# SENSOR
- [概述](##概述)
- [功能简介](###功能简介)
- [基本概念](###基本概念)
- [运作机制](###运作机制)
- [开发指导](##开发指导)
- [场景介绍](###场景介绍)
- [接口说明](#section188213414114)
- [开发步骤](#section7893102915819)
- [调测验证](#section106021256121219)
## 概述
### 功能简介
Sensor驱动模型屏蔽硬件器件差异,为上层Sensor服务系统提供稳定的Sensor基础能力接口,包括Sensor列表查询、Sensor启停、Sensor订阅及取消订阅,Sensor参数配置等功能;Sensor设备驱动的开发是基于HDF驱动框架基础上,结合操作系统适配层(OSAL)和平台驱动接口(比如I2C/SPI/UART总线等平台资源)能力,屏蔽不同操作系统和平台总线资源差异,实现Sensor驱动“一次开发,多系统部署”的目标。Sensor驱动模型如[图1](#fig10451455446)所示:
**图 1** Sensor驱动模型图
![Sensor驱动模型图](figures/Sensor%E9%A9%B1%E5%8A%A8%E6%A8%A1%E5%9E%8B%E5%9B%BE.png)
### 基本概念
目前根据sensorId将Sensor分为医学类Sensor、传统类Sensor两种。
- 医学类Sensor:已订阅的sensorId枚举值在128-160范围的为医学类Sensor。
- 传统类Sensor:已订阅的sensorId枚举值不在128-160范围的为传统类Sensor。
### 运作机制
通过介绍Sensor驱动模型的加载以及运行流程,对模型内部关键组件以及关联组件之间的关系进行了划分,整体加载流程如[图2](#Sensor驱动运行图)所示:
**图 2** Sensor驱动运行图
![Sensor驱动运行图](figures/Sensor%E9%A9%B1%E5%8A%A8%E8%BF%90%E8%A1%8C%E5%9B%BE.png)
Sensor驱动模型以标准系统Hi3516DV300产品中的加速度传感器驱动为例,介绍整个驱动加载及运行流程:
1. 从device info HCS 的Sensor Host读取Sensor设备管理配置信息。
2. HDF配置框架从HCB数据库解析Sensor设备管理配置信息,并关联对应设备驱动。
3. 加载并初始化Sensor设备管理驱动。
4. Sensor设备管理驱动向HDI发布Sensor基础能力接口。
5. 从device info HCS 的Sensor Host读取加速度传感器驱动配置信息。
6. 加载加速度传感器抽象驱动,调用初始化接口,完成Sensor器件驱动资源分配和数据处理队列创建。
7. 从accel_xxx_config HCS读取加速度传感器差异化驱动配置和私有化配置信息。
8. 加速度传感器差异化驱动,调用通用配置解析接口,完成器件属性信息解析,器件寄存器解析。
9. 加速度传感器差异化驱动完成器件探测,并分配加速度传感器配置资源,完成加速度传感器差异化接口注册。
10. 加速度传感器探测成功之后,加速度传感器差异化驱动通知加速度传感器抽象驱动,注册加速度传感器设备到Sensor设备管理中。
## 开发指导
### 场景介绍
- 通过重力和陀螺仪传感器数据,能感知设备倾斜和旋转量,提高用户在游戏场景中的体验。
- 通过接近光传感器数据,感知距离遮挡物的距离,使设备能够自动亮灭屏,达到防误触目的。例如:通话时,当靠近手机时,关闭屏幕,达到降低功耗的作用。
- 通过气压计传感器数据,可以准确的判断设备当前所处的海拔。
- 通过环境光传感器数据,设备能够实现背光自动调节。
- 通过霍尔传感器数据,设备可以实现皮套功能,皮套合上,手机上开一个小窗口,可降低功耗。
### 接口说明
Sensor驱动模型对外开放的API接口能力如下:
- 提供Sensor HDI(Hardware Driver Interface)能力接口,简化服务开发。
- 提供Sensor驱动模型能力接口:
- 依赖HDF驱动框架实现Sensor器件驱动的注册,加载,去注册,器件探测等能力。
- 提供同一类型Sensor器件驱动归一接口, 寄存器配置解析操作接口,总线访问抽象接口,平台抽象接口。
- 提供开发者实现的能力接口:依赖HDF驱动框架的HCS(HDF Configuration Source)配置管理,根据同类型Sensor差异化配置,实现Sensor器件参数序列化配置和器件部分操作接口,简化Sensor器件驱动开发。
Sensor驱动模型对外开放的API接口能力的具体实现参考[表1](#PinCntlrMethod成员的回调函数功能说明):
**表 1** PinCntlrMethod成员的回调函数功能说明
| 接口名 | 功能描述 |
| ----- | -------- |
| int32_t GetAllSensors(struct SensorInformation **sensorInfo, int32_t *count) | 获取系统中注册的所有传感器信息,一组完整传感器信息包括传感器名字、设备厂商、固件版本号、硬件版本号、传感器类型编号、传感器标识、最大量程、精度、功耗。 |
| int32_t Enable(int32_t sensorId) | 使能指定传感器设备,只有数据订阅者使能传感器后,才能获取订阅的传感器数据。 |
| int32_t Disable(int32_t sensorId) | 去使能指定传感器设备。 |
| int32_t SetBatch(iint32_t sensorId, int64_t samplingInterval, int64_t reportInterval) | 设置指定传感器的数据采样间隔和数据上报间隔。 |
| int32_t SetMode(int32_t sensorId, int32_t mode) | 设置指定传感器的工作模式,不同的工作模式,上报数据方式不同。 |
| int32_t SetOption(int32_t sensorId, uint32_t option) | 设置指定传感器量程,精度等可选配置。 |
| int32_t Register(int32_t groupId, RecordDataCallback cb) | 订阅者根据不同groupId注册传感器数据回调函数,系统会将获取到的传感器数据上报给订阅者。 |
| int32_t Unregister(int32_t groupId, RecordDataCallback cb) | 订阅者根据groupId和回调函数注销对应订阅者的传感器数据回调函数。 |
Sensor驱动模型对驱动开发者开放的功能接口,驱动开发者无需实现,直接使用,参考[表2](#Sensor驱动模型对驱动开发者开放的功能接口列表):
**表2** Sensor驱动模型对驱动开发者开放的功能接口列表
| 接口名 | 功能描述 |
| ----- | -------- |
| int32_t AddSensorDevice(const struct SensorDeviceInfo *deviceInfo) | 添加当前类型的传感器设备到传感器设备管理。 |
| int32_t DeleteSensorDevice(const struct SensorBasicInfo *sensorBaseInfo) | 删除传感器设备管理里指定的传感器设备。 |
| int32_t ReportSensorEvent(const struct SensorReportEvent *events) | 上报指定类型传感器的数据到用户侧。 |
| int32_t ReadSensor(struct SensorBusCfg *busCfg, uint16_t regAddr, uint8_t *data, uint16_t dataLen) | 按照配置的总线方式,读取传感器寄存器配置数据。 |
| int32_t WriteSensor(struct SensorBusCfg *busCfg, uint8_t *writeData, uint16_t len) | 按照配置的总线方式,将传感器配置数据写入寄存器。 |
| int32_t SetSensorRegCfgArray(struct SensorBusCfg *busCfg, const struct SensorRegCfgGroupNode *group); | 根据传感器总线类型信息,下发寄存器分组配置。 |
| int32_t GetSensorBaseConfigData(const struct DeviceResourceNode *node, struct SensorCfgData *config) | 根据传感器设备HCS资源配置,获取传感器信息,总线配置信息,属性配置等基本配置信息,并初始化对应的基本配置数据结构体。 |
| int32_t ParseSensorRegConfig(struct SensorCfgData *config) | 根据传感器设备HCS资源配置,解析寄存器分组信息,并初始化配置数据结构体。 |
| void ReleaseSensorAllRegConfig(struct SensorCfgData *config) | 释放传感器配置数据结构体里分配的资源。 |
| int32_t GetSensorBusHandle(struct SensorBusCfg *busCfg) | 获取传感器总线句柄信息。 |
| int32_t ReleaseSensorBusHandle(struct SensorBusCfg *busCfg) | 释放传感器句柄信息。 |
Sensor驱动模型要求驱动开发者实现的接口功能,参考[表3](#Sensor驱动模型要求驱动开发者实现的接口列表):
**表 3** Sensor驱动模型要求驱动开发者实现的接口列表
| 接口名 | 功能描述 |
| ----- | -------- |
| int32_t init(void) | 传感器设备探测成功后,需要对传感器设备初始化配置。 |
| int32_t Enable(void) | 根据当前传感器设备的HCS配置,下发传感器设备使能操作组的寄存器配置。 |
| int32_t Disable(void) | 根据当前传感器设备的HCS配置,下发传感器设备去使能操作组的寄存器配置。 |
| int32_t SetBatch(int64_t samplingInterval, int64_t reportInterval) | 根据数据采样率和数据上报间隔,配置当前传感器设备的数据上报线程处理时间。 |
| int32_t SetMode(int32_t mode) | 配置当前传感器设备数据上报方式。 |
| int32_t SetOption(uint32_t option) | 根据可选配置、下发量程和精度等寄存器配置。 |
| void ReadSensorData(void) | 实现传感器的数据读取函数。 |
接口实现参考[开发步骤](#section7893102915819)章节。
### 开发步骤
1. 基于HDF驱动框架,按照驱动Driver Entry程序,完成加速度抽象驱动开发,主要由Bind、Init、Release、Dispatch函数接口实现。
- 加速度传感器驱动入口函数实现
```c
/* 注册加速度计传感器入口数据结构体对象 */
struct HdfDriverEntry g_sensorAccelDevEntry = {
.moduleVersion = 1, //加速度计传感器模块版本号
.moduleName = "HDF_SENSOR_ACCEL", //加速度计传感器模块名,要与device_info.hcs文件里的加速度计moduleName字段值一样
.Bind = BindAccelDriver, // 加速度计传感器绑定函数
.Init = InitAccelDriver, // 加速度计传感器初始化函数
.Release = ReleaseAccelDriver, // 加速度计传感器资源释放函数
};
/* 调用HDF_INIT将驱动入口注册到HDF框架中,在加载驱动时HDF框架会先调用Bind函数,再调用Init函数加载该驱动,当Init调用异常时,HDF框架会调用Release释放驱动资源并退出 */
HDF_INIT(g_sensorAccelDevEntry);
```
- 加速度传感器驱动操作接口实现
```c
/* 加速度计传感器驱动对外提供的服务绑定到HDF框架 */
int32_t AccelBindDriver(struct HdfDeviceObject *device)
{
CHECK_NULL_PTR_RETURN_VALUE(device, HDF_ERR_INVALID_PARAM);
struct AccelDrvData *drvData = (struct AccelDrvData *)OsalMemCalloc(sizeof(*drvData));
if (drvData == NULL) {
HDF_LOGE("%s: Malloc accel drv data fail!", __func__);
return HDF_ERR_MALLOC_FAIL;
}
drvData->ioService.Dispatch = DispatchAccel;
drvData->device = device;
device->service = &drvData->ioService;
g_accelDrvData = drvData;
return HDF_SUCCESS;
}
/* 注册加速度计传感器驱动归一化的接口函数 */
static int32_t InitAccelOps(struct SensorCfgData *config, struct SensorDeviceInfo *deviceInfo)
{
CHECK_NULL_PTR_RETURN_VALUE(config, HDF_ERR_INVALID_PARAM);
deviceInfo->ops.Enable = SetAccelEnable;
deviceInfo->ops.Disable = SetAccelDisable;
deviceInfo->ops.SetBatch = SetAccelBatch;
deviceInfo->ops.SetMode = SetAccelMode;
deviceInfo->ops.SetOption = SetAccelOption;
if (memcpy_s(&deviceInfo->sensorInfo, sizeof(deviceInfo->sensorInfo),
&config->sensorInfo, sizeof(config->sensorInfo)) != EOK) {
HDF_LOGE("%s: Copy sensor info failed", __func__);
return HDF_FAILURE;
}
return HDF_SUCCESS;
}
/* 提供给差异化驱动的初始化接口,完成加速度器件基本配置信息解析(加速度信息,加速度总线配置,加速度器件探测寄存器配置),器件探测,器件寄存器解析 */
static int32_t InitAccelAfterDetected(struct SensorCfgData *config)
{
struct SensorDeviceInfo deviceInfo;
CHECK_NULL_PTR_RETURN_VALUE(config, HDF_ERR_INVALID_PARAM);
/* 初始化加速度计接口函数 */
if (InitAccelOps(config, &deviceInfo) != HDF_SUCCESS) {
HDF_LOGE("%s: Init accel ops failed", __func__);
return HDF_FAILURE;
}
/* 注册加速度计设备到传感器管理模块 */
if (AddSensorDevice(&deviceInfo) != HDF_SUCCESS) {
HDF_LOGE("%s: Add accel device failed", __func__);
return HDF_FAILURE;
}
/* 器件寄存器解析 */
if (ParseSensorRegConfig(config) != HDF_SUCCESS) {
HDF_LOGE("%s: Parse sensor register failed", __func__);
(void)DeleteSensorDevice(&config->sensorInfo);
ReleaseSensorAllRegConfig(config);
return HDF_FAILURE;
}
return HDF_SUCCESS;
}
struct SensorCfgData *AccelCreateCfgData(const struct DeviceResourceNode *node)
{
……
/* 如果探测不到器件在位,返回进行下个器件探测 */
if (drvData->detectFlag) {
HDF_LOGE("%s: Accel sensor have detected", __func__);
return NULL;
}
if (drvData->accelCfg == NULL) {
HDF_LOGE("%s: Accel accelCfg pointer NULL", __func__);
return NULL;
}
/* 设备基本配置信息解析 */
if (GetSensorBaseConfigData(node, drvData->accelCfg) != HDF_SUCCESS) {
HDF_LOGE("%s: Get sensor base config failed", __func__);
goto BASE_CONFIG_EXIT;
}
/* 如果探测不到器件在位,返回进行下个器件探测 */
if (DetectSensorDevice(drvData->accelCfg) != HDF_SUCCESS) {
HDF_LOGI("%s: Accel sensor detect device no exist", __func__);
drvData->detectFlag = false;
goto BASE_CONFIG_EXIT;
}
drvData->detectFlag = true;
/* 器件寄存器解析 */
if (InitAccelAfterDetected(drvData->accelCfg) != HDF_SUCCESS) {
HDF_LOGE("%s: Accel sensor detect device no exist", __func__);
goto INIT_EXIT;
}
return drvData->accelCfg;
……
}
/* 加速度计传感器驱动初始化入口函数,主要功能为对传感器私有数据的结构体对象进行初始化,传感器HCS数据配置对象空间分配,传感器HCS数据配置初始化入口函数调用,传感器设备探测是否在位功能,传感器数据上报定时器创建,传感器归一化接口注册,传感器设备注册功能 */
int32_t AccelInitDriver(struct HdfDeviceObject *device)
{
……
/* 工作队列资源初始化 */
if (InitAccelData(drvData) != HDF_SUCCESS) {
HDF_LOGE("%s: Init accel config failed", __func__);
return HDF_FAILURE;
}
/* 分配加速度配置信息资源 */
drvData->accelCfg = (struct SensorCfgData *)OsalMemCalloc(sizeof(*drvData->accelCfg));
if (drvData->accelCfg == NULL) {
HDF_LOGE("%s: Malloc accel config data failed", __func__);
return HDF_FAILURE;
}
/* 注册寄存器分组信息 */
drvData->accelCfg->regCfgGroup = &g_regCfgGroup[0];
……
return HDF_SUCCESS;
}
/* 释放驱动初始化时分配的资源 */
void AccelReleaseDriver(struct HdfDeviceObject *device)
{
CHECK_NULL_PTR_RETURN(device);
struct AccelDrvData *drvData = (struct AccelDrvData *)device->service;
CHECK_NULL_PTR_RETURN(drvData);
/* 器件在位,释放已分配资源 */
if (drvData->detectFlag) {
AccelReleaseCfgData(drvData->accelCfg);
}
OsalMemFree(drvData->accelCfg);
drvData->accelCfg = NULL;
/* 器件在位,销毁工作队列资源 */
HdfWorkDestroy(&drvData->accelWork);
HdfWorkQueueDestroy(&drvData->accelWorkQueue);
OsalMemFree(drvData);
}
```
2. 完成加速度传感器驱动的设备信息配置。
加速度传感器模型使用HCS作为配置描述源码,HCS配置字段请参考[配置管理](driver-hdf-manage.md)介绍。
```
/* 加速度计传感器设备HCS配置 */
device_sensor_accel :: device {
device0 :: deviceNode {
policy = 1; // 驱动服务发布的策略
priority = 110; // 驱动启动优先级(0-200),值越大优先级越低,建议配置为100,优先级相同则不保证device的加载顺序
preload = 0; // 驱动按需加载字段,0表示加载,2表示不加载
permission = 0664; // 驱动创建设备节点权限
moduleName = "HDF_SENSOR_ACCEL"; // 驱动名称,该字段的值必须和驱动入口结构的moduleName值一致
serviceName = "sensor_accel"; // 驱动对外发布服务的名称,必须唯一
deviceMatchAttr = "hdf_sensor_accel_driver"; // 驱动私有数据匹配的关键字,必须和驱动私有数据配置表中的match_attr值相等
}
}
```
3. 完成加速度传感器抽象驱动内部接口开发,包括Enable、Disable、SetBatch、SetMode、SetOption、AccelCreateCfgData、AccelReleaseCfgData、AccelRegisterChipOps接口实现。
```c
/* 不使用函数暂时置空 */
static int32_t SetAccelInfo(struct SensorBasicInfo *info)
{
(void)info;
return HDF_ERR_NOT_SUPPORT;
}
/* 下发使能寄存器组的配置 */
static int32_t SetAccelEnable(void)
{
int32_t ret;
struct AccelDrvData *drvData = AccelGetDrvData();
CHECK_NULL_PTR_RETURN_VALUE(drvData, HDF_ERR_INVALID_PARAM);
CHECK_NULL_PTR_RETURN_VALUE(drvData->accelCfg, HDF_ERR_INVALID_PARAM);
if (drvData->enable) {
HDF_LOGE("%s: Accel sensor is enabled", __func__);
return HDF_SUCCESS;
}
ret = SetSensorRegCfgArray(&drvData->accelCfg->busCfg, drvData->accelCfg->regCfgGroup[SENSOR_ENABLE_GROUP]);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: Accel sensor enable config failed", __func__);
return ret;
}
ret = OsalTimerCreate(&drvData->accelTimer, SENSOR_TIMER_MIN_TIME, AccelTimerEntry, (uintptr_t)drvData);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: Accel create timer failed[%d]", __func__, ret);
return ret;
}
ret = OsalTimerStartLoop(&drvData->accelTimer);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: Accel start timer failed[%d]", __func__, ret);
return ret;
}
drvData->enable = true;
return HDF_SUCCESS;
}
/* 下发去使能寄存器组的配置 */
static int32_t SetAccelDisable(void)
{
int32_t ret;
struct AccelDrvData *drvData = AccelGetDrvData();
CHECK_NULL_PTR_RETURN_VALUE(drvData, HDF_ERR_INVALID_PARAM);
CHECK_NULL_PTR_RETURN_VALUE(drvData->accelCfg, HDF_ERR_INVALID_PARAM);
if (!drvData->enable) {
HDF_LOGE("%s: Accel sensor had disable", __func__);
return HDF_SUCCESS;
}
ret = SetSensorRegCfgArray(&drvData->accelCfg->busCfg, drvData->accelCfg->regCfgGroup[SENSOR_DISABLE_GROUP]);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: Accel sensor disable config failed", __func__);
return ret;
}
ret = OsalTimerDelete(&drvData->accelTimer);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: Accel delete timer failed", __func__);
return ret;
}
drvData->enable = false;
return HDF_SUCCESS;
}
/* 配置传感器采样率和数据上报间隔 */
static int32_t SetAccelBatch(int64_t samplingInterval, int64_t interval)
{
(void)interval;
struct AccelDrvData *drvData = NULL;
drvData = AccelGetDrvData();
CHECK_NULL_PTR_RETURN_VALUE(drvData, HDF_ERR_INVALID_PARAM);
drvData->interval = samplingInterval;
return HDF_SUCCESS;
}
/* 设置传感器工作模式,当前支持实时模式 */
static int32_t SetAccelMode(int32_t mode)
{
return (mode == SENSOR_WORK_MODE_REALTIME) ? HDF_SUCCESS : HDF_FAILURE;
}
static int32_t SetAccelOption(uint32_t option)
{
(void)option;
return HDF_SUCCESS;
}
/* 设置传感器可选配置 */
static int32_t SetAccelOption(uint32_t option)
{
(void)option;
return HDF_ERR_NOT_SUPPORT;
}
```
4. 基于HDF驱动框架,按照驱动Driver Entry程序,完成加速度传感器差异化驱动开发,主要由Bind、Init、Release、Dispatch函数接口实现。
```c
/* 加速度计传感器差异化驱动消息交互 */
static int32_t DispatchBMI160(struct HdfDeviceIoClient *client,
int cmd, struct HdfSBuf *data, struct HdfSBuf *reply)
{
(void)client;
(void)cmd;
(void)data;
(void)reply;
return HDF_SUCCESS;
}
/* 加速度计传感器差异化驱动对外提供的服务绑定到HDF框架 */
int32_t Bmi160BindDriver(struct HdfDeviceObject *device)
{
CHECK_NULL_PTR_RETURN_VALUE(device, HDF_ERR_INVALID_PARAM);
struct Bmi160DrvData *drvData = (struct Bmi160DrvData *)OsalMemCalloc(sizeof(*drvData));
if (drvData == NULL) {
HDF_LOGE("%s: Malloc Bmi160 drv data fail", __func__);
return HDF_ERR_MALLOC_FAIL;
}
drvData->ioService.Dispatch = DispatchBMI160;
drvData->device = device;
device->service = &drvData->ioService;
g_bmi160DrvData = drvData;
return HDF_SUCCESS;
}
/* 加速度计传感器差异化驱动初始化 */
int32_t Bmi160InitDriver(struct HdfDeviceObject *device)
{
int32_t ret;
struct AccelOpsCall ops;
CHECK_NULL_PTR_RETURN_VALUE(device, HDF_ERR_INVALID_PARAM);
struct Bmi160DrvData *drvData = (struct Bmi160DrvData *)device->service;
CHECK_NULL_PTR_RETURN_VALUE(drvData, HDF_ERR_INVALID_PARAM);
ret = InitAccelPreConfig();
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: Init BMI160 bus mux config", __func__);
return HDF_FAILURE;
}
drvData->sensorCfg = AccelCreateCfgData(device->property);
if (drvData->sensorCfg == NULL || drvData->sensorCfg->root == NULL) {
HDF_LOGD("%s: Creating accelcfg failed because detection failed", __func__);
return HDF_ERR_NOT_SUPPORT;
}
ops.Init = NULL;
ops.ReadData = ReadBmi160Data;
ret = AccelRegisterChipOps(&ops);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: Register BMI160 accel failed", __func__);
return HDF_FAILURE;
}
ret = InitBmi160(drvData->sensorCfg);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: Init BMI160 accel failed", __func__);
return HDF_FAILURE;
}
return HDF_SUCCESS;
}
/* 释放驱动初始化时分配的资源 */
void Bmi160ReleaseDriver(struct HdfDeviceObject *device)
{
......
if (drvData->sensorCfg != NULL) {
AccelReleaseCfgData(drvData->sensorCfg);
drvData->sensorCfg = NULL;
}
OsalMemFree(drvData);
}
/* 加速度传感器差异化驱动对应的HdfDriverEntry对象 */
struct HdfDriverEntry g_accelBmi160DevEntry = {
.moduleVersion = 1,
.moduleName = "HDF_SENSOR_ACCEL_BMI160",
.Bind = Bmi160BindDriver,
.Init = Bmi160InitDriver,
.Release = Bmi160ReleaseDriver,
};
HDF_INIT(g_accelBmi160DevEntry);
```
5. 完成加速度传感器差异化驱动中差异化接口ReadData函数实现。
```c
int32_t ReadBmi160Data(struct SensorCfgData *data)
{
int32_t ret;
struct AccelData rawData = { 0, 0, 0 };
int32_t tmp[ACCEL_AXIS_NUM];
struct SensorReportEvent event;
(void)memset_s(&event, sizeof(event), 0, sizeof(event));
ret = ReadBmi160RawData(data, &rawData, &event.timestamp);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: BMI160 read raw data failed", __func__);
return HDF_FAILURE;
}
event.sensorId = SENSOR_TAG_ACCELEROMETER;
event.option = 0;
event.mode = SENSOR_WORK_MODE_REALTIME;
……
ret = ReportSensorEvent(&event);
if (ret != HDF_SUCCESS) {
HDF_LOGE("%s: BMI160 report data failed", __func__);
}
return ret;
}
```
>![](../public_sys-resources/icon-note.gif) **说明:**
>
>- 传感器驱动模型已经提供一部分能力集,包括驱动设备管理能力、抽象总线和平台操作接口能力、通用配置操作接口能力、配置解析操作接口能力,接口参考[表2](#table1156812588320)。
>
>- 需要开发人员实现部分有:传感器部分操作接口([表3](#table1083014911336))和传感器HCS差异化数据配置。
> - 驱动基本功能验证。
### 调测验证
驱动开发完成后,在传感器单元测试里面开发自测试用例,验证驱动基本功能。测试环境采用开发者自测试平台。
```
static int32_t g_sensorDataFlag = 0; //标识是否上报传感器数据
static const struct SensorInterface *g_sensorDev = nullptr; //保持获取的传感器接口实例地址
/* 订阅者注册数据上报函数 */
static int SensorTestDataCallback(struct SensorEvents *event)
{
if (event == nullptr) {
return -1;
}
float *data = (float*)event->data;
printf("time [%lld] sensor id [%d] x-[%f] y-[%f] z-[%f]\n\r", event->timestamp,
event->sensorId, (*data), *(data + 1), *(data + g_axisZ));
if (*data > 1e-5) {
g_sensorDataFlag = 1;
}
return 0;
}
/* 用例执行前,初始化传感器接口实例 */
void HdfSensorTest::SetUpTestCase()
{
g_sensorDev = NewSensorInterfaceInstance();
if (g_sensorDev == nullptr) {
printf("test sensorHdi get Module instace failed\n\r");
}
}
/* 用例资源释放 */
void HdfSensorTest::TearDownTestCase()
{
if (g_sensorDev != nullptr) {
FreeSensorInterfaceInstance();
g_sensorDev = nullptr;
}
}
/* 传感器驱动测试验证 */
HWTEST_F(HdfSensorTest,TestAccelDriver_001, TestSize.Level0)
{
int32_t sensorInterval = 1000000000; // 数据采样率单位纳秒
int32_t pollTime = 5; // 数据采样时间单位秒
int32_t accelSensorId = 1; // 加速度传感器类型标识为1
int32_t count = 0;
int ret;
struct SensorInformation *sensorInfo = nullptr;
ret = g_sensorDev->Register(0, TraditionSensorTestDataCallback)
EXPECT_EQ(SENSOR_NULL_PTR, ret);
ret = g_sensorDev->GetAllSensors(&sensorInfo, &count);
EXPECT_EQ(0, ret);
if (sensorInfo == nullptr) {
EXPECT_NE(nullptr, sensorInfo);
return;
}
/* 打印获取的传感器列表 */
for (int i = 0; i < count; i++) {
printf("get sensoriId[%d], info name[%s]\n\r", sensorInfo[i]->sensorId, sensorInfo[i]->sensorName);
}
ret = g_sensorDev->Enable(accelSensorId);
EXPECT_EQ(0, ret);
g_sensorDataFlag = 0;
ret = g_sensorDev->SetBatch(accelSensorId, sensorInterval, pollTime);
EXPECT_EQ(0, ret);
/* 在时间pollTime内,观察输出打印数据 */
OsalSleep(pollTime);
EXPECT_EQ(1, g_sensorDataFlag);
ret = g_sensorDev->Disable(accelSensorId);
g_sensorDataFlag = 0;
EXPECT_EQ(0, ret);
ret = g_sensorDev->Unregister(0, TraditionSensorTestDataCallback);
EXPECT_EQ(0, ret);
}
```