# UART
## 概述
### 功能简介
UART指异步收发传输器(Universal Asynchronous Receiver/Transmitter),是通用串行数据总线,用于异步通信。该总线双向通信,可以实现全双工传输。
两个UART设备的连接示意图如下,UART与其他模块一般用2线(图1)或4线(图2)相连,它们分别是:
- TX:发送数据端,和对端的RX相连。
- RX:接收数据端,和对端的TX相连。
- RTS:发送请求信号,用于指示本设备是否准备好,可接受数据,和对端CTS相连。
- CTS:允许发送信号,用于判断是否可以向对端发送数据,和对端RTS相连。
**图 1** 2线UART设备连接示意图
![2线UART设备连接示意图](figures/2线UART设备连接示意图.png)
**图 2** 4线UART设备连接示意图
![4线UART设备连接示意图](figures/4线UART设备连接示意图.png)
UART通信之前,收发双方需要约定好一些参数:波特率、数据格式(起始位、数据位、校验位、停止位)等。通信过程中,UART通过TX发送给对端数据,通过RX接收对端发送的数据。当UART接收缓存达到预定的门限值时,RTS变为不可发送数据,对端的CTS检测到不可发送数据,则停止发送数据。
### 基本概念
- 异步通信
异步通信中,数据通常以字符或者字节为单位组成字符帧传送。字符帧由发送端逐帧发送,通过传输线被接收设备逐帧接收。发送端和接收端可以由各自的时钟来控制数据的发送和接收,这两个时钟源彼此独立,互不同步。异步通信以一个字符为传输单位,通信中两个字符间的时间间隔是不固定的,然而在同一个字符中的两个相邻位代码间的时间间隔是固定的。
- 全双工传输(Full Duplex)
此通信模式允许数据在两个方向上同时传输,它在能力上相当于两个单工通信方式的结合。全双工可以同时进行信号的双向传输。
### 运作机制
在HDF框架中,UART接口适配模式采用独立服务模式(如图3所示)。在这种模式下,每一个设备对象会独立发布一个设备服务来处理外部访问,设备管理器收到API的访问请求之后,通过提取该请求的参数,达到调用实际设备对象的相应内部方法的目的。独立服务模式可以直接借助HDF设备管理器的服务管理能力,但需要为每个设备单独配置设备节点,增加内存占用。
独立服务模式下,核心层不会统一发布一个服务供上层使用,因此这种模式下驱动要为每个控制器发布一个服务,具体表现为:
- 驱动适配者需要实现HdfDriverEntry的Bind钩子函数以绑定服务。
- device_info.hcs文件中deviceNode的policy字段为1或2,不能为0。
UART模块各分层作用:
- 接口层提供打开UART设备、UART设备读取指定长度数据、UART设备写入指定长度数据、设置UART设备波特率、获取设UART设备波特率、设置UART设备属性、获取UART设备波特率、设置UART设备传输模式、关闭UART设备的接口。
- 核心层主要提供UART控制器的创建、移除以及管理的能力,通过钩子函数与适配层交互。
- 适配层主要是将钩子函数的功能实例化,实现具体的功能。
**图 3** UART独立服务模式结构图
![UART独立服务模式结构图](figures/独立服务模式结构图.png)
## 开发指导
### 场景介绍
UART模块应用比较广泛,主要用于实现设备之间的低速串行通信,例如输出打印信息,当然也可以外接各种模块,如GPS、蓝牙等。当驱动开发者需要将UART设备适配到OpenHarmony时,需要进行UART驱动适配。下文将介绍如何进行UART驱动适配。
### 接口说明
为了保证上层在调用UART接口时能够正确的操作UART控制器,核心层在//drivers/hdf_core/framework/support/platform/include/uart/uart_core.h中定义了以下钩子函数,驱动适配者需要在适配层实现这些函数的具体功能,并与钩子函数挂接,从而完成适配层与核心层的交互。
UartHostMethod定义:
```c
struct UartHostMethod {
int32_t (*Init)(struct UartHost *host);
int32_t (*Deinit)(struct UartHost *host);
int32_t (*Read)(struct UartHost *host, uint8_t *data, uint32_t size);
int32_t (*Write)(struct UartHost *host, uint8_t *data, uint32_t size);
int32_t (*GetBaud)(struct UartHost *host, uint32_t *baudRate);
int32_t (*SetBaud)(struct UartHost *host, uint32_t baudRate);
int32_t (*GetAttribute)(struct UartHost *host, struct UartAttribute *attribute);
int32_t (*SetAttribute)(struct UartHost *host, struct UartAttribute *attribute);
int32_t (*SetTransMode)(struct UartHost *host, enum UartTransMode mode);
int32_t (*pollEvent)(struct UartHost *host, void *filep, void *table);
};
```
**表 1** UartHostMethod结构体成员的回调函数功能说明
| 函数 | 入参 | 出参 | 返回值 | 功能 |
| -------- | -------- | -------- | -------- | -------- |
| Init | host:结构体指针,核心层UART控制器 | 无 | HDF_STATUS相关状态 | 初始化Uart设备 |
| Deinit | host:结构体指针,核心层UART控制器 | 无 | HDF_STATUS相关状态 | 去初始化Uart设备 |
| Read | host:结构体指针,核心层UART控制器
size:uint32_t类型,接收数据大小 | data:uint8_t类型指针,接收的数据 | HDF_STATUS相关状态 | 接收数据RX |
| Write | host:结构体指针,核心层UART控制器
data:uint8_t类型指针,传入数据
size:uint32_t类型,发送数据大小 | 无 | HDF_STATUS相关状态 | 发送数据TX |
| SetBaud | host:结构体指针,核心层UART控制器
baudRate:uint32_t类型,波特率传入值 | 无 | HDF_STATUS相关状态 | 设置波特率 |
| GetBaud | host:结构体指针,核心层UART控制器 | baudRate:uint32_t类型指针,传出的波特率 | HDF_STATUS相关状态 | 获取当前设置的波特率 |
| GetAttribute | host:结构体指针,核心层UART控制器 | attribute:结构体指针,传出的属性值(见uart_if.h中UartAttribute定义) | HDF_STATUS相关状态 | 获取设备uart相关属性 |
| SetAttribute | host:结构体指针,核心层UART控制器
attribute:结构体指针,属性传入值 | 无 | HDF_STATUS相关状态 | 设置设备UART相关属性 |
| SetTransMode | host:结构体指针,核心层UART控制器
mode:枚举值(见uart_if.h中UartTransMode定义),传输模式 | 无 | HDF_STATUS相关状态 | 设置传输模式 |
| PollEvent | host:结构体指针,核心层UART控制器
filep:void类型指针filep
table:void类型指针table | 无 | HDF_STATUS相关状态 | poll轮询机制 |
### 开发步骤
UART模块适配HDF框架包含以下四个步骤:
- 实例化驱动入口
- 配置属性文件
- 实例化UART控制器对象
- 驱动调试
### 开发实例
下方将基于Hi3516DV300开发板以//device/soc/hisilicon/common/platform/uart/uart_hi35xx.c驱动为示例,展示需要驱动适配者提供哪些内容来完整实现设备功能。
1. 实例化驱动入口
驱动入口必须为HdfDriverEntry(在hdf_device_desc.h中定义)类型的全局变量,且moduleName要和device_info.hcs中保持一致。HDF框架会将所有加载的驱动的HdfDriverEntry对象首地址汇总,形成一个类似数组的段地址空间,方便上层调用。
一般在加载驱动时HDF会先调用Bind函数,再调用Init函数加载该驱动。当Init调用异常时,HDF框架会调用Release释放驱动资源并退出。
UART驱动入口开发参考:
```c
struct HdfDriverEntry g_hdfUartDevice = {
.moduleVersion = 1,
.moduleName = "HDF_PLATFORM_UART", // 【必要且与HCS文件中里面的moduleName匹配】
.Bind = HdfUartDeviceBind, // 挂接UART模块Bind实例化
.Init = HdfUartDeviceInit, // 挂接UART模块Init实例化
.Release = HdfUartDeviceRelease, // 挂接UART模块Release实例化
};
HDF_INIT(g_hdfUartDevice); // 调用HDF_INIT将驱动入口注册到HDF框架中
```
2. 配置属性文件
完成驱动入口注册之后,需要在device_info.hcs文件中添加deviceNode信息,deviceNode信息与驱动入口注册相关。本例以两个UART控制器为例,如有多个器件信息,则需要在device_info.hcs文件增加对应的deviceNode信息,以及在uart_config.hcs文件中增加对应的器件属性。器件属性值与核心层UartHost成员的默认值或限制范围有密切关系,比如UART设备端口号,需要在uart_config.hcs文件中增加对应的器件属性。
独立服务模式的特点是device_info.hcs文件中设备节点代表着一个设备对象,如果存在多个设备对象,则按需添加,注意服务名与驱动私有数据匹配的关键字名称必须唯一。其中各项参数如表2所示:
**表 2** device_info.hcs节点参数说明
| 成员名 | 值 |
| -------- | -------- |
| policy | 驱动服务发布的策略,UART控制器具体配置为2,表示驱动对内核态和用户态都发布服务 |
| priority | 驱动启动优先级(0-200),值越大优先级越低。UART控制器具体配置为40 |
| permission | 驱动创建设备节点权限,UART控制器具体配置为0664 |
| moduleName | 驱动名称,UART控制器固定为HDF_PLATFORM_UART |
| serviceName | 驱动对外发布服务的名称,UART控制器服务名设置为HDF_PLATFORM_UART_X,X代表UART控制器编号 |
| deviceMatchAttr | 驱动私有数据匹配的关键字,UART控制器设置为hisilicon_hi35xx_uart_X ,X代表UART控制器编号 |
- device_info.hcs 配置参考:
在//vendor/hisilicon/hispark_taurus/hdf_config/device_info/device_info.hcs文件中添加deviceNode描述。
```c
root {
device_info {
match_attr = "hdf_manager";
platform :: host {
hostName = "platform_host";
priority = 50;
device_uart :: device {
device0 :: deviceNode {
policy = 1; // 驱动服务发布的策略,policy大于等于1(用户态可见为2,仅内核态可见为1)。
priority = 40; // 驱动启动优先级
permission = 0644; // 驱动创建设备节点权限
moduleName = "HDF_PLATFORM_UART"; // 驱动名称,该字段的值必须和驱动入口结构的moduleName值一致。
serviceName = "HDF_PLATFORM_UART_0"; // 驱动对外发布服务的名称,必须唯一,必须要按照HDF_PLATFORM_UART_X的格式,X为UART控制器编号。
deviceMatchAttr = "hisilicon_hi35xx_uart_0"; // 驱动私有数据匹配的关键字,必须和驱动私有数据配置表中的match_attr值一致。
}
device1 :: deviceNode {
policy = 2;
permission = 0644;
priority = 40;
moduleName = "HDF_PLATFORM_UART";
serviceName = "HDF_PLATFORM_UART_1";
deviceMatchAttr = "hisilicon_hi35xx_uart_1";
}
...... // 如果存在多个UART设备时【必须】添加节点,否则不用
}
}
}
}
```
- uart_config.hcs 配置参考:
在//device/soc/hisilicon/hi3516dv300/sdk_liteos/hdf_config/uart/uart_config.hcs文件配置器件属性,其中配置参数如下:
```c
root {
platform {
template uart_controller { // 配置模板,如果下面节点使用时继承该模板,则节点中未声明的字段会使用该模板中的默认值
match_attr = "";
num = 0; // 【必要】端口号
baudrate = 115200; // 【必要】波特率,数值可按需填写
fifoRxEn = 1; // 【必要】使能接收FIFO
fifoTxEn = 1; // 【必要】使能发送FIFO
flags = 4; // 【必要】标志信号
regPbase = 0x120a0000; // 【必要】地址映射需要
interrupt = 38; // 【必要】中断号
iomemCount = 0x48; // 【必要】地址映射需要
}
controller_0x120a0000 :: uart_controller {
match_attr = "hisilicon_hi35xx_uart_0"; // 【必要】必须和device_info.hcs中对应的设备的deviceMatchAttr值一致
}
controller_0x120a1000 :: uart_controller {
num = 1;
baudrate = 9600;
regPbase = 0x120a1000;
interrupt = 39;
match_attr = "hisilicon_hi35xx_uart_1";
}
...... // 如果存在多个UART设备时【必须】添加节点,否则不用
}
}
```
需要注意的是,新增uart_config.hcs配置文件后,必须在产品对应的hdf.hcs文件中将其包含如下语句所示,否则配置文件无法生效。
例如:本例中uart_config.hcs所在路径为device/soc/hisilicon/hi3516dv300/sdk_liteos/hdf_config/uart/uart_config.hcs,则必须在产品对应的hdf.hcs中添加如下语句:
```c
#include "../../../../device/soc/hisilicon/hi3516dv300/sdk_liteos/hdf_config/uart/uart_config.hcs" // 配置文件相对路径
```
3. 实例化UART控制器对象
完成属性文件配置之后,下一步就是以核心层UartHost对象的初始化为核心,包括驱动适配者自定义结构体(传递参数和数据),实例化UartHost成员UartHostMethod(让用户可以通过接口来调用驱动底层函数),实现HdfDriverEntry成员函数(Bind、Init、Release)。
- 驱动适配者自定义结构体参考
从驱动的角度看,驱动适配者自定义结构体是参数和数据的载体,而且uart_config.hcs文件中的数值会被HDF读入并通过DeviceResourceIface来初始化结构体成员,一些重要数值也会传递给核心层对象,例如端口号。
```c
struct UartPl011Port { // 驱动适配者自定义管脚描述结构体
int32_t enable;
unsigned long physBase; // 物理地址
uint32_t irqNum; // 中断号
uint32_t defaultBaudrate; // 默认波特率
uint32_t flags; // 标志信号,下面三个宏与之相关
#define PL011_FLG_IRQ_REQUESTED (1 << 0)
#define PL011_FLG_DMA_RX_REQUESTED (1 << 1)
#define PL011_FLG_DMA_TX_REQUESTED (1 << 2)
struct UartDmaTransfer *rxUdt; // DMA传输相关
struct UartDriverData *udd;
};
struct UartDriverData { // 数据传输相关的结构体
uint32_t num; // 端口号
uint32_t baudrate; // 波特率(可设置)
struct UartAttribute attr; // 数据位、停止位等传输属性相关
struct UartTransfer *rxTransfer; // 缓冲区相关,可理解为FIFO结构
wait_queue_head_t wait; // 条件变量相关的排队等待信号
int32_t count; // 数据数量
int32_t state; // UART控制器状态
#define UART_STATE_NOT_OPENED 0
#define UART_STATE_OPENING 1
#define UART_STATE_USEABLE 2
#define UART_STATE_SUSPENDED 3
uint32_t flags; // 状态标志
#define UART_FLG_DMA_RX (1 << 0)
#define UART_FLG_DMA_TX (1 << 1)
#define UART_FLG_RD_BLOCK (1 << 2)
RecvNotify recv; // 函数指针类型,指向串口数据接收函数
struct UartOps *ops; // 自定义函数指针结构体
void *private; // 私有数据
};
// UartHost是核心层控制器结构体,其中的成员在Init函数中会被赋值。
struct UartHost {
struct IDeviceIoService service; // 驱动服务
struct HdfDeviceObject *device; // 驱动设备对象
uint32_t num; // 端口号
OsalAtomic atom; // 原子量
void *priv; // 私有数据
struct UartHostMethod *method; // 回调函数
};
```
- UartHost成员回调函数结构体UartHostMethod的实例化。
```c
// uart_hi35xx.c 中的示例:钩子函数的实例化
struct UartHostMethod g_uartHostMethod = {
.Init = Hi35xxInit, // 初始化
.Deinit = Hi35xxDeinit, // 去初始化
.Read = Hi35xxRead, // 接收数据
.Write = Hi35xxWrite, // 发送数据
.SetBaud = Hi35xxSetBaud, // 设置波特率
.GetBaud = Hi35xxGetBaud, // 获取波特率
.SetAttribute = Hi35xxSetAttribute, // 设置设备属性
.GetAttribute = Hi35xxGetAttribute, // 获取设备属性
.SetTransMode = Hi35xxSetTransMode, // 设置传输模式
.pollEvent = Hi35xxPollEvent, // 轮询
};
```
- Bind函数开发参考
入参:
HdfDeviceObject:HDF框架给每一个驱动创建的设备对象,用来保存设备相关的私有数据和服务接口。
返回值:
HDF_STATUS相关状态(表3为部分展示,如需使用其他状态,可参考//drivers/hdf_core/interfaces/inner_api/utils/hdf_base.h中HDF_STATUS中HDF_STATUS定义)。
**表 3** HDF_STATUS相关状态说明
| 状态(值) | 问题描述 |
| -------- | -------- |
| HDF_ERR_INVALID_OBJECT | 控制器对象非法 |
| HDF_ERR_MALLOC_FAIL | 内存分配失败 |
| HDF_ERR_INVALID_PARAM | 参数非法 |
| HDF_ERR_IO | I/O 错误 |
| HDF_SUCCESS | 初始化成功 |
| HDF_FAILURE | 初始化失败 |
函数说明:
初始化自定义结构体对象,初始化UartHost成员。
```c
//uart_hi35xx.c
static int32_t HdfUartDeviceBind(struct HdfDeviceObject *device)
{
......
return (UartHostCreate(device) == NULL) ? HDF_FAILURE : HDF_SUCCESS; // 【必须】调用核心层函数UartHostCreate
}
// uart_core.c核心层UartHostCreate函数说明
struct UartHost *UartHostCreate(struct HdfDeviceObject *device)
{
struct UartHost *host = NULL; // 新建UartHost
......
host = (struct UartHost *)OsalMemCalloc(sizeof(*host)); // 分配内存
......
host->device = device; // 【必要】使HdfDeviceObject与UartHost可以相互转化的前提
device->service = &(host->service); // 【必要】使HdfDeviceObject与UartHost可以相互转化的前提
host->device->service->Dispatch = UartIoDispatch; // 为service成员的Dispatch方法赋值
OsalAtomicSet(&host->atom, 0); // 原子量初始化或者原子量设置
host->priv = NULL;
host->method = NULL;
return host;
}
```
- Init函数开发参考
入参:
HdfDeviceObject:HDF框架给每一个驱动创建的设备对象,用来保存设备相关的私有数据和服务接口。
返回值:
HDF_STATUS相关状态。
函数说明:
初始化自定义结构体对象,初始化UartHost成员,调用核心层UartAddDev函数,完成UART控制器的添加,接入VFS。
```c
int32_t HdfUartDeviceInit(struct HdfDeviceObject *device)
{
int32_t ret;
struct UartHost *host = NULL;
HDF_LOGI("%s: entry", __func__);
......
host = UartHostFromDevice(device); // 通过service成员后强制转为UartHost,赋值是在Bind函数中
......
ret = Hi35xxAttach(host, device); // 完成UartHost对象的初始化,见下
......
host->method = &g_uartHostMethod; // UartHostMethod的实例化对象的挂载
return ret;
}
// 完成UartHost对象的初始化。
static int32_t Hi35xxAttach(struct UartHost *host, struct HdfDeviceObject *device)
{
int32_t ret;
struct UartDriverData *udd = NULL; // udd和port对象是驱动适配者自定义的结构体对象,可根据需要实现相关功能
struct UartPl011Port *port = NULL;
......
// 【必要】步骤【1】~【7】主要实现对udd对象的实例化赋值,然后赋值给核心层UartHost对象。
udd = (struct UartDriverData *)OsalMemCalloc(sizeof(*udd)); // 【1】
......
port = (struct UartPl011Port *)OsalMemCalloc(sizeof(struct UartPl011Port)); // 【2】
......
udd->ops = Pl011GetOps(); // 【3】设备开启、关闭、属性设置、发送操作等函数挂载。
udd->recv = PL011UartRecvNotify; // 【4】数据接收通知函数(条件锁机制)挂载
udd->count = 0; // 【5】
port->udd = udd; // 【6】使UartPl011Port与UartDriverData可以相互转化的前提
ret = UartGetConfigFromHcs(port, device->property); // 将HdfDeviceObject的属性传递给驱动适配者自定义结构体,用于相关操作,示例代码见下
......
udd->private = port; // 【7】
host->priv = udd; // 【必要】使UartHost与UartDriverData可以相互转化的前提
host->num = udd->num; // 【必要】UART设备号
UartAddDev(host); // 【必要】核心层uart_dev.c中的函数,作用:注册一个字符设备节点到vfs,这样从用户态可以通过这个虚拟文件节点访问UART
return HDF_SUCCESS;
}
static int32_t UartGetConfigFromHcs(struct UartPl011Port *port, const struct DeviceResourceNode *node)
{
uint32_t tmp, regPbase, iomemCount;
struct UartDriverData *udd = port->udd;
struct DeviceResourceIface *iface = DeviceResourceGetIfaceInstance(HDF_CONFIG_SOURCE);
......
// 通过请求参数提取相应的值,并赋值给驱动适配者自定义的结构体。
if (iface->GetUint32(node, "num", &udd->num, 0) != HDF_SUCCESS) {
HDF_LOGE("%s: read busNum fail", __func__);
return HDF_FAILURE;
}
......
return 0;
}
```
- Release函数开发参考
入参:
HdfDeviceObject:HDF框架给每一个驱动创建的设备对象,用来保存设备相关的私有数据和服务接口。
返回值:
无。
函数说明:
该函数需要在驱动入口结构体中赋值给Release接口,当HDF框架调用Init函数初始化驱动失败时,可以调用Release释放驱动资源,该函数中需包含释放内存和删除控制器等操作。
> ![icon-note.gif](public_sys-resources/icon-note.gif) **说明:**
> 所有强制转换获取相应对象的操作前提是在Init函数中具备对应赋值的操作。
```c
void HdfUartDeviceRelease(struct HdfDeviceObject *device)
{
struct UartHost *host = NULL;
...
host = UartHostFromDevice(device); // 这里有HdfDeviceObject到UartHost的强制转化,通过service成员,赋值见Bind函数。
...
if (host->priv != NULL) {
Hi35xxDetach(host); // 驱动适配自定义的内存释放函数,见下。
}
UartHostDestroy(host); // 调用核心层函数释放host
}
static void Hi35xxDetach(struct UartHost *host)
{
struct UartDriverData *udd = NULL;
struct UartPl011Port *port = NULL;
...
udd = host->priv; // 这里有UartHost到UartDriverData的转化
...
UartRemoveDev(host); // VFS注销
port = udd->private; // 这里有UartDriverData到UartPl011Port的转化
if (port != NULL) {
if (port->physBase != 0) {
OsalIoUnmap((void *)port->physBase); // 地址反映射
}
OsalMemFree(port);
udd->private = NULL;
}
OsalMemFree(udd); // 释放UartDriverData
host->priv = NULL;
}
```
4. 驱动调试
【可选】针对新增驱动程序,建议验证驱动基本功能,例如挂载后的信息反馈,数据传输的成功与否等。