//device/soc/rockchip/hardware/mpp:libmpp", "//device/soc/rockchip/hardware/rga:librga", "//foundation/multimedia/camera_standard/frameworks/native/metadata:metadata", "//third_party/libjpeg:libjpeg_static", openharmony/device/board/hihope/rk3568/camera/src/pipeline_core/node/rk_codec_node.cpp主要接口: void RKCodecNode::DeliverBuffer(std::shared_ptr& buffer) { if (buffer == nullptr) { CAMERA_LOGE("RKCodecNode::DeliverBuffer frameSpec is null"); return; } int32_t id = buffer->GetStreamId(); CAMERA_LOGE("RKCodecNode::DeliverBuffer StreamId %{public}d", id); if (buffer->GetEncodeType() == ENCODE_TYPE_JPEG) { Yuv420ToJpeg(buffer); } else if (buffer->GetEncodeType() == ENCODE_TYPE_H264) { Yuv420ToH264(buffer); } else { Yuv420ToRGBA8888(buffer); } 由fork_node出来的数据流将会被deliver到rk_codec_node的DeliverBuffer接口中,该接口会根据不同的EncodeType去做不同的转换处理。经过转换过的buffers再deliver到下一级node中处理。直到deliver到buffer消费者手中。 #### H264帧时间戳和音频时间戳不同步问题。 问题点:Ace在CreateRecorder时会同时获取音频和视频数据并将他们合成为.mp4文件。但在实际合成过程当中需要检查音视频信息中的时间戳是否一致,如不一致将会Recorder失败。表现出的现象是camera app点击录像按钮后无法正常停止,强行停止后发现mp4文件为空。 解决方法:首先需找到audio模块对于音频时间戳的获取方式。 ``` int32_t AudioCaptureAsImpl::GetSegmentInfo(uint64_t &start) { CHECK_AND_RETURN_RET(audioCapturer_ != nullptr, MSERR_INVALID_OPERATION); AudioStandard::Timestamp timeStamp; auto timestampBase = AudioStandard::Timestamp::Timestampbase::MONOTONIC; CHECK_AND_RETURN_RET(audioCapturer_->GetAudioTime(timeStamp, timestampBase), MSERR_UNKNOWN); CHECK_AND_RETURN_RET(timeStamp.time.tv_nsec >= 0 && timeStamp.time.tv_sec >= 0, MSERR_UNKNOWN); if (((UINT64_MAX - timeStamp.time.tv_nsec) / SEC_TO_NANOSECOND) <= static_cast(timeStamp.time.tv_sec)) { MEDIA_LOGW("audio frame pts too long, this shouldn't happen"); } start = timeStamp.time.tv_nsec + timeStamp.time.tv_sec * SEC_TO_NANOSECOND; MEDIA_LOGI("timestamp from audioCapturer: %{public}" PRIu64 "", start); return MSERR_OK; } ``` 可以看到,audio_capture_as_impl.cpp 文件中。audio模块用的是CLOCK_MONOTONIC,即系统启动时开始计时的相对时间。而camera 模块使用的是CLOCK_REALTIME,即系统实时时间。 mppStatus_ = 1; buf_size = ((MpiEncTestData *)halCtx_)->frame_size; ret = hal_mpp_encode(halCtx_, dma_fd, (unsigned char *)buffer->GetVirAddress(), &buf_size); SearchIFps((unsigned char *)buffer->GetVirAddress(), buf_size, buffer); buffer->SetEsFrameSize(buf_size); clock_gettime(CLOCK_MONOTONIC, &ts); timestamp = ts.tv_nsec + ts.tv_sec * TIME_CONVERSION_NS_S; buffer->SetEsTimestamp(timestamp); CAMERA_LOGI("RKCodecNode::Yuv420ToH264 video capture on\n"); 解决方法:修改camera hal中rk_codec_node.cpp中的获取时间类型为CLOCK_MONOTONIC即可解决问题。 #### time_t改为64位以后匹配4.19 kernel问题。 背景介绍:RK3568在遇到这个问题时的环境是上层运行的32位系统,底层是linux4.19 64位kernel。在32位系统环境下time_t这个typedef是long类型的,也就是32位。但在下面这个提交中将time_t 改成_Int64位。这样就会导致camera v4l2在ioctl时发生错误。 TYPEDEF _Int64 time_t; TYPEDEF _Int64 suseconds_t; 具体错误以及临时修改方案: 1,发生错误时在hilog中搜索camera_host 会发现在V4L2AllocBuffer接口中下发VIDIOC_QUERYBUF的CMD时上报了一个Not a tty的错误。如下: ``` V4L2AllocBuffer error:ioctl VIDIOC_QUERYBUF failed: Not a tty ``` RetCode HosV4L2Buffers::V4L2AllocBuffer(int fd, const std::shared_ptr& frameSpec) { struct v4l2_buffer buf = {}; struct v4l2_plane planes[1] = {}; CAMERA_LOGD("V4L2AllocBuffer\n"); if (frameSpec == nullptr) { CAMERA_LOGE("V4L2AllocBuffer frameSpec is NULL\n"); return RC_ERROR; } switch (memoryType_) { case V4L2_MEMORY_MMAP: // to do something break; case V4L2_MEMORY_USERPTR: buf.type = bufferType_; buf.memory = memoryType_; buf.index = (uint32_t)frameSpec->buffer_->GetIndex(); if (bufferType_ == V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE) { buf.m.planes = planes; buf.length = 1; } CAMERA_LOGD("V4L2_MEMORY_USERPTR Print the cnt: %{public}d\n", buf.index); if (ioctl(fd, VIDIOC_QUERYBUF, &buf) < 0) { CAMERA_LOGE("error: ioctl VIDIOC_QUERYBUF failed: %{public}s\n", strerror(errno)); return RC_ERROR; 2,我们知道,一般ioctl系统调用的CMD都是以第三个参数的sizeof为CMD值主要组成传递进内核去寻找内核中相对应的switch case. 如下图,v4l2_buffer为VIDIOC_QUERYBUF宏的值得主要组成部分,那么v4l2_buffer的size发生变化,VIDIOC_QUERYBUF的值也会发生变化。 ``` #define VIDIOC_S_FMT _IOWR('V', 5, struct v4l2_format) #define VIDIOC_REQBUFS _IOWR('V', 8, struct v4l2_requestbuffers) #define VIDIOC_QUERYBUF _IOWR('V', 9, struct v4l2_buffer) #define VIDIOC_G_FBUF _IOR('V', 10, struct v4l2_framebuffer) ``` 3,当kernel 打开CONFIG_COMPAT这个宏时,可以实现32位系统到64位kernel的兼容,对于32位系统下发的ioctl会先进入下面截图中的接口里去做cmd值由32到64位的转换。 long v4l2_compat_ioctl32(struct file *file, unsigned int cmd, unsigned long arg) { struct video_device *vdev = video_devdata(file); long ret = -ENOIOCTLCMD; if (!file->f_op->unlocked_ioctl) return ret; if (_IOC_TYPE(cmd) == 'V' && _IOC_NR(cmd) < BASE_VIDIOC_PRIVATE) ret = do_video_ioctl(file, cmd, arg); else if (vdev->fops->compat_ioctl32) ret = vdev->fops->compat_ioctl32(file, cmd, arg); 4,那么在kernel中会定义一个kernel认为的VIDIOC_QUERYBUF的值。 #define VIDIOC_S_FMT32 _IOWR('V', 5, struct v4l2_format32) #define VIDIOC_QUERYBUF32 _IOWR('V', 9, struct v4l2_buffer32) #define VIDIOC_QUERYBUF32_TIME32 _IOWR('V', 9, struct v4l2_buffer32_time32) 5,前文提到过,上层musl中time_t已经由32位被改为64位,v4l2_buffer结构体中的struct timeval中就用到了time_t。那么应用层的v4l2_buffer的大小就会跟kernel层的不一致,因为kernel的struct timeval 中编译时使用的是kernel自己在time.h中定义的 kernel_time_t。这就导致应用和驱动层对于v4l2_buffer的sizeof计算不一致从而调用到内核态后找不到cmd的错误。 ``` struct v4l2_buffer { __u32 index; __u32 type; __u32 bytesused; __u32 flags; __u32 field; struct timeval timestamp; struct v4l2_timecode timecode; __u32 sequence; ``` 6,临时解决方案是修改videodev2.h中的struct timeval为自己临时定义的结构体, 保证上下层size一致。如下: ``` struct timeval1 { long tv_sec; long tv_usec; } struct v4l2_buffer { __u32 index; __u32 type; __u32 bytesused; __u32 flags; __u32 field; struct timeval1 timestamp; struct v4l2_timecode timecode; ``` 根本解决方案: 如需要根本解决这个问题,只有两种方法。第一将系统升级为64位系统,保证用户态和内核态对于time_t变量的size保持一致。第二,升级5.10之后版本的kernel 因为5.10版本的kernel在videodev2.h文件中解决了这个情况。目前我们已在5.10的kernel上验证成功,如下图,可以看到在编译kernel时考虑到了64位time_t的问题。 ``` struct v4l2_buffer { __u32 index; __u32 type; __u32 bytesused; __u32 flags; __u32 field; #ifdef __KERNEL__ struct __kernel_v4l2_timeval timestamp; #else struct timeval timestamp; #endif struct v4l2_timecode timecode; } struct __kernel_v4l2_timeval { long long ._sec; #if defined(__sparc__) && defined(__arch64__) int tv_usec; int __pad; #else long long tv_usec; #endif }; ``` #### H264 关键帧获取上报 H264除了需要上报经过编解码的数据外,还需上报关键帧信息。即这一帧是否为关键帧?mp4编码时需要用到这些信息,那么怎么分析那一帧是关键帧那?主要是分析NALU头信息。Nalu type & 0x1f就代表该帧的类型。Nalu头是以0x00000001或0x000001为起始标志的。 该图为nal_unit_type为不同数值时的帧类型。我们主要关心type为5也就是IDR帧信息。 ![1647875911244](figures/dayu200/dayu200-camera-03.png) rk_cedec_node.cpp文件里对IDR帧分析进行了代码化: static constexpr uint32_t nalBit = 0x1F; #define NAL_TYPE(value) ((value) & nalBit) void RKCodecNode::SearchIFps(unsigned char* buf, size_t bufSize, std::shared_ptr& buffer) { size_t nalType = 0; size_t idx = 0; size_t size = bufSize; constexpr uint32_t nalTypeValue = 0x05; if (buffer == nullptr || buf == nullptr) { CAMERA_LOGI("RKCodecNode::SearchIFps parameter == nullptr"); return; } for (int i = 0; i < bufSize; i++) { int ret = findStartCode(buf + idx, size); if (ret == -1) { idx += 1; size -= 1; } else { nalType = NAL_TYPE(buf[idx + ret]); CAMERA_LOGI("ForkNode::ForkBuffers nalu == 0x%{public}x buf == 0x%{public}x \n", nalType, buf[idx + ret]); 每经过一个h264转换过的buffer都会被传入SearchIFps接口中寻找IDR帧。其中findStartCode()接口会对buffer中的内容逐个字节扫描,知道寻找出NALU头来 ``` int RKCodecNode::findStartCode(unsigned char *data, size_t dataSz) { constexpr uint32_t dataSize = 4; constexpr uint32_t dataBit2 = 2; constexpr uint32_t dataBit3 = 3; if (data == nullptr) { CAMERA_LOGI("RKCodecNode::findStartCode parameter == nullptr"); return -1; } if ((dataSz > dataSize) && (data[0] == 0) && (data[1] == 0) && \ (data[dataBit2] == 0) && (data[dataBit3] == 1)) { return 4; // 4:start node } return -1; } ``` 当找到NALU头后就会对&0x1F 找出nal_unit_type,如果type为5标记关键帧信息并通过buffer->SetEsKeyFrame(1);接口上报。 ## TP ### TP驱动模型 主要包含Input模块HDI(Hardware Driver Interface)接口定义及其实现,对上层输入服务提供操作input设备的驱动能力接口,HDI接口主要包括如下三大类: - InputManager:管理输入设备,包括输入设备的打开、关闭、设备列表信息获取等; - InputReporter:负责输入事件的上报,包括注册、注销数据上报回调函数等; - InputController:提供input设备的业务控制接口,包括获取器件信息及设备类型、设置电源状态等。 **图 1** INPUT模块HDI接口层框架图 dayu200-tp-01.png 相关目录下源代码目录结构如下所示 ``` /drivers/peripheral/input ├── hal # input模块的hal层代码 │ └── include # input模块hal层内部的头文件 │ └── src # input模块hal层代码的具体实现 ├── interfaces # input模块对上层服务提供的驱动能力接口 │ └── include # input模块对外提供的接口定义 ├── test # input模块的测试代码 │ └── unittest # input模块的单元测试代码 ``` 详细请参考input子系统[README](https://gitee.com/openharmony/drivers_peripheral/blob/master/input/README_zh.md) ### TP HDF驱动适配 #### TP驱动涉及的文件及目录 dayu200平台默认支持GT5688这颗TP IC。 开发板移植touch驱动涉及的文件及目录: 1、 Makefile文件: drivers\adapter\khdf\linux\model\input\Makefile 2、 vendor\hihope\rk3568\hdf_config\khdf\device_info\device_info.hcs 3、 vendor\hihope\rk3568\hdf_config\khdf\input\input_config.hcs 4、 drivers\framework\model\input\driver\touchscreen TP驱动的适配涉及TP驱动和hcs配置 tp驱动的适配依赖hdf的input模型,hdf的input模型提供了TP,KEY,HID等场景的设备注册,管理,数据转发层,hcs解析等场景的支持能力。hdf的input模型可大致抽象为驱动管理层、公共驱动层以及器件驱动三层。 从功能的角度看hdf input模块的框架如下: tp 因为hdf input模型的高度抽象集成,TP驱动的适配驱动主要涉及器件驱动层的适配。 在适配前,需要先明确tp所需要的的资源。 对于硬件资源,tp模组需要主机上的如下资源: 1.中断引脚 2.Reset引脚 3.使用的哪一组i2c,从设备的地址是什么 4.TP的初始化固件(这个通常由IC厂商提供) 5.触摸屏的分辨率 对于软件资源,在hdf上适配tp,需要依赖如下几个hdf基础模组: 1.Hdf gpio子系统 用于设置gpio pin脚以及一些中断资源 2.Hdf i2c 子系统 用于进行i2c通信 3.Input模型 器件驱动主要围绕如下结构体展开 ``` static struct TouchChipOps g_gt911ChipOps = { .Init = ChipInit, .Detect = ChipDetect, .Resume = ChipResume, .Suspend = ChipSuspend, .DataHandle = ChipDataHandle, .UpdateFirmware = UpdateFirmware, .SetAbility = SetAbility, }; ``` ChipInit负责器件驱动的初始化动作 ChipDetect负责初始化后的器件有效性检测 SetAbility设置按键属性 ChipDataHandle负责解析键值 UpdateFirmware负责升级固件 ChipSuspend负责器件的休眠 ChipResume负责器件的唤醒 按照器件的特性实现如上接口回调,并将该结构体注册进input模型即可 #### HCS 配置 device_info.hcs中加入新的器件节点 ``` device_touch_chip :: device { device0 :: deviceNode { policy = 0; priority = 180; preload = 0;//0表示默认加载 permission = 0660; moduleName = "HDF_TOUCH_GT911";//需要和器件driver中保持一致 serviceName = "hdf_touch_gt911_service"; deviceMatchAttr = "zsj_gt911_5p5"; } } ``` input_config.hcs中加入器件的特性 ``` chipConfig { template touchChip { match_attr = ""; chipName = "gt911"; vendorName = "zsj"; chipInfo = "AAAA11222"; // 4-ProjectName, 2-TP IC, 3-TP Module /* 0:i2c 1:spi*/ busType = 0; deviceAddr = 0x5D; /* 0:None 1:Rising 2:Failing 4:High-level 8:Low-level */ irqFlag = 2; maxSpeed = 400; chipVersion = 0; //parse Coord TypeA powerSequence { /* [type, status, dir , delay] 0:none 1:vcc-1.8v 2:vci-3.3v 3:reset 4:int 0:off or low 1:on or high 2:no ops 0:input 1:output 2:no ops meanings delay xms, 20: delay 20ms */ powerOnSeq = [4, 0, 1, 5, 3, 0, 1, 10, 3, 1, 1, 60, 4, 2, 0, 50]; suspendSeq = [3, 0, 2, 10]; resumeSeq = [3, 1, 2, 10]; powerOffSeq = [3, 0, 2, 10, 1, 0, 2, 20]; } } ``` ## 显示适配 显示适配需要完成的工作:图形服务HDI接口适配、GPU适配、LCD驱动适配 ### 显示HDI [显示HDI](https://gitee.com/openharmony/drivers_peripheral/blob/master/display/README_zh.md)对图形服务提供显示驱动能力,包括显示图层的管理、显示内存的管理及硬件加速等。 显示HDI需要适配两部分:gralloc 和 display_device。 #### gralloc适配 gralloc模块提供显示内存管理功能,OpenHarmony提供了使用与Hi3516DV300参考实现,厂商可根据实际情况参考适配,该实现基于drm开发,[源码链接](https://gitee.com/openharmony/drivers_peripheral/tree/master/display/hal/default_standard)。 drm设备节点定义在//drivers_peripheral/display/hal/default_standard/srd/display_gralloc/display_gralloc_gbm.c文件中,可根据实际情况修改 ``` const char *g_drmFileNode = "/dev/dri/card0"; ``` 该实现中存在一个海思的私有ioctl命令码 DRM_IOCTL_HISILICON_GEM_FD_TO_PHYADDR 定义在//drivers_peripheral/display/hal/default_standard/src/display_gralloc/hisilicon_drm.h 文件中, 在//drivers_peripheral/display/hal/default_standard/src/display_gralloc/display_gralloc_gbm.c文件中调用,属于海思的私有功能,适配时根据实际情况修改 ``` ... InitBufferHandle(bo, fd, info, priBuffer); priBuffer->hdl.phyAddr = GetPhysicalAddr(grallocManager->drmFd, fd); *buffer = &priBuffer->hdl; ... ``` #### display device适配 display device模块提供显示设备管理、layer管理、硬件加速等功能。 OpenHarmony提供了[基于drm的Hi3516DV300芯片的参考实现](https://gitee.com/openharmony/drivers_peripheral/tree/master/display/hal/default_standard/src/display_device),该实现默认支持硬件合成; 如开发板不支持硬件合成,需要在drm_display.cpp文件中跳过gfx的初始化, ``` drivers_peripheral/blob/master/display/hal/default_standard/src/display_device/drm/drm_display.cpp int32_t DrmDisplay::Init() { ... ... ret = HdiDisplay::Init(); DISPLAY_CHK_RETURN((ret != DISPLAY_SUCCESS), DISPLAY_FAILURE, DISPLAY_LOGE("init failed")); auto preComp = std::make_unique(); DISPLAY_CHK_RETURN((preComp == nullptr), DISPLAY_FAILURE, DISPLAY_LOGE("can not new HdiGfxComposition errno %{public}d", errno)); ret = preComp->Init(); // gfx初始化,这里需要跳过 DISPLAY_CHK_RETURN((ret != DISPLAY_SUCCESS), DISPLAY_FAILURE, DISPLAY_LOGE("can not init HdiGfxComposition")); // 或者不判断返回值 ... } ``` 同时在//drivers_peripheral/display/hal/default_standard/src/display_device/hdi_gfx_composition.cpp文件中修改set_layers方法,全部使用CPU合成显示 ``` int32_t HdiGfxComposition::SetLayers(std::vector &layers, HdiLayer &clientLayer) { DISPLAY_LOGD("layers size %{public}zd", layers.size()); mClientLayer = &clientLayer; mCompLayers.clear(); for (auto &layer : layers) { if (CanHandle(*layer)) { #if 0 // CPU合成 layer->SetDeviceSelect(COMPOSITION_CLIENT); #else if ((layer->GetCompositionType() != COMPOSITION_VIDEO) && (layer->GetCompositionType() != COMPOSITION_CURSOR)) { layer->SetDeviceSelect(COMPOSITION_DEVICE); } else { layer->SetDeviceSelect(layer->GetCompositionType()); } #endif mCompLayers.push_back(layer); } } DISPLAY_LOGD("composer layers size %{public}zd", mCompLayers.size()); return DISPLAY_SUCCESS; } ``` #### 测试验证 hello_composer测试模块:Rosen图形框架提供的测试程序,主要显示流程,HDI接口等功能是否正常。默认随系统编译。 代码路径: ``` foundation/graphic/graphic/rosen/samples/composer/ ├── BUILD.gn ├── hello_composer.cpp ├── hello_composer.h ├── layer_context.cpp ├── layer_context.h └── main.cpp ``` 具体验证如下: 1. 关闭render service ``` service_control stop render_service ``` 2. 关闭 foundation进程 ``` service_control stop foundation ``` 3. 运行hello_composer 测试相关接口 ``` ./hello_composer ``` devicetest测试:HDI显示模块提供的测试模块,主要测试HDI接口、显示buffer、驱动等能力,测试时也需要关闭render service和 foundation进程。 代码路径:/drivers/peripheral/display/test/unittest/standard ``` ├── BUILD.gn ├── common │ ├── display_test.h │ ├── display_test_utils.cpp │ └── display_test_utils.h ├── display_device │ ├── hdi_composition_check.cpp │ ├── hdi_composition_check.h │ ├── hdi_device_test.cpp │ ├── hdi_device_test.h │ ├── hdi_test_device_common.h │ ├── hdi_test_device.cpp │ ├── hdi_test_device.h │ ├── hdi_test_display.cpp │ ├── hdi_test_display.h │ ├── hdi_test_layer.cpp │ ├── hdi_test_layer.h │ ├── hdi_test_render_utils.cpp │ └── hdi_test_render_utils.h └── display_gralloc ├── display_gralloc_test.cpp └── display_gralloc_test.h ``` ### GPU 编译器clang ``` prebuilts/clang/ohos/linux-x86_64/llvm ``` musl库 ``` ./build.sh --product-name rk3568 --build-target musl_all ``` 编译完成后,会在 out/{product_name}/obj/third_party/musl/usr/lib目录下生成对应的头文件和库: ``` 32位对应arm-linux-ohos 64位对应aarch64-linux-ohos ``` 源码目录: ``` third_party/musl ``` GPU 编译参数参考 ``` TARGET_CFLAGS=" -march=armv7-a -mfloat-abi=softfp -mtune=generic-armv7-a -mfpu=neon -mthumb --target=arm-linux-ohosmusl -fPIC -ftls-model=global-dynamic -mtls-direct-seg-refs -DUSE_MUSL" ``` ## LCD dayu200平台默认支持一个mipi接口的lcd屏幕 LCD的适配主要依赖于HDF显示模型,显示驱动模型基于 HDF 驱动框架、Platform 接口及 OSAL 接口开发,可以屏蔽不同内核形态(LiteOS、Linux)差异,适用于不同芯片平台,为显示屏器件提供统一的驱动平台。 如图为 HDF Display驱动模型层次关系 ![640](figures/dayu200/dayu200-lcd-01.png) 当前驱动模型主要部署在内核态中,向上对接到 Display 公共 hal 层,辅助 HDI 的实现。显示驱动通过 Display-HDI 层对图形服务暴露显示屏驱动能力;向下对接显示屏 panel 器件,驱动屏幕正常工作,自上而下打通显示全流程通路。 所以LCD的适配主要在于LCD panel器件驱动的适配 器件驱动的适配分为2部分:panel驱动和hcs配置 涉及的文件有: ``` drivers/framework/model/display/driver/panel vendor/hihope/rk3568/hdf_config/khdf/device_info vendor/hihope/rk3568/hdf_config/khdf/input ``` ### panel驱动 器件驱动主要围绕如下接口展开: ``` struct PanelData { struct HdfDeviceObject *object; int32_t (*init)(struct PanelData *panel); int32_t (*on)(struct PanelData *panel); int32_t (*off)(struct PanelData *panel); int32_t (*prepare)(struct PanelData *panel); int32_t (*unprepare)(struct PanelData *panel); struct PanelInfo *info; enum PowerStatus powerStatus; struct PanelEsd *esd; struct BacklightDev *blDev; void *priv; }; ``` 驱动中在初始化接口中实例化该结构体: panelSimpleDev->panel.init = PanelSimpleInit; panelSimpleDev->panel.on = PanelSimpleOn; panelSimpleDev->panel.off = PanelSimpleOff; panelSimpleDev->panel.prepare = PanelSimplePrepare; panelSimpleDev->panel.unprepare = PanelSimpleUnprepare; PanelSimpleInit负责panel的软件初始化 PanelSimpleOn负责亮屏 PanelSimpleOff负责灭屏 PanelSimplePrepare负责亮屏的硬件时序初始化 PanelSimpleUnprepare负责灭屏的硬件时序初始化 实例化后使用RegisterPanel接口向display模型注册该panel驱动即可 需要说明的是,dauy200上的这款lcd 使用的时候DRM显示框架 ### hcs配置 ``` device4 :: deviceNode { policy = 0; priority = 100; preload = 0; moduleName = "LCD_PANEL_SIMPLE"; } ``` ## 背光 基于HDF框架开发的 背光驱动模型 rk3568背光是通过pwm控制占空比实现的,具体使用的是pwm4 原生背光驱动代码路径 ```c linux-5.10/drivers/video/backlight/pwm_bl.c linux-5.10/drivers/video/backlight/backlight.c linux-5.10/drivers/pwm/pwm-rockchip.c ``` 使用HDF框架下的背光驱动,需要关闭原生驱动 ```c # CONFIG_BACKLIGHT_PWM is not set ``` ### HDF实现 代码路径 ```c drivers/framework/model/display/driver/backlight/hdf_bl.c ``` HDF BL 入口函数 ```c static int32_t BacklightInit(struct HdfDeviceObject *object) { if (object == NULL) { HDF_LOGE("%s: object is null!", __func__); return HDF_FAILURE; } HDF_LOGI("%s success", __func__); return HDF_SUCCESS; } struct HdfDriverEntry g_blDevEntry = { .moduleVersion = 1, .moduleName = "HDF_BL", .Init = BacklightInit, .Bind = BacklightBind, }; HDF_INIT(g_blDevEntry); ``` 代码路径: ```c drivers/framework/model/display/driver/backlight/pwm_bl.c ``` HDF PWM 入口函数 ```c struct HdfDriverEntry g_pwmBlDevEntry = { .moduleVersion = 1, .moduleName = "PWM_BL", .Init = BlPwmEntryInit, }; HDF_INIT(g_pwmBlDevEntry); ``` 具体控制背光的接口: ```c static int32_t BlPwmUpdateBrightness(struct BacklightDev *blDev, uint32_t brightness) { int32_t ret; uint32_t duty; struct BlPwmDev *blPwmDev = NULL; blPwmDev = ToBlDevPriv(blDev); if (blPwmDev == NULL) { HDF_LOGE("%s blPwmDev is null", __func__); return HDF_FAILURE; } if (blPwmDev->props.maxBrightness == 0) { HDF_LOGE("%s maxBrightness is 0", __func__); return HDF_FAILURE; } if (brightness == 0) { return PwmDisable(blPwmDev->pwmHandle); } duty = (brightness * blPwmDev->config.period) / blPwmDev->props.maxBrightness; ret = PwmSetDuty(blPwmDev->pwmHandle, duty); if (ret != HDF_SUCCESS) { HDF_LOGE("%s: PwmSetDuty failed, ret %d", __func__, ret); return HDF_FAILURE; } return PwmEnable(blPwmDev->pwmHandle); } static struct BacklightOps g_blDevOps = { .updateBrightness = BlPwmUpdateBrightness, }; ``` 其实使用的就是HDF PWM 实现的对接内核pwm的接口 在LCD HDF器件驱动注册背光 代码路径 ```c drivers/framework/model/display/driver/panel/ili9881c_boe.c ``` ```c ili9881cBoeDev->panel.blDev = GetBacklightDev("hdf_pwm"); if (ili9881cBoeDev->panel.blDev == NULL) { HDF_LOGE("%s GetBacklightDev fail", __func__); goto FAIL; } ``` ### HCS配置 驱动hcs配置 ```c device_pwm_bl :: device { device0 :: deviceNode { policy = 0; priority = 95; preload = 0; moduleName = "PWM_BL"; deviceMatchAttr = "pwm_bl_dev"; } } device_backlight :: device { device0 :: deviceNode { policy = 2; priority = 90; preload = 0; permission = 0660; moduleName = "HDF_BL"; serviceName = "hdf_bl"; } } ``` pwm背光的hcs配置 ```c root { backlightConfig { pwmBacklightConfig { match_attr = "pwm_bl_dev"; pwmDevNum = 1; pwmMaxPeriod = 25000; backlightDevName = "hdf_pwm"; minBrightness = 0; defBrightness = 127; maxBrightness = 255; } } } ``` ### 测试 cat /sys/kernel/debug/pwm 来查看hdf pwm 是否申请到pwm4 申请成功有如下结果: requested 代表申请成功 enabled 代表pwm4使能成功 ```c # cat /sys/kernel/debug/pwm platform/fe6e0000.pwm, 1 PWM device pwm-0 ((null) ): requested enabled period: 25000 ns duty: 9705 ns polarity: normal ``` ## **WIFI** ### WIFI HDF化思路 主要参考[《OpenHarmony HDF WLAN驱动分析》](https://mp.weixin.qq.com/s/iiE97pqPtzWIZadcjrQtsw)与使用 这篇文章,熟悉HDF WLAN的框架以及需要实现的主要接口,包括HDF驱动初始化接口、WLAN控制侧接口集、AP模式接口集、STA模式接口集、网络侧接口集、事件上报接口的实现。 接下来熟悉HCS文件的格式以及"HDF WIFI”核心驱动框架的代码启动初始化过程,参考hi3881的代码进行改造。 HDF WiFi框架总体框架图 ​ ![image-20220320160720306](figures/dayu200/dayu200-wifi-01.png) ### ap6275s驱动代码流程分析 #### 驱动模块初始化流程分析 dayu200-wifi-02.png Ap6275s 是一款SDIO设备WiFi模组驱动,使用标准Linux的SDIO设备驱动。内核模块初始化入口module_init()调用dhd_wifi_platform_load_sdio()函数进行初始化工作,这里调用wifi_platform_set_power()进行GPIO上电,调用dhd_wlan_set_carddetect()进行探测SDIO设备卡,最后调用sdio_register_driver(&bcmsdh_sdmmc_driver);进行SDIO设备驱动的注册,SDIO总线已经检测到WiFi模块设备 根据设备号和厂商号与该设备驱动匹配, 所以立即回调该驱动的bcmsdh_sdmmc_probe()函数,这里进行WiFi模组芯片的初始化工作,最后创建net_device网络接口wlan0,然后注册到Linux内核协议栈中。 l 创建net_device网络接口wlan0对象 dhd_allocate_if()会调用alloc_etherdev()创建net_device对象,即wlan0网络接口。 l 将wlan0注册到内核协议栈 调用dhd_register_if()函数,这里调用register_netdev(net);将wlan0网络接口注册到协议栈。 ### 整改代码适配HDF WiFi框架 对于系统WiFi功能的使用,需要实现AP模式、STA模式、P2P三种主流模式,这里使用wpa_supplicant应用程序通过HDF WiFi框架与WiFi驱动进行交互,实现STA模式和P2P模式的功能,使用hostapd应用程序通过HDF WiFi框架与WiFi驱动进行交互,实现AP模式和P2P模式的功能。 Ap6275s WiFi6内核驱动依赖platform能力,主要包括SDIO总线的通讯能力;与用户态通信依赖HDF WiFi框架的能力,在确保上述能力功能正常后,即可开始本次WiFi驱动的HDF适配移植工作。本文档基于已经开源的rk3568开源版代码为基础版本,来进行此次移植。 适配移植ap6275s WiFi6驱动涉及到的文件和目录如下: 1). 编译配置文件 drivers/adapter/khdf/linux/model/network/wifi/Kconfig drivers/adapter/khdf/linux/model/network/wifi/vendor/Makefile 2). WiFi驱动源码目录 原生驱动代码存放于: linux-5.10/drivers/net/wireless/rockchip_wlan/rkwifi/bcmdhd_wifi6/ 在原生驱动上增加以及修改的代码文件位于: device/hihope/rk3568/wifi/bcmdhd_wifi6/ 目录结构: ``` ./device/hihope/rk3568/wifi/bcmdhd_wifi6/hdf ├── hdf_bdh_mac80211.c ├── hdf_driver_bdh_register.c ├── hdfinit_bdh.c ├── hdf_mac80211_ap.c ├── hdf_mac80211_sta.c ├── hdf_mac80211_sta.h ├── hdf_mac80211_sta_event.c ├── hdf_mac80211_sta_event.h ├── hdf_mac80211_p2p.c ├── hdf_public_ap6275s.h ├── net_bdh_adpater.c ├── net_bdh_adpater.h ``` 其中hdf_bdh_mac80211.c主要对g_bdh6_baseOps所需函数的填充, hdf_mac80211_ap.c主要对g_bdh6_staOps所需函数进行填充,hdf_mac80211_sta.c主要对g_bdh6_staOps所需函数进行填充,hdf_mac80211_p2p.c主要对g_bdh6_p2pOps所需函数进行填充,在openharmony/drivers/framework/include/wifi/wifi_mac80211_ops.h里有对wifi基本功能所需api的说明。 #### 驱动文件编写 HDF WLAN驱动框架由Module、NetDevice、NetBuf、BUS、HAL、Client 和 Message 这七个部分组成。开发者在WiFi驱动HDF适配过程中主要实现以下几部分功能: 1) 适配HDF WLAN框架的驱动模块初始化 代码流程框图如下: dayu200-wifi-03.png 代码位于device/hihope/rk3568/wifi/bcmdhd_wifi6/hdf_driver_bdh_register.c ``` struct HdfDriverEntry g_hdfBdh6ChipEntry = { .moduleVersion = 1, .Bind = HdfWlanBDH6DriverBind, .Init = HdfWlanBDH6ChipDriverInit, .Release = HdfWlanBDH6ChipRelease, .moduleName = "HDF_WLAN_CHIPS" }; HDF_INIT(g_hdfBdh6ChipEntry); ``` 在驱动初始化时会实现SDIO主控扫描探卡、WiFi芯片初始化、主接口的创建和初始化等工作。 2) HDF WLAN Base控制侧接口的实现 代码位于hdf_bdh_mac80211.c ``` static struct HdfMac80211BaseOps g_bdh6_baseOps = { .SetMode = BDH6WalSetMode, .AddKey = BDH6WalAddKey, .DelKey = BDH6WalDelKey, .SetDefaultKey = BDH6WalSetDefaultKey, .GetDeviceMacAddr = BDH6WalGetDeviceMacAddr, .SetMacAddr = BDH6WalSetMacAddr, .SetTxPower = BDH6WalSetTxPower, .GetValidFreqsWithBand = BDH6WalGetValidFreqsWithBand, .GetHwCapability = BDH6WalGetHwCapability, .SendAction = BDH6WalSendAction, .GetIftype = BDH6WalGetIftype, }; ``` 上述实现的接口供STA、AP、P2P三种模式中所调用。 3) HDF WLAN STA模式接口的实现 STA模式调用流程图如下: ​ ![image-20220320161412663](figures/dayu200/dayu200-wifi-04.png) 代码位于hdf_mac80211_sta.c ``` struct HdfMac80211STAOps g_bdh6_staOps = { .Connect = HdfConnect, .Disconnect = HdfDisconnect, .StartScan = HdfStartScan, .AbortScan = HdfAbortScan, .SetScanningMacAddress = HdfSetScanningMacAddress, }; ``` 4) HDF WLAN AP模式接口的实现 AP模式调用流程图如下: ![image-20220320161432068](figures/dayu200/dayu200-wifi-05.png) 代码位于hdf_mac80211_ap.c ``` struct HdfMac80211APOps g_bdh6_apOps = { .ConfigAp = WalConfigAp, .StartAp = WalStartAp, .StopAp = WalStopAp, .ConfigBeacon = WalChangeBeacon, .DelStation = WalDelStation, .SetCountryCode = WalSetCountryCode, .GetAssociatedStasCount = WalGetAssociatedStasCount, .GetAssociatedStasInfo = WalGetAssociatedStasInfo }; ``` 5) HDF WLAN P2P模式接口的实现 P2P模式调用流程图如下: ![image-20220320161442845](figures/dayu200/dayu200-wifi-06.png) ``` struct HdfMac80211P2POps g_bdh6_p2pOps = { .RemainOnChannel = WalRemainOnChannel, .CancelRemainOnChannel = WalCancelRemainOnChannel, .ProbeReqReport = WalProbeReqReport, .AddIf = WalAddIf, .RemoveIf = WalRemoveIf, .SetApWpsP2pIe = WalSetApWpsP2pIe, .GetDriverFlag = WalGetDriverFlag, }; ``` 6) HDF WLAN框架事件上报接口的实现 WiFi驱动需要通过上报事件给wpa_supplicant和hostapd应用程序,比如扫描热点结果上报,新STA终端关联完成事件上报等等,HDF WLAN事件上报的所有接口请参考drivers/framework/include/wifi/hdf_wifi_event.h: 事件上报HDF WLAN接口主要有: | 头文件 hdf_wifi_event.h接口名称 | 功能描述 | | ----------------------------------- | ------------------------ | | HdfWifiEventNewSta() | 上报一个新的sta事件 | | HdfWifiEventDelSta() | 上报一个删除sta事件 | | HdfWifiEventInformBssFrame() | 上报扫描Bss事件 | | HdfWifiEventScanDone() | 上报扫描完成事件 | | HdfWifiEventConnectResult() | 上报连接结果事件 | | HdfWifiEventDisconnected() | 上报断开连接事件 | | HdfWifiEventMgmtTxStatus() | 上报发送状态事件 | | HdfWifiEventRxMgmt() | 上报接受状态事件 | | HdfWifiEventCsaChannelSwitch() | 上报Csa频段切换事件 | | HdfWifiEventTimeoutDisconnected() | 上报连接超时事件 | | HdfWifiEventEapolRecv() | 上报Eapol接收事件 | | HdfWifiEventResetResult() | 上报wlan驱动复位结果事件 | | HdfWifiEventRemainOnChannel() | 上报保持信道事件 | | HdfWifiEventCancelRemainOnChannel | 上报取消保持信道事件 | ### 所有关键问题总结 #### 调试AP模块时,启动AP模式的方法 调试AP模块时,无法正常开启AP功能的解决方法 需要使用到busybox和hostapd配置ap功能,操作步骤如下: ``` ifconfig wlan0 up ifconfig wlan0 192.168.12.1 netmask 255.255.255.0 busybox udhcpd /data/udhcpd.conf ./hostapd -d /data/hostapd.conf ``` #### 调试STA模块时,启动STA模式的方法 ``` wpa_supplicant -iwlan0 -c /data/l2tool/wpa_supplicant.conf -d & ./busybox udhcpc -i wlan0 -s /data/l2tool/dhcpc.sh ``` #### 扫描热点事件无法上报到wap_supplicant的解决办法 wpa_supplicant 这个应用程序启动时不能加 -B参数后台启动,-B后台启动的话,调用poll()等待接收事件的线程会退出,所以无法接收上报事件, wpa_supplicant -iwlan0 -c /data/wpa_supplicant.conf & 这样后台启动就可以了。 #### wpa2psk方式无法认证超时问题解决方法 分析流程发现 hostapd没有接收到WIFI_WPA_EVENT_EAPOL_RECV = 13这个事件,原来是驱动没有将接收到的EAPOL报文通过HDF WiFi框架发送给hostapd进程,在驱动接收报文后,调用netif_rx()触发软中断前将EAPOL报文发送给HDF WiFi框架,认证通过了。 #### P2P模式连接不成功问题定位分析 在调试P2P连接接口时,发现手机P2P直连界面总是处于已邀请提示,无法连接成功,通过抓取手机和WiFi模组正常连接成功报文和HDF适配后连接失败的报文进行比对,在失败的报文组中,发现手机侧多回复了一帧ACTION报文,提示无效参数,然后终止了P2P连接。 ![image-20220320161303057](figures/dayu200/dayu200-wifi-07.png) 最后比对WiFi模组向手机发送的ACTION报文内容,发现填充的P2P Device Info的MAC地址值不对,如下: 正确帧内容: ![image-20220320161314006](figures/dayu200/dayu200-wifi-08.png) 错误帧内容: ![image-20220320161318995](figures/dayu200/dayu200-wifi-09.png) 最后经过分析MAC地址的填充部分代码,这个MAC地址是wpa_supplicant 根据p2p0的MAC地址填充的,所以将wdev对象(即p2p-dev-wlan0)的MAC地址更新给p2p0接口,二者保持一致即可,见代码wl_get_vif_macaddr(cfg, 7, p2p_hnetdev->macAddr);的调用。 ### 连接成功日志 #### STA模式连接成功日志 ``` WPA: Key negotiation completed with 50:eb:f6:02:8e6:d4 [PTK=CCMP GTK=CCMP] 06 wlan0: State: GROUP_HANDSHAKEc -> COMPLETED wlan0: CTRL-E4VENT-CONNECTED - Connection to 50:eb:f6:02:8e:d4 completed 3[id=0 id_str=] WifiWpaReceived eEapol done ``` #### AP模式连接成功日志 ``` wlan0: STA 96:27:b3:95:b7:6e IEEE 802.1X: au:thorizing port wlan0: STA 96:27:b3:95:b7:6e WPA: pairwise key handshake completed (RSN) WifiWpaReceiveEapol done ``` #### P2P模式连接成功日志 ``` P2P: cli_channels: EAPOL: External notificationtion - portValid=1 EAPOL: External notification:tion - EAP success=1 EAPOL: SUPP_PAE entering state AUTHENTIwCATING EAPOL: SUPP_BE enterilng state SUCCESS EAP: EAP ent_ering state DISABLED EAPOL: SUPP_PAE entering state AUTHENTICATED EAPOL:n Supplicant port status: Authoorized EAPOL: SUPP_BE entertaining IDLE WifiWpaReceiveEapol donepleted - result=SUCCESS \# ifconfig lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope: Host UP LOOPBACK RUNNING MTU:65536 Metric:1 RX packets:12 errors:0 dropped:0 overruns:0 frame:0 TX packets:12 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:565 TX bytes:565 wlan0 Link encap:Ethernet HWaddr 10:2c:6b:11:61:e0 Driver bcmsdh_sdmmc inet6 addr: fe80::122c:6bff:fe11:61e0/64 Scope: Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 TX bytes:0 p2p0 Link encap:Ethernet HWaddr 12:2c:6b:11:61:e0 inet6 addr: fe80::102c:6bff:fe11:61e0/64 Scope: Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 TX bytes:0 p2p-p2p0-0 Link encap:Ethernet HWaddr 12:2c:6b:11:21:e0 Driver bcmsdh_sdmmc inet6 addr: fe80::102c:6bff:fe11:21e0/64 Scope: Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:9 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 TX bytes:0 ``` ## **BT** ### HCI接口 蓝牙整体硬件架构上分为主机(计算机或MCU)和主机控制器(实际蓝牙芯片组)两部分;主机和控制器之间的通信遵循主机控制器接口(HCI),如下所示: HCI定义了如何交换命令,事件,异步和同步数据包。异步数据包(ACL)用于数据传输,而同步数据包(SCO)用于带有耳机和免提配置文件的语音。 ### 硬件连接 从RK3568芯片描述中看,该芯片并不没有集成WIFI/蓝牙功能,都需要外接蓝牙芯片才能支持蓝牙功能,这也符合上述逻辑架构。那主机和控制器之间物理具体怎么连接呢?查看开发板规格书可以看的更清楚: ![](figures/dayu200/dayu200-bt-02.png) 其中,28-36号管脚就是UART(串口);同时还可以看到有几个管脚分别做电源和休眠控制。 ### 蓝牙VENDORLIB适配 #### vendorlib是什么 vendorlib部署在主机侧,可以认为是主机侧对蓝牙芯片驱动层,屏蔽不同蓝牙芯片的技术细节。从代码层面解读,其主要功能有两个: 1、为协议栈提供蓝牙芯片之间的通道(串口的文件描述符) 2、提供特定芯片的具体控制方法 #### 代码层面解读vendorlib bt_vendor_lib.h 路径: ``` foundation/communication/bluetooth/services/bluetooth_standard/hardware/include ``` 该文件定义了协议栈和vendor_lib交互接口,分为两组: 1、 vendorlib实现,协议栈调用 ```c typedef struct { /** * Set to sizeof(bt_vendor_interface_t) */ size_t size; /** * Caller will open the interface and pass in the callback routines * to the implementation of this interface. */ int (*init)(const bt_vendor_callbacks_t* p_cb, unsigned char* local_bdaddr); /** * Vendor specific operations */ int (*op)(bt_opcode_t opcode, void* param); /** * Closes the interface */ void (*close)(void); } bt_vendor_interface_t; ``` 协议栈启动时的基本流程如下: 1.1、协议栈动态打开libbt_vendor.z.so,并调用init函数,初始化vendorlib 1.2、协议栈调用op函数,分别调用BT_OP_POWER_ON、BT_OP_HCI_CHANNEL_OPEN、BT_OP_INIT三个opcode;原则上BT_OP_INIT成功后说明芯片初始化完成。 2、协议栈实现,vendorlib调用(回调函数) ```c typedef struct { /** * set to sizeof(bt_vendor_callbacks_t) */ size_t size; /* notifies caller result of init request */ init_callback init_cb; /* buffer allocation request */ malloc_callback alloc; /* buffer free request */ free_callback dealloc; /* hci command packet transmit request */ cmd_xmit_callback xmit_cb; } bt_vendor_callbacks_t; ``` init_cb在BT_OP_INIT完成后调用 alloc/dealloc用于发送HCI消息时申请/释放消息控件 xmit_cb发送HCI Commands vendor_lib实现的几个重要函数 1、 init函数 ```c static int init(const bt_vendor_callbacks_t *p_cb, unsigned char *local_bdaddr) { /* * ... */ userial_vendor_init(); upio_init(); vnd_load_conf(VENDOR_LIB_CONF_FILE); /* store reference to user callbacks */ bt_vendor_cbacks = (bt_vendor_callbacks_t *)p_cb; /* This is handed over from the stack */ return memcpy_s(vnd_local_bd_addr, BD_ADDR_LEN, local_bdaddr, BD_ADDR_LEN); } ``` vendorlib被调用的第一个函数,vendorlib保存好协议栈的callback和mac地址即可。 2、 BT_OP_POWER_ON对应处理 观名知意,这个操作理论上需要拉高电源管脚电平;该函数中使用rfill设备来处理,并没有直接调用驱动拉高电平 ```c int upio_set_bluetooth_power(int on) { int sz; int fd = -1; int ret = -1; char buffer = '0'; switch (on) { case UPIO_BT_POWER_OFF: buffer = '0'; break; case UPIO_BT_POWER_ON: buffer = '1'; break; default: return 0; } /* check if we have rfkill interface */ if (is_rfkill_disabled()) { return 0; } if (rfkill_id == -1) { if (init_rfkill()) { return ret; } } fd = open(rfkill_state_path, O_WRONLY); if (fd < 0) { return ret; } sz = write(fd, &buffer, 1); /* ... */ return ret; } ``` 3、BT_OP_HCI_CHANNEL_OPEN对应处理 ```c case BT_OP_HCI_CHANNEL_OPEN: { // BT_VND_OP_USERIAL_OPEN int(*fd_array)[] = (int(*)[])param; int fd, idx; fd = userial_vendor_open((tUSERIAL_CFG *)&userial_init_cfg); if (fd != -1) { for (idx = 0; idx < HCI_MAX_CHANNEL; idx++) (*fd_array)[idx] = fd; retval = 1; } /* retval contains numbers of open fd of HCI channels */ break; ``` userial_vendor_open函数打开串口设备(UART)得到文件描述符(fd),通过op的参数param返回该fd 该串口设备在系统中的名字应该在开发板中预定义了,本次开发板上设备为/dev/ttyS8 4、BT_OP_INIT对应处理 该操作码要求对蓝牙芯片进行初始化,具体要进行的处理和蓝牙芯片强相关。以本次调测的AP6257S芯片为例,初始化过程中主要是下发蓝牙固件。 初始化结束后,必须调用init_cb回调函数(参见bt_vendor_callbacks_t)通知协议栈初始化结果,否则会阻塞协议栈线程导致蓝牙相关功能无法正常使用。协议栈的具体处理如下: 协议栈调用BT_OP_INIT后会等待信号量,该信号量由init_cb函数置位 ```c static int HciInitHal() { int result = BT_NO_ERROR; g_waitHdiInit = SemaphoreCreate(0); int ret = g_hdiLib->hdiInit(&g_hdiCallbacks); if (ret == SUCCESS) { SemaphoreWait(g_waitHdiInit); } } ``` ### vendorlib移植问题 1、 vendorlib的so命名 vendorlib必须是libbt_vendor.z.so;因为协议栈打开动态链接库就是这个名字 2、 固件问题 开发时一定要关注芯片固件,有些蓝牙芯片可能无需升级固件,有些则必须升级固件;本次AP6257S适配过程中最开始没有下发固件,导致蓝牙接收信号很差。固件下发时需要注意如下两点: 2.1、对于AP6257S芯片,因为蓝牙芯片内并没有类似flash存储,要求芯片上下电后必须重新下发 2.2、按照芯片本身的要求处理,最好能找到厂商的参考代码;以Broadcom系列芯片为例,其固件下发过程比较复杂,通过一个状态机驱动;共如下9个状态 ```c / Hardware Configuration State */ enum { HW_CFG_START = 1, HW_CFG_SET_UART_CLOCK, HW_CFG_SET_UART_BAUD_1, HW_CFG_READ_LOCAL_NAME, HW_CFG_DL_MINIDRIVER, HW_CFG_DL_FW_PATCH, HW_CFG_SET_UART_BAUD_2, HW_CFG_SET_BD_ADDR, HW_CFG_READ_BD_ADDR }; ``` 在收到BT_OP_INIT后初始化状态机,然后发送HCI_REST命令,切换状态为HW_CFG_START; ```c void hw_config_start(void) { HC_BT_HDR *p_buf = NULL; uint8_t *p; hw_cfg_cb.state = 0; hw_cfg_cb.fw_fd = -1; hw_cfg_cb.f_set_baud_2 = FALSE; if (bt_vendor_cbacks) { p_buf = (HC_BT_HDR *)bt_vendor_cbacks->alloc(BT_HC_HDR_SIZE + HCI_CMD_PREAMBLE_SIZE); } if (p_buf) { p_buf->event = MSG_STACK_TO_HC_HCI_CMD; p_buf->offset = 0; p_buf->layer_specific = 0; p_buf->len = HCI_CMD_PREAMBLE_SIZE; p = (uint8_t *)(p_buf + 1); UINT16_TO_STREAM(p, HCI_RESET); *p = 0; hw_cfg_cb.state = HW_CFG_START; bt_vendor_cbacks->xmit_cb(HCI_RESET, p_buf); } else { if (bt_vendor_cbacks) { HILOGE("vendor lib fw conf aborted [no buffer]"); bt_vendor_cbacks->init_cb(BTC_OP_RESULT_FAIL); } } } ``` 收到芯片返回的HCI_RESET完成事件后,继续切换到下一个状态机并发送下一个COMMAND,一直到状态机完成固件下发。 详细实现请参见hw_config_cback函数。 3、 关注系统间接口差异 不同系统的接口可能有一些细微差异,需要重点关注;对比安卓和OHOS的接口,vendorlib调用xmit_cb发送HCI命令的函数定义略有差异 安卓: ```c /* define callback of the cmd_xmit_cb * The callback function which HCI lib will call with the return of command complete packet. Vendor lib is responsible for releasing the buffer passed in at the p_mem parameter by calling dealloc callout function. */ typedef void (*tINT_CMD_CBACK)(void* p_mem); typedef uint8_t (*cmd_xmit_cb)(uint16_t opcode, void* p_buf, tINT_CMD_CBACK p_cback); ``` OHOS: ```c /** hci command packet transmit callback Vendor lib calls cmd_xmit_cb function in order to send a HCI Command packet to BT Controller. * The opcode parameter gives the HCI OpCode (combination of OGF and OCF) of HCI Command packet. For example, opcode = 0x0c03 for the HCI_RESET command packet. */ typedef uint8_t (*cmd_xmit_callback)(uint16_t opcode, void* p_buf); ``` 也就是说vendorlib中发送命令后,安卓会直接调用callback通知芯片返回的消息,OHOS则是通过BT_OP_EVENT_CALLBACK操作码(参见bt_opcode_t定义)通知芯片返回的消息;vendorlib需要解析报文中的消息码确认芯片是处理的哪个消息,然后调用对应的处理函数。 ```c void hw_process_event(HC_BT_HDR *p_buf) { uint16_t opcode; uint8_t *p = (uint8_t *)(p_buf + 1) + HCI_EVT_CMD_CMPL_OPCODE; STREAM_TO_UINT16(opcode, p); switch (opcode) { case HCI_VSC_WRITE_BD_ADDR: #if (USE_CONTROLLER_BDADDR == TRUE) case HCI_READ_LOCAL_BDADDR: #endif case HCI_READ_LOCAL_NAME: case HCI_VSC_DOWNLOAD_MINIDRV: case HCI_VSC_WRITE_FIRMWARE: case HCI_VSC_LAUNCH_RAM: case HCI_RESET: case HCI_VSC_WRITE_UART_CLOCK_SETTING: case HCI_VSC_UPDATE_BAUDRATE: hw_config_cback(p_buf); break; ``` 另外,OHOS返回的是发送消息的字节数,<=0为发送失败,和安卓接口的返回值也不同 4、 snoop日志 安卓系统中记录了HCI交互消息,OHOS同样有记录;OHOS系统生成文件为/data/log/bluetooth/snoop.log,通过wireshark或其它报文分析工具可以看到Host和Controller之间的交互流程,有助于问题分析 ## Sensor 基于HDF(Hardware Driver Foundation)驱动框架开发的Sensor驱动模型 rk3568 支持accel sensor,整体的驱动框架openharmony 主线已经具备,只需要实现具体的器件驱动即可。 ### mcx5566xa HDF驱动实现 RK3568平台支持加速度传感器,型号是MXC6655XA,具体配置可以查看该器件的datasheet。 移植HDF前,需要确认内核该sensor的编译使能是关闭的。 配置文件路径kernel/linux/config/linux-5.10/arch/arm64/configs/rk3568_standard_defconfig ```c # CONFIG_GS_MXC6655XA is not set ``` 代码路径: ```c drivers/framework/model/sensor/driver/chipset/accel/accel_mxc6655xa.c drivers/framework/model/sensor/driver/chipset/accel/accel_mxc6655xa.h ``` 编译宏 ```c CONFIG_DRIVERS_HDF_SENSOR_ACCEL_MXC6655XA=y ``` Mxc6655xa 加速度计驱动入口函数实现 ```c struct HdfDriverEntry g_accelMxc6655xaDevEntry = { .moduleVersion = 1, .moduleName = "HDF_SENSOR_ACCEL_MXC6655XA", .Bind = Mxc6655xaBindDriver, .Init = Mxc6655xaInitDriver, .Release = Mxc6655xaReleaseDriver, }; HDF_INIT(g_accelMxc6655xaDevEntry); ``` 接下来就是差异化适配函数 ```c struct AccelOpsCall { int32_t (*Init)(struct SensorCfgData *data); int32_t (*ReadData)(struct SensorCfgData *data); }; ``` 获取x, y, z三轴数据接口 ```c int32_t ReadMxc6655xaData(struct SensorCfgData *cfg, struct SensorReportEvent *event) { int32_t ret; struct AccelData rawData = { 0, 0, 0 }; static int32_t tmp[ACCEL_AXIS_NUM]; CHECK_NULL_PTR_RETURN_VALUE(cfg, HDF_ERR_INVALID_PARAM); CHECK_NULL_PTR_RETURN_VALUE(event, HDF_ERR_INVALID_PARAM); ret = ReadMxc6655xaRawData(cfg, &rawData, &event->timestamp); if (ret != HDF_SUCCESS) { HDF_LOGE("%s: MXC6655XA read raw data failed", __func__); return HDF_FAILURE; } event->sensorId = SENSOR_TAG_ACCELEROMETER; event->option = 0; event->mode = SENSOR_WORK_MODE_REALTIME; rawData.x = rawData.x * MXC6655XA_ACC_SENSITIVITY_2G; rawData.y = rawData.y * MXC6655XA_ACC_SENSITIVITY_2G; rawData.z = rawData.z * MXC6655XA_ACC_SENSITIVITY_2G; tmp[ACCEL_X_AXIS] = (rawData.x * SENSOR_CONVERT_UNIT) / SENSOR_CONVERT_UNIT; tmp[ACCEL_Y_AXIS] = (rawData.y * SENSOR_CONVERT_UNIT) / SENSOR_CONVERT_UNIT; tmp[ACCEL_Z_AXIS] = (rawData.z * SENSOR_CONVERT_UNIT) / SENSOR_CONVERT_UNIT; ret = SensorRawDataToRemapData(cfg->direction, tmp, sizeof(tmp) / sizeof(tmp[0])); if (ret != HDF_SUCCESS) { HDF_LOGE("%s: MXC6655XA convert raw data failed", __func__); return HDF_FAILURE; } event->dataLen = sizeof(tmp); event->data = (uint8_t *)&tmp; return ret; } ``` 初始化 ```c static int32_t InitMxc6655xa(struct SensorCfgData *data) { int32_t ret; CHECK_NULL_PTR_RETURN_VALUE(data, HDF_ERR_INVALID_PARAM); ret = SetSensorRegCfgArray(&data->busCfg, data->regCfgGroup[SENSOR_INIT_GROUP]); if (ret != HDF_SUCCESS) { HDF_LOGE("%s: MXC6655XA sensor init config failed", __func__); return HDF_FAILURE; } return HDF_SUCCESS; } ``` ### hcs配置 Mxc6655xa accel sensor 驱动HCS配置 ```c device_sensor_mxc6655xa :: device { device0 :: deviceNode { policy = 1; priority = 120; preload = 0; permission = 0664; moduleName = "HDF_SENSOR_ACCEL_MXC6655XA"; serviceName = "hdf_accel_mxc6655xa"; deviceMatchAttr = "hdf_sensor_accel_mxc6655xa_driver"; } } ``` Mxc6655xa accel sensor 寄存器组配置信息 ```c #include "../sensor_common.hcs" root { accel_mxc6655xa_chip_config : sensorConfig { match_attr = "hdf_sensor_accel_mxc6655xa_driver"; sensorInfo :: sensorDeviceInfo { sensorName = "accelerometer"; vendorName = "memsi_mxc6655xa"; // max string length is 16 bytes sensorTypeId = 1; // enum SensorTypeTag sensorId = 1; // user define sensor id power = 230; } sensorBusConfig :: sensorBusInfo { busType = 0; // 0:i2c 1:spi busNum = 5; busAddr = 0x15; regWidth = 1; // 1byte } sensorIdAttr :: sensorIdInfo { chipName = "mxc6655xa"; chipIdRegister = 0x0f; chipIdValue = 0x05; } sensorDirection { direction = 5; // chip direction range of value:0-7 /* 1:negative 0:positive 0:AXIS_X 1:AXIS_Y 2:AXIS_Z */ /* sign[AXIS_X], sign[AXIS_Y], sign[AXIS_Z], map[AXIS_X], map[AXIS_Y], map[AXIS_Z] */ convert = [ 0, 0, 0, 0, 1, 2, 1, 0, 0, 1, 0, 2, 0, 0, 1, 0, 1, 2, 0, 1, 0, 1, 0, 2, 1, 0, 1, 0, 1, 2, 0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 1, 2, 1, 1, 1, 1, 0, 2 ]; } sensorRegConfig { /* regAddr: register address value: config register value len: size of value mask: mask of value delay: config register delay time (ms) opsType: enum SensorOpsType 0-none 1-read 2-write 3-read_check 4-update_bit calType: enum SensorBitCalType 0-none 1-set 2-revert 3-xor 4-left shift 5-right shift shiftNum: shift bits debug: 0-no debug 1-debug save: 0-no save 1-save */ /* regAddr, value, mask, len, delay, opsType, calType, shiftNum, debug, save */ initSeqConfig = [ 0x7e, 0xb6, 0xff, 1, 5, 2, 0, 0, 0, 0, 0x7e, 0x10, 0xff, 1, 5, 2, 0, 0, 0, 0 ]; enableSeqConfig = [ 0x7e, 0x11, 0xff, 1, 5, 2, 0, 0, 0, 0, 0x41, 0x03, 0xff, 1, 0, 2, 0, 0, 0, 0, 0x40, 0x08, 0xff, 1, 0, 2, 0, 0, 0, 0 ]; disableSeqConfig = [ 0x7e, 0x10, 0xff, 1, 5, 2, 0, 0, 0, 0 ]; } } } ``` ### 测试 UT测试可以获取到sensor的三轴数据 测试代码路径 ```c drivers/peripheral/sensor/test/unittest/common/hdf_sensor_test.cpp ``` 编译UT代码命令: ```c ./build.sh --product-name rk3568 --build-target hdf_test_sensor ``` 将hdf_test_sensor.bin push到system/bin目录,添加执行权限,执行 有如下结果代表sensor 测试成功 ```c SensorTestDataCallback enter sensor id :[1], data[1]: 0.001877 sensor id :[1], data[2]: 0.160823 sensor id :[1], data[3]: 0.046122 ``` ## Vibrator ### vibrator 模型 Vibrator驱动模型主要包含Vibrator(传感器)相关的HDI接口与实现,提供Vibrator HDI(Hardware Driver Interface)能力接口,支持静态HCS配置的时间序列和动态配置持续时间两种振动效果。调用StartOnce接口动态配置持续振动时间;调用StartEffect接口启动静态配置的振动效果。 **图 1** Vibrator驱动模型图 rk3568 支持线性马达,整体的驱动框架openharmony 主线已经具备,只需要实现具体的器件驱动即可。 ### HDF驱动实现 代码路径: ```c drivers/framework/model/misc/vibrator/driver/chipset/vibrator_linear_driver.c ``` linear Vibrator加速度计驱动入口函数实现 ```c struct HdfDriverEntry g_linearVibratorDriverEntry = { .moduleVersion = 1, .moduleName = "HDF_LINEAR_VIBRATOR", .Bind = BindLinearVibratorDriver, .Init = InitLinearVibratorDriver, .Release = ReleaseLinearVibratorDriver, }; HDF_INIT(g_linearVibratorDriverEntry); ``` ### hcs配置 驱动hcs配置 ```c vibrator :: host { hostName = "vibrator_host"; device_vibrator :: device { device0 :: deviceNode { policy = 2; priority = 100; preload = 0; permission = 0664; moduleName = "HDF_VIBRATOR"; serviceName = "hdf_misc_vibrator"; deviceMatchAttr = "hdf_vibrator_driver"; } } device_linear_vibrator :: device { device0 :: deviceNode { policy = 1; priority = 105; preload = 0; permission = 0664; moduleName = "HDF_LINEAR_VIBRATOR"; serviceName = "hdf_misc_linear_vibrator"; deviceMatchAttr = "hdf_linear_vibrator_driver"; } } } ``` 线性马达器件hcs配置 ```c root { linearVibratorConfig { boardConfig { match_attr = "hdf_linear_vibrator_driver"; vibratorChipConfig { busType = 1; // 0:i2c 1:gpio gpioNum = 154; startReg = 0; stopReg = 0; startMask = 0; } } } } ``` ### UT测试 测试代码路径 ```c drivers/peripheral/misc/vibrator/test/unittest/common/hdf_vibrator_test.cpp ``` 编译UT代码命令 ```c ./build.sh --product-name rk3568 --build-target hdf_test_vibrator ``` 将hdf_test_vibrator.bin push到system/bin目录,添加执行权限,执行 ``` [ RUN ] HdfVibratorTest.CheckVibratorInstanceIsEmpty [ OK ] HdfVibratorTest.CheckVibratorInstanceIsEmpty (0 ms) [ RUN ] HdfVibratorTest.PerformOneShotVibratorDuration001 [ OK ] HdfVibratorTest.PerformOneShotVibratorDuration001 (2001 ms) [ RUN ] HdfVibratorTest.ExecuteVibratorEffect001 [ OK ] HdfVibratorTest.ExecuteVibratorEffect001 (5001 ms) ```