# GPIO
## 概述
GPIO(General-purpose input/output)即通用型输入输出,在HDF框架中,GPIO的接口适配模式采用无服务模式,用于不需要在用户态提供API的设备类型,或者没有用户态和内核区分的OS系统,其关联方式是DevHandle直接指向设备对象内核态地址(DevHandle是一个void类型指针)。
**图1** GPIO无服务模式结构图
![](figures/无服务模式结构图.png "GPIO无服务模式结构图")
## 接口说明
GpioMethod定义:
```
struct GpioMethod {
int32_t (*request)(struct GpioCntlr *cntlr, uint16_t local);// 【预留】
int32_t (*release)(struct GpioCntlr *cntlr, uint16_t local);// 【预留】
int32_t (*write)(struct GpioCntlr *cntlr, uint16_t local, uint16_t val);
int32_t (*read)(struct GpioCntlr *cntlr, uint16_t local, uint16_t *val);
int32_t (*setDir)(struct GpioCntlr *cntlr, uint16_t local, uint16_t dir);
int32_t (*getDir)(struct GpioCntlr *cntlr, uint16_t local, uint16_t *dir);
int32_t (*toIrq)(struct GpioCntlr *cntlr, uint16_t local, uint16_t *irq);// 【预留】
int32_t (*setIrq)(struct GpioCntlr *cntlr, uint16_t local, uint16_t mode, GpioIrqFunc func, void *arg);
int32_t (*unsetIrq)(struct GpioCntlr *cntlr, uint16_t local);
int32_t (*enableIrq)(struct GpioCntlr *cntlr, uint16_t local);
int32_t (*disableIrq)(struct GpioCntlr *cntlr, uint16_t local);
}
```
**表1** GpioMethod结构体成员的回调函数功能说明
| 函数成员 | 入参 | 出参 | 返回值 | 功能 |
| -------- | -------- | -------- | -------- | -------- |
| write | cntlr:结构体指针,核心层GPIO控制器
local:uint16_t,GPIO端口标识号
val:uint16_t,电平传入值 | 无 | HDF_STATUS相关状态 | GPIO引脚写入电平值 |
| read | cntlr:结构体指针,核心层GPIO控制器
local:uint16_t,GPIO端口标识 | val:uint16_t指针,用于传出电平值。 | HDF_STATUS相关状态 | GPIO引脚读取电平值 |
| setDir | cntlr:结构体指针,核心层GPIO控制器
local:uint16_t,GPIO端口标识号
dir:uint16_t,管脚方向传入值 | 无 | HDF_STATUS相关状态 | 设置GPIO引脚输入/输出方向 |
| getDir | cntlr:结构体指针,核心层GPIO控制器
local:uint16_t,GPIO端口标识号 | dir:uint16_t指针,用于传出管脚方向值 | HDF_STATUS相关状态 | 读GPIO引脚输入/输出方向 |
| setIrq | cntlr:结构体指针,核心层GPIO控制器
local:uint16_t,GPIO端口标识号
mode:uint16_t,表示触发模式(边沿或电平)
func:函数指针,中断服务程序;
arg:void指针,中断服务程序入参 | 无 | HDF_STATUS相关状态 | 将GPIO引脚设置为中断模式 |
| unsetIrq | cntlr:结构体指针,核心层GPIO控制器
local:uint16_t,GPIO端口标识号 | 无 | HDF_STATUS相关状态 | 取消GPIO中断设置 |
| enableIrq | cntlr:结构体指针,核心层GPIO控制器
local:uint16_t,GPIO端口标识号 | 无 | HDF_STATUS相关状态 | 使能GPIO管脚中断 |
| disableIrq | cntlr:结构体指针,核心层GPIO控制器
local:uint16_t,GPIO端口标识号 | 无 | HDF_STATUS相关状态 | 禁止GPIO管脚中断 |
## 开发步骤
GPIO模块适配的三个必选环节是配置属性文件,实例化驱动入口,以及实例化核心层接口函数。
GPIO控制器分组管理所有管脚,相关参数会在属性文件中有所体现;驱动入口和接口函数的实例化环节是厂商驱动接入HDF的核心环节。
1. 实例化驱动入口
- 实例化HdfDriverEntry结构体成员。
- 调用HDF_INIT将HdfDriverEntry实例化对象注册到HDF框架中。
2. 配置属性文件
- 在device_info.hcs文件中添加deviceNode描述。
- 【可选】添加gpio_config.hcs器件属性文件。
3. 实例化GPIO控制器对象
- 初始化GpioCntlr成员。
- 实例化GpioCntlr成员GpioMethod。
> ![icon-note.gif](public_sys-resources/icon-note.gif) **说明:**
> 实例化GpioCntlr成员GpioMethod,详见[接口说明](#接口说明)。
4. 驱动调试
【可选】针对新增驱动程序,建议验证驱动基本功能,例如GPIO控制状态,中断响应情况等。
## 开发实例
下方将以gpio_hi35xx.c为示例,展示需要厂商提供哪些内容来完整实现设备功能。
1. 驱动开发首先需要实例化驱动入口。
驱动入口必须为HdfDriverEntry(在hdf_device_desc.h中定义)类型的全局变量,且moduleName要和device_info.hcs中保持一致。HDF框架会将所有加载的驱动的HdfDriverEntry对象首地址汇总,形成一个类似数组的段地址空间,方便上层调用。
一般在加载驱动时HDF会先调用Bind函数,再调用Init函数加载该驱动。当Init调用异常时,HDF框架会调用Release释放驱动资源并退出。
GPIO 驱动入口参考:
```
struct HdfDriverEntry g_gpioDriverEntry = {
.moduleVersion = 1,
.Bind = Pl061GpioBind, // GPIO不需要实现Bind,本例是一个空实现,厂商可根据自身需要添加相关操作。
.Init = Pl061GpioInit, // 见Init参考
.Release = Pl061GpioRelease, // 见Release参考
.moduleName = "hisi_pl061_driver",//【必要且需要与HCS文件中里面的moduleName匹配】
};
// 调用HDF_INIT将驱动入口注册到HDF框架中
HDF_INIT(g_gpioDriverEntry);
```
2. 完成驱动入口注册之后,下一步请在device_info.hcs文件中添加deviceNode信息,并在gpio_config.hcs中配置器件属性。
deviceNode信息与驱动入口注册相关,器件属性值与核心层GpioCntlr成员的默认值或限制范围有密切关系。
本例只有一个GPIO控制器,如有多个器件信息,则需要在device_info文件增加deviceNode信息,以及在gpio_config文件中增加对应的器件属性。
- device_info.hcs配置参考
```
root {
device_info {
platform :: host {
hostName = "platform_host";
priority = 50;
device_gpio :: device {
device0 :: deviceNode {
policy = 0; // 等于0,不需要发布服务。
priority = 10; // 驱动启动优先级。
permission = 0644; // 驱动创建设备节点权限。
moduleName = "hisi_pl061_driver"; //【必要】用于指定驱动名称,需要与期望的驱动Entry中的moduleName一致。
deviceMatchAttr = "hisilicon_hi35xx_pl061"; //【必要】用于配置控制器私有数据,要与gpio_config.hcs中
// 对应控制器保持一致,其他控制器信息也在文件中。
}
}
}
}
}
```
- gpio_config.hcs配置参考
```
root {
platform {
gpio_config {
controller_0x120d0000 {
match_attr = "hisilicon_hi35xx_pl061"; //【必要】必须和device_info.hcs中的deviceMatchAttr值一致。
groupNum = 12; //【必要】GPIO组索引,需要根据设备情况填写。
bitNum = 8; //【必要】每组GPIO管脚数 。
regBase = 0x120d0000; //【必要】物理基地址。
regStep = 0x1000; //【必要】寄存器偏移步进。
irqStart = 48; //【必要】开启中断。
irqShare = 0; //【必要】共享中断。
}
}
}
}
```
3. 完成驱动入口注册之后,下一步就是以核心层GpioCntlr对象的初始化为核心,包括厂商自定义结构体(传递参数和数据),实例化GpioCntlr成员GpioMethod(让用户可以通过接口来调用驱动底层函数),实现HdfDriverEntry成员函数(Bind,Init,Release)。
- 自定义结构体参考。
从驱动的角度看,自定义结构体是参数和数据的载体,而且gpio_config.hcs文件中的数值会被HDF读入并通过DeviceResourceIface来初始化结构体成员,其中一些重要数值也会传递给核心层GpioCntlr对象,例如索引、管脚数等。
```
struct Pl061GpioCntlr {
struct GpioCntlr cntlr; //【必要】是核心层控制对象,其成员定义见下面。
volatile unsigned char *regBase; //【必要】寄存器基地址。
uint32_t phyBase; //【必要】物理基址。
uint32_t regStep; //【必要】寄存器偏移步进。
uint32_t irqStart; //【必要】中断开启。
uint16_t groupNum; //【必要】用于描述厂商的GPIO端口号的参数。
uint16_t bitNum; //【必要】用于描述厂商的GPIO端口号的参数。
uint8_t irqShare; //【必要】共享中断。
struct Pl061GpioGroup *groups; //【可选】根据厂商需要设置。
};
struct Pl061GpioGroup { // 包括寄存器地址,中断号,中断函数和锁。
volatile unsigned char *regBase;
unsigned int index;
unsigned int irq;
OsalIRQHandle irqFunc;
OsalSpinlock lock;
};
// GpioCntlr是核心层控制器结构体,其中的成员在Init函数中会被赋值。
struct GpioCntlr {
struct IDeviceIoService service;
struct HdfDeviceObject *device;
struct GpioMethod *ops;
struct DListHead list;
OsalSpinlock spin;
uint16_t start;
uint16_t count;
struct GpioInfo *ginfos;
void *priv;
};
```
- GpioCntlr成员回调函数结构体GpioMethod的实例化,其他成员在Init函数中初始化。
```
//GpioMethod结构体成员都是回调函数,厂商需要根据表1完成相应的函数功能。
static struct GpioMethod g_method = {
.request = NULL,
.release = NULL,
.write = Pl061GpioWrite, // 写管脚。
.read = Pl061GpioRead, // 读管脚。
.setDir = Pl061GpioSetDir, // 设置管脚方向。
.getDir = Pl061GpioGetDir, // 获取管脚方向。
.toIrq = NULL,
.setIrq = Pl061GpioSetIrq, // 设置管脚中断,如不具备此能力可忽略。
.unsetIrq = Pl061GpioUnsetIrq, // 取消管脚中断设置,如不具备此能力可忽略。
.enableIrq = Pl061GpioEnableIrq, // 使能管脚中断,如不具备此能力可忽略。
.disableIrq = Pl061GpioDisableIrq,// 禁止管脚中断,如不具备此能力可忽略。
};
```
- Init函数参考
入参:
HdfDeviceObject这个是整个驱动对外暴露的接口参数,具备HCS配置文件的信息。
返回值:
HDF_STATUS相关状态(下表为部分展示,如需使用其他状态,可见//drivers/framework/include/utils/hdf_base.h中HDF_STATUS定义)。
**表2** Init函数说明
| 状态(值) | 问题描述 |
| -------- | -------- |
| HDF_ERR_INVALID_OBJECT | 控制器对象非法 |
| HDF_ERR_MALLOC_FAIL | 内存分配失败 |
| HDF_ERR_INVALID_PARAM | 参数非法 |
| HDF_ERR_IO | I/O 错误 |
| HDF_SUCCESS | 初始化成功 |
| HDF_FAILURE | 初始化失败 |
函数说明:
初始化自定义结构体对象,初始化GpioCntlr成员,调用核心层GpioCntlrAdd函数,接入VFS(可选)。
```
static int32_t Pl061GpioInit(struct HdfDeviceObject *device)
{
...
struct Pl061GpioCntlr *pl061 = &g_pl061;// 利用静态全局变量完成初始化
// static struct Pl061GpioCntlr g_pl061 = {
// .groups = NULL,
// .groupNum = PL061_GROUP_MAX,
// .bitNum = PL061_BIT_MAX,
//};
ret = Pl061GpioReadDrs(pl061, device->property);// 利用从gpio_config.HCS文件读取的属性值来初始化自定义结构体对象成员
...
pl061->regBase = OsalIoRemap(pl061->phyBase, pl061->groupNum * pl061->regStep);//地址映射
...
ret = Pl061GpioInitCntlrMem(pl061); // 内存分配
...
pl061->cntlr.count = pl061->groupNum * pl061->bitNum;//【必要】管脚数量计算
pl061->cntlr.priv = (void *)device->property; //【必要】存储设备属性
pl061->cntlr.ops = &g_method; //【必要】GpioMethod的实例化对象的挂载
pl061->cntlr.device = device; //【必要】使HdfDeviceObject与GpioCntlr可以相互转化的前提
ret = GpioCntlrAdd(&pl061->cntlr); //【必要】调用此函数填充核心层结构体,返回成功信号后驱动才完全接入平台核心层。
...
Pl061GpioDebugCntlr(pl061);
#ifdef PL061_GPIO_USER_SUPPORT //【可选】若支持用户级的虚拟文件系统,则接入。
if (GpioAddVfs(pl061->bitNum) != HDF_SUCCESS) {
HDF_LOGE("%s: add vfs fail!", __func__);
}
#endif
...
}
```
- Release函数参考
入参:
HdfDeviceObject是整个驱动对外暴露的接口参数,具备hcs配置文件的信息。
返回值:
无。
函数说明:
释放内存和删除控制器,该函数需要在驱动入口结构体中赋值给Release接口,当HDF框架调用Init函数初始化驱动失败时,可以调用Release释放驱动资源。
> ![icon-note.gif](public_sys-resources/icon-note.gif) **说明:**
> 所有强制转换获取相应对象的操作**前提**是在Init函数中具备对应赋值的操作。
```
static void Pl061GpioRelease(struct HdfDeviceObject *device)
{
struct GpioCntlr *cntlr = NULL;
struct Pl061GpioCntlr *pl061 = NULL;
...
cntlr = GpioCntlrFromDevice(device);//【必要】通过强制转换获取核心层控制对象
// return (device == NULL) ? NULL : (struct GpioCntlr *)device->service;
...
#ifdef PL061_GPIO_USER_SUPPORT
GpioRemoveVfs();//与Init中GpioAddVfs相反
#endif
GpioCntlrRemove(cntlr); //【必要】取消设备信息、服务等内容在核心层上的挂载
pl061 = ToPl061GpioCntlr(cntlr); // return (struct Pl061GpioCntlr *)cntlr;
Pl061GpioRleaseCntlrMem(pl061); //【必要】锁和内存的释放
OsalIoUnmap((void *)pl061->regBase);//【必要】解除地址映射
pl061->regBase = NULL;
}
```