# Combo解决方案之W800芯片移植案例 本方案基于OpenHarmony LiteOS-M内核,使用联盛德W800芯片的润和软件海王星系列[Neptune100开发板](https://gitee.com/openharmony-sig/device_board_hihope),进行开发移植。移植架构采用`Board`与`SoC`分离方案,支持通过Kconfig图形化配置编译选项,增加玄铁`ck804ef`架构移植,实现了`HDF`、`XTS`等子系统及组件的适配。 ## 适配准备 准备ubuntu20.04系统环境,安装[csky-abiv2-elf-gcc](https://occ.t-head.cn/community/download?id=3885366095506644992)交叉编译工具链。 ## 编译构建 ### 目录规划 本方案的目录结构使用[Board和Soc解耦的思路](https://gitee.com/openharmony-sig/sig-content/blob/master/devboard/docs/board-soc-arch-design.md): 芯片适配目录规划为: ``` device ├── board --- 单板厂商目录 │   └── hihope --- 单板厂商名字:HiHope │   └── neptune100 --- 单板名:Neptune100 └── soc --- SoC厂商目录 └── winnermicro --- SoC厂商名字:联盛德 └── wm800 --- SoC Series名:w800系列芯片 ``` 产品样例目录规划为: ``` vendor └── hihope --- 开发产品样例厂商目录,润和软件的产品样例 ├── neptune_iotlink_demo --- 产品名字:Neptune100产品样例代码 └── ... ``` ### 产品定义 `vendor/hihope/neptune_iotlink_demo/config.json`文件下,描述了产品使用的内核、单板、子系统等信息。其中,内核、单板型号、单板厂商需提前规划好,是预编译指令`hb set`关注的。例如: ``` { "product_name": "neptune_iotlink_demo", --- 产品名 "ohos_version": "OpenHarmony 3.1", --- 使用的OS版本 "type":"mini", --- 系统类型: mini "version": "3.0", --- 系统版本: 3.0 "device_company": "hihope", --- 单板厂商:hihope "board": "neptune100", --- 单板名:neptune100 "kernel_type": "liteos_m", --- 内核类型:liteos_m "kernel_version": "3.0.0", --- 内核版本:3.0.0 "subsystems": [] --- 子系统 } ``` 填入的信息与规划的目录相对应,其中`device_company`和`board`用于关联出`device/board//`目录。 ### 单板配置 关联到的目录下,在`device/board/hihope/neptune100/liteos_m`目录下放置`config.gni`文件,该配置文件用于描述该单板信息,包括CPU型号、交叉编译工具链及全局编译、链接参数等重要信息: ``` # Kernel type, e.g. "linux", "liteos_a", "liteos_m". kernel_type = "liteos_m" # Kernel version. kernel_version = "3.0.0" # Board CPU type, e.g. "cortex-a7", "riscv32". board_cpu = "ck804ef" # Board arch, e.g. "armv7-a", "rv32imac". board_arch = "ck803" # Toolchain name used for system compiling. # E.g. gcc-arm-none-eabi, arm-linux-harmonyeabi-gcc, ohos-clang, riscv32-unknown-elf. # Note: The default toolchain is "ohos-clang". It's not mandatory if you use the default toolchain. board_toolchain = "csky-elfabiv2-gcc" #use_board_toolchain = true # The toolchain path installed, it's not mandatory if you have added toolchain path to your ~/.bashrc. board_toolchain_path = "" # Compiler prefix. board_toolchain_prefix = "csky-elfabiv2-" # Compiler type, "gcc" or "clang". board_toolchain_type = "gcc" # config.json parse if (product_path != "") { product_conf = read_file("${product_path}/config.json", "json") product_name = product_conf.product_name bin_list = product_conf.bin_list } # Board related common compile flags. board_cflags = [ "-mcpu=ck804ef", "-mhard-float", "-DGCC_COMPILE=1", "-DTLS_CONFIG_CPU_XT804=1", "-DNIMBLE_FTR=1", "-D__CSKY_V2__=1", "-DCPU_CK804", "-O2", "-g3", "-Wall", "-ffunction-sections", "-MMD", "-MP", ] board_cxx_flags = board_cflags board_asmflags = [ "-mcpu=ck804ef", "-DCPU_CK804", ] board_ld_flags = [] # Board related headfiles search path. board_include_dirs = [] # Board adapter dir for OHOS components. board_adapter_dir = "" # Sysroot path. board_configed_sysroot = "" # Board storage type, it used for file system generation. storage_type = "" ``` ### 预编译 在工程根目录下输入预编译指令`hb set`可显示相关产品信息,如下: ``` hb set OHOS Which product do you need? (Use arrow keys) hihope > neptune_iotlink_demo OHOS Which product do you need? neptune_iotlink_demo ``` 执行`hb set`后,会在根目录下自动生成`ohos_config.json`文件,文件中会列出待编译的产品信息。 通过`hb env`可以查看选择出来的预编译环境变量。 ``` [OHOS INFO] root path: /home/xxxx/openharmony_w800 [OHOS INFO] board: neptune100 [OHOS INFO] kernel: liteos_m [OHOS INFO] product: neptune_iotlink_demo [OHOS INFO] product path: /home/xxxx/openharmony_w800/vendor/hihope/neptune_iotlink_demo [OHOS INFO] device path: /home/xxxx/openharmony_w800/device/board/hihope/neptune100/liteos_m [OHOS INFO] device company: hihope ``` 至此,预编译适配完成,但工程还不能执行hb build进行编译,还需要准备好后续的LiteOS-M内核移植。 ## 内核移植 ### Kconfig适配 在`kernel/liteos_m`的编译中,需要在相应的单板以及SoC目录下使用`Kconfig`文件进行索引。 1. 在`vendor/hihope/neptune_iotlink_demo`目录下创建kernel_configs目录,并创建`debug.config`空文件。 2. 打开`kernel/liteos_m/Kconfig`文件,可以看到在该文件通过orsource命令导入了`device/board`和`device/soc`下多个`Kconfig`文件,后续需要创建并修改这些文件: ``` orsource "../../device/board/*/Kconfig.liteos_m.shields" orsource "../../device/board/$(BOARD_COMPANY)/Kconfig.liteos_m.defconfig.boards" orsource "../../device/board/$(BOARD_COMPANY)/Kconfig.liteos_m.boards" orsource "../../device/soc/*/Kconfig.liteos_m.defconfig" orsource "../../device/soc/*/Kconfig.liteos_m.series" orsource "../../device/soc/*/Kconfig.liteos_m.soc" ``` 3. 在`device/board/hihope`下创建相应的的`Kconfig`文件: ``` ├── neptune100 --- neptune100单板配置目录 │ ├── Kconfig.liteos_m.board --- 单板的配置选项 │   ├── Kconfig.liteos_m.defconfig.board --- 单板的默认配置项 │   └── liteos_m │   └── config.gni --- 单板的配置文件 ├── Kconfig.liteos_m.boards --- 单板厂商下Boards配置信息 └── Kconfig.liteos_m.defconfig.boards --- 单板厂商下Boards默认配置信息 ``` 4. 修改`Board`目录下`Kconfig`文件内容: 在 `neptune100/Kconfig.liteos_m.board`中添加, ``` config BOARD_NEPTUNE100 bool "select board neptune100" depends on SOC_WM800 ``` 配置只有SOC_WM800被选后,BOARD_NEPTUNE100才可被选。 在 `neptune100/Kconfig.liteos_m.defconfig.board`中添加, ``` if BOARD_NEPTUNE100 endif #BOARD_NEPTUNE100 ``` 用于添加 BOARD_NEPTUNE100默认配置 5. 在`device/soc/winnermicro`下创建相应的的`Kconfig`文件: ``` ├── wm800 --- W800系列 │ ├── Kconfig.liteos_m.defconfig.wm800 --- W800芯片默认配置 │ ├── Kconfig.liteos_m.defconfig.series --- W800系列默认配置 │ ├── Kconfig.liteos_m.series --- W800系列配置 │ └── Kconfig.liteos_m.soc --- W800芯片配置 ├── Kconfig.liteos_m.defconfig --- SoC默认配置 ├── Kconfig.liteos_m.series --- Series配置 └── Kconfig.liteos_m.soc --- SoC配置 ``` 6. 修改`Soc`目录下`Kconfig`文件内容: 在`wm800/Kconfig.liteos_m.defconfig.wm800`中添加: ``` config SOC string default "wm800" depends on SOC_WM800 ``` 在`wm800/Kconfig.liteos_m.defconfig.series`中添加: ``` if SOC_SERIES_WM800 rsource "Kconfig.liteos_m.defconfig.wm800" config SOC_SERIES string default "wm800" endif ``` 在 `wm800/Kconfig.liteos_m.series`中添加: ``` config SOC_SERIES_WM800 bool "winnermicro 800 Series" select ARM select SOC_COMPANY_WINNERMICRO --- 选择 SOC_COMPANY_WINNERMICRO select CPU_XT804 help Enable support for winnermicro 800 series ``` 在选择了 SOC_SERIES_WM800之后,才可选 `wm800/Kconfig.liteos_m.soc`文件中的 SOC_WM800: ``` choice prompt "Winnermicro 800 series SoC" depends on SOC_SERIES_WM800 config SOC_WM800 --- 选择 SOC_WM800 bool "SoC WM800" endchoice ``` 综上所述,要编译单板BOARD_NEPTUNE100,则要分别选中:SOC_COMPANY_WINNERMICRO、SOC_SERIES_WM800、SOC_WM800 7. 在`kernel/liteos_m`中执行`make menuconfig`进行选择配置,能够对SoC Series进行选择: ![w800_select.json](figures/w800_select.png) 配置后的文件会默认保存在`vendor/hihope/neptune_iotlink_demo/kernel_configs/debug.config`,也可以直接填写`debug.config`: ``` LOSCFG_PLATFORM_QEMU_CSKY_SMARTL=y LOSCFG_SOC_SERIES_WM800=y ``` ### 模块化编译 `Board`和`SoC`的编译采用模块化的编译方法,从`kernel/liteos_m/BUILD.gn`开始逐级向下递增。本方案的适配过程如下: 1. 在`device/board/hihope`中新建文件`BUILD.gn`,新增内容如下: ``` if (ohos_kernel_type == "liteos_m") { import("//kernel/liteos_m/liteos.gni") module_name = get_path_info(rebase_path("."), "name") module_group(module_name) { modules = [ "neptune100", --- 单板模块 "shields", ] } } ``` 在上述`BUILD.gn`中,neptune100以及shields即是按目录层级组织的模块名。 2. 在`device/soc/winnermicro`中,新建文件`BUILD.gn`,按目录层级组织,新增内容如下: ``` if (ohos_kernel_type == "liteos_m") { import("//kernel/liteos_m/liteos.gni") module_name = get_path_info(rebase_path("."), "name") module_group(module_name) { modules = [ "hals", "wm800", ] } } ``` 3. 在`device/soc/winnermicro`各个层级模块下,同样新增文件`BUILD.gn`,将该层级模块加入编译。以`device/soc/winnermicro/wm800/board/platform/sys/BUILD.gn`为例: ``` import("//kernel/liteos_m/liteos.gni") module_name = get_path_info(rebase_path("."), "name") kernel_module(module_name) { --- 编译的模块 sources = [ --- 编译的源文件 "wm_main.c", ] include_dirs = [ --- 模块内使用到的头文件 ".", ] } ``` 4. 为了组织链接以及一些编译选项,在`device/soc/winnermicro/wm800/board/BUILD.gn`下的`config("board_config")`填入了相应的参数: ``` config("board_config") { ldflags = [] --- 链接参数,包括ld文件 libs = [] --- 链接库 include_dirs = [] --- 公共头文件 ``` 5. 为了组织一些产品侧的应用,需要强制链接到产品工程中来,本方案在vendor相应的`config.json`加入了相应的list来组织,在`vendor/hihope/neptune_iotlink_demo/config.json`增加对应的list: ``` "bin_list": [ --- demo list { "elf_name": "hihope", "enable": "false", --- list开关 "force_link_libs": [ "bootstrap", "broadcast", ... ] } ``` 将demo应用作为模块库来管理,开启/关闭某个demo,在bin_list中增减相应库文件即可。bin_list在gn中可以直接被读取,在`device/board/hihope/neptune100/liteos_m/config.gni`新增内容: ``` # config.json parse if (product_path != "") { product_conf = read_file("${product_path}/config.json", "json") product_name = product_conf.product_name bin_list = product_conf.bin_list } ``` 读取list后即可在相应的链接选项上加入相关的组件库,在`//device/soc/winnermicro/wm800/BUILD.gn`添加内容: ``` foreach(bin_file, bin_list) { build_enable = bin_file.enable ... if(build_enable == "true") { ... foreach(force_link_lib, bin_file.force_link_libs) { ldflags += [ "-l${force_link_lib}" ] } ... } } ``` ### 内核子系统适配 在`vendor/hihope/neptune_iotlink_demo/config.json`添加内核子系统及相关配置,如下: ``` "subsystems": [ { "subsystem": "kernel", "components": [ { "component": "liteos_m", "features":[] } ] }, ``` ### 内核启动适配 由于Neptune100开发板的芯片架构为Openharmony不支持的ck804ef架构,需要进行ck804ef架构移植。适配 `kernel\liteos_m\arch\include`中定义的通用的文件以及函数列表,并放在了 `kernel\liteos_m\arch\csky\v2\ck804\gcc`文件夹下。 内核初始化示例如下: ``` osStatus_t ret = osKernelInitialize(); --- 内核初始化 if(ret == osOK) { threadId = osThreadNew((osThreadFunc_t)sys_init,NULL,&g_main_task); --- 创建init线程 if(threadId!=NULL) { osKernelStart(); --- 线程调度 } } ``` board_main在启动OHOS_SystemInit之前,需要初始化必要的动作,如下: ``` ... UserMain(); --- 启动OpenHarmony OHOS_SystemInit的之前完成驱动的初始化 ... OHOS_SystemInit(); --- 启动OpenHarmony服务,以及组件初始化 ... ``` UserMain函数在`device/soc/winnermicro/wm800/board/app/main.c`文件中,如下: ``` ... if (DeviceManagerStart()) { --- HDF初始化 printf("[%s] No drivers need load by hdf manager!",__func__); } ... ``` ### HDF驱动框架适配 HDF驱动框架提供了一套应用访问硬件的统一接口,可以简化应用开发,添加HDF组件需要在`//vendor/hihope/neptune_iotlink_demo/kernel_configs`添加: ``` LOSCFG_DRIVERS_HDF=y LOSCFG_DRIVERS_HDF_PLATFORM=y ``` 驱动适配相关文件放置在`drivers/adapter/platform`中,对应有gpio,i2c,pwm,spi,uart,watchdog,都是通过HDF机制加载,本章节以GPIO和UART为例进行详细说明。 #### GPIO适配 1. 芯片驱动适配文件位于`drivers/adapter/platform`目录,在gpio目录增加`gpio_wm.c`文件,在`BUILD.gn`文件中,描述了W800驱动的编译适配。如下: ``` ... if (defined(LOSCFG_SOC_COMPANY_WINNERMICRO)) { sources += [ "gpio_wm.c" ] } ... ``` 2. `gpio_wm.c`中驱动描述文件如下: ``` /* HdfDriverEntry definitions */ struct HdfDriverEntry g_GpioDriverEntry = { .moduleVersion = 1, .moduleName = "WM_GPIO_MODULE_HDF", .Bind = GpioDriverBind, .Init = GpioDriverInit, .Release = GpioDriverRelease, }; HDF_INIT(g_GpioDriverEntry); ``` 3. 在`device/board/hihope/shields/neptune100/neptune100.hcs`添加gpio硬件描述信息, 添加内容如下: ``` root { platform { gpio_config { match_attr = "gpio_config"; groupNum = 1; pinNum = 48; } } } ``` 4. 在GpioDriverInit获取hcs参数进行初始化,如下: ``` ... gpioCntlr = GpioCntlrFromHdfDev(device); --- gpioCntlr节点变量获取具体gpio配置 if (gpioCntlr == NULL) { HDF_LOGE("GpioCntlrFromHdfDev fail\r\n"); return HDF_DEV_ERR_NO_DEVICE_SERVICE; } ... ``` #### UART适配 1. 芯片驱动适配文件位于`drivers/adapter/platform`目录,在uart目录增加`uart_wm.c`文件,在`BUILD.gn`文件中,描述了W800驱动的编译适配。如下: ``` ... if (defined(LOSCFG_SOC_COMPANY_WINNERMICRO)) { sources += [ "uart_wm.c" ] } ... ``` 2. `uart_wm.c`中驱动描述文件如下: ``` /* HdfDriverEntry definitions */ struct HdfDriverEntry g_UartDriverEntry = { .moduleVersion = 1, .moduleName = "W800_UART_MODULE_HDF", .Bind = UartDriverBind, .Init = UartDriverInit, .Release = UartDriverRelease, }; /* Initialize HdfDriverEntry */ HDF_INIT(g_UartDriverEntry); ``` 3. 在`device/board/hihope/shields/neptune100/neptune100.hcs`添加uart硬件描述信息, 添加内容如下: ``` root { platform { uart_config { /* uart0 { match_attr = "uart0_config"; num = 0; baudrate = 115200; parity = 0; stopBit = 1; data = 8; }*/ uart1 { match_attr = "uart1_config"; num = 1; baudrate = 115200; parity = 0; stopBit = 1; data = 8; } } } } ``` 4. 在UartDriverInit获取hcs参数进行初始化,如下: ``` ... host = UartHostFromDevice(device); if (host == NULL) { HDF_LOGE("%s: host is NULL", __func__); return HDF_ERR_INVALID_OBJECT; } ... ``` ## Openharmony子系统适配 子系统的编译选项入口在相应产品`config.json`下,如:`vendor/hihope/neptune_iotlink_demo/config.json`。 ### wifi_lite组件 首先,在`config.json`文件中,增加`communication`子系统的`wifi_lite`部件,如下: ``` { "subsystem": "communication", "components": [ { "component": "wifi_lite", "optional": "true" } ] }, ``` `wifi_lite`部件在 `build/lite/components/communication.json`文件中,描述如下: ``` { "component": "wifi_lite", "targets": [ "//foundation/communication/wifi_lite:wifi" --- wifi_lite的编译目标 ], }, ``` 在本案例中,`wifi`适配源码可见`device/soc/winnermicro/wm800/board/src/wifi/wm_wifi.c`,如下: ``` int tls_wifi_netif_add_status_event(tls_wifi_netif_status_event_fn event_fn) ---用于增加wifi事件功能 { u32 cpu_sr; struct tls_wifi_netif_status_event *evt; //if exist, remove from event list first. tls_wifi_netif_remove_status_event(event_fn); evt = tls_mem_alloc(sizeof(struct tls_wifi_netif_status_event)); if(evt==NULL) return -1; memset(evt, 0, sizeof(struct tls_wifi_netif_status_event)); evt->status_callback = event_fn; cpu_sr = tls_os_set_critical(); dl_list_add_tail(&wifi_netif_status_event.list, &evt->list); tls_os_release_critical(cpu_sr); return 0; } ``` ### 系统服务管理子系统适配 系统服务管理子系统适配添加`samgr_lite`部件,直接在`config.json`配置,如下: ``` { "subsystem": "distributedschedule", "components": [ { "component": "samgr_lite" } ] }, ``` ### 公共基础库子系统适配 公共基础库子系统适配添加了`kv_store、file`部件,直接在`config.json`配置,如下: ``` { "subsystem": "utils", "components": [ { "component": "kv_store", "features": [ "enable_ohos_utils_native_lite_kv_store_use_posix_kv_api = true" ] }, { "component": "file", "features":[] } ] }, ``` 适配`kv_store`部件时,键值对会写到文件中。在轻量系统中,文件操作相关接口有`POSIX`接口与`HalFiles`接口这两套实现。 因为对接内核的文件系统,采用`POSIX`相关的接口,所以`features`需要增加`enable_ohos_utils_native_lite_kv_store_use_posix_kv_api = true`。 ### 启动恢复子系统适配 启动恢复子系统适配添加了`bootstrap_lite、syspara_lite`部件,直接在`config.json`配置,如下: ``` { "subsystem": "startup", "components": [ { "component": "bootstrap_lite" }, { "component": "syspara_lite", "features": [ "enable_ohos_startup_syspara_lite_use_posix_file_api = true", "config_ohos_startup_syspara_lite_data_path = \"/data/\"" ] } ] }, ``` 适配bootstrap_lite部件时,需要在链接脚本文件`device/soc/winnermicro/wm800/board/ld/w800/gcc_csky.ld`中手动新增如下段: ``` .zinitcall_array : { . = ALIGN(0x4) ; PROVIDE_HIDDEN (__zinitcall_core_start = .); KEEP (*(SORT(.zinitcall.core*))) KEEP (*(.zinitcall.core*)) PROVIDE_HIDDEN (__zinitcall_core_end = .); . = ALIGN(0x4) ; PROVIDE_HIDDEN (__zinitcall_device_start = .); KEEP (*(SORT(.zinitcall.device*))) KEEP (*(.zinitcall.device*)) PROVIDE_HIDDEN (__zinitcall_device_end = .); . = ALIGN(0x4) ; PROVIDE_HIDDEN (__zinitcall_bsp_start = .); KEEP (*(SORT(.zinitcall.bsp*))) KEEP (*(.zinitcall.bsp*)) PROVIDE_HIDDEN (__zinitcall_bsp_end = .); . = ALIGN(0x4) ; PROVIDE_HIDDEN (__zinitcall_sys_service_start = .); KEEP (*(SORT(.zinitcall.sys.service*))) KEEP (*(.zinitcall.sys.service*)) PROVIDE_HIDDEN (__zinitcall_sys_service_end = .); . = ALIGN(0x4) ; PROVIDE_HIDDEN (__zinitcall_app_service_start = .); KEEP (*(SORT(.zinitcall.app.service*))) KEEP (*(.zinitcall.app.service*)) PROVIDE_HIDDEN (__zinitcall_app_service_end = .); . = ALIGN(0x4) ; PROVIDE_HIDDEN (__zinitcall_sys_feature_start = .); KEEP (*(SORT(.zinitcall.sys.feature*))) KEEP (*(.zinitcall.sys.feature*)) PROVIDE_HIDDEN (__zinitcall_sys_feature_end = .); . = ALIGN(0x4) ; PROVIDE_HIDDEN (__zinitcall_app_feature_start = .); KEEP (*(SORT(.zinitcall.app.feature*))) KEEP (*(.zinitcall.app.feature*)) PROVIDE_HIDDEN (__zinitcall_app_feature_end = .); . = ALIGN(0x4) ; PROVIDE_HIDDEN (__zinitcall_run_start = .); KEEP (*(SORT(.zinitcall.run*))) KEEP (*(.zinitcall.run*)) PROVIDE_HIDDEN (__zinitcall_run_end = .); . = ALIGN(0x4) ; PROVIDE_HIDDEN (__zinitcall_test_start = .); KEEP (*(SORT(.zinitcall.test*))) KEEP (*(.zinitcall.test*)) PROVIDE_HIDDEN (__zinitcall_test_end = .); . = ALIGN(0x4) ; PROVIDE_HIDDEN (__zinitcall_exit_start = .); KEEP (*(SORT(.zinitcall.exit*))) KEEP (*(.zinitcall.exit*)) PROVIDE_HIDDEN (__zinitcall_exit_end = .); } > REGION_RODATA ``` 需要新增上述段是因为`bootstrap_init`提供的对外接口,见`utils/native/lite/include/ohos_init.h`文件,采用的是灌段的形式,最终会保存到上述链接段中。主要的服务自动初始化宏如下表格所示: | 接口名 | 描述 | | ---------------------- | -------------------------------- | | SYS_SERVICE_INIT(func) | 标识核心系统服务的初始化启动入口 | | SYS_FEATURE_INIT(func) | 标识核心系统功能的初始化启动入口 | | APP_SERVICE_INIT(func) | 标识应用层服务的初始化启动入口 | | APP_FEATURE_INIT(func) | 标识应用层功能的初始化启动入口 | 通过上面加载的组件编译出来的lib文件需要手动加入强制链接。 如在 `vendor/hihope/neptune_iotlink_demo/config.json` 中配置了`bootstrap_lite` 部件 ``` { "subsystem": "startup", "components": [ { "component": "bootstrap_lite" }, ... ] }, ``` ​`bootstrap_lite`部件会编译`base/startup/bootstrap_lite/services/source/bootstrap_service.c`,该文件中,通过`SYS_SERVICE_INIT`将`Init`函数符号灌段到`__zinitcall_sys_service_start`和`__zinitcall_sys_service_end`中,由于`Init`函数是没有显式调用它,所以需要将它强制链接到最终的镜像。如下: ``` static void Init(void) { static Bootstrap bootstrap; bootstrap.GetName = GetName; bootstrap.Initialize = Initialize; bootstrap.MessageHandle = MessageHandle; bootstrap.GetTaskConfig = GetTaskConfig; bootstrap.flag = FALSE; SAMGR_GetInstance()->RegisterService((Service *)&bootstrap); } SYS_SERVICE_INIT(Init); --- 通过SYS启动即SYS_INIT启动就需要强制链接生成的lib ``` ​在`base/startup/bootstrap_lite/services/source/BUILD.gn`文件中,描述了在`out/neptune100/neptune_iotlink_demo/libs` 生成 `libbootstrap.a`,如下: ``` static_library("bootstrap") { sources = [ "bootstrap_service.c", "system_init.c", ] ... ``` 适配`syspara_lite`部件时,系统参数会最终写到文件中进行持久化保存。在轻量系统中,文件操作相关接口有POSIX接口与HalFiles接口这两套实现。 因为对接内核的文件系统,采用POSIX相关的接口,所以features字段中需要增加`enable_ohos_startup_syspara_lite_use_posix_file_api = true`。 ### XTS子系统适配 XTS子系统的适配,直接在`config.json`中加入组件选项: ``` { "subsystem": "xts", "components": [ { "component": "xts_acts", "features": [ "config_ohos_xts_acts_utils_lite_kv_store_data_path = \"/data\"", "enable_ohos_test_xts_acts_use_thirdparty_lwip = true" ] }, { "component": "xts_tools", "features":[] } ] } ``` 另外,XTS功能也使用了list来组织,在`config.json`文件中增减相应模块: ``` "bin_list": [ { "enable": "true", "force_link_libs": [ "module_ActsParameterTest", "module_ActsBootstrapTest", "module_ActsDfxFuncTest", "module_ActsHieventLiteTest", "module_ActsSamgrTest", "module_ActsUtilsFileTest", "module_ActsKvStoreTest", "module_ActsWifiServiceTest" ] } ], ``` 其它组件的适配过程与官方以及其它厂商的过程类似,不再赘述。