# 如何使用OpenGL绘制3D图形 ## 场景介绍 XComponent控件常用于相机预览流的显示和游戏画面的绘制,在OpenHarmony上,可以配合Native Window创建OpenGL开发环境,并最终将OpenGL绘制的图形显示到XComponent控件。本文将采用"Native C++"模板,调用OpenGL ES图形库绘制3D图形(三棱锥),并将结果渲染到页面的XComponent控件中进行展示。同时,还可以在屏幕上通过触摸滑动手势对三棱锥进行旋转,最终得到不同角度的图形并显示到页面。 ## 效果展示 | 首页 | 滑动屏幕旋转变换 | | ----------------------------------------------------- | ------------------------------------------------------- | | ![3d-graphic-index.png](figures/3d-graphic-index.png) | ![3d-graphic-rotate.png](figures/3d-graphic-rotate.png) | ## 环境要求 - 本示例仅支持在标准系统上运行。 - IDE:DevEco Studio 3.1 Beta2 - SDK:Ohos_sdk_public 3.2.11.9 (API Version 9 Release) ## 实现思路 利用XComponent组件,并配合OpenHarmony的native侧提供的native window用来创建EGL/OpenGLES环境,进而使用标准的OpenGL ES相关API进行应用开发。其中 XComponent组件作为一种绘制组件,通常用于满足开发者较为复杂的自定义绘制需求,当XComponent设置为surface类型时通常用于EGL/OpenGLES和媒体数据写入,并将其显示在XComponent组件上。 ## 开发步骤 ### 1、环境搭建 我们首先要完成应用开发环境的搭建,本示例运行DAYU200开发板上。 - 搭建应用开发环境 (1)开始前,请参考完成[DevEco Studio的安装和开发环境配置](https://developer.harmonyos.com/cn/docs/documentation/doc-guides/ohos-deveco-studio-overview-0000001263280421)。 > 说明: > > 为确保运行效果,本案例以使用DevEco Studio 3.1 Beta2 SDK:API9 (3.2.11.9)版本为例。 ![3d-graphic-creat-project.png](figures/3d-graphic-creat-project.png) (2)开发环境配置完成后,创建工程(模板选择“Native C++”),选择eTS语言开发。 - 应用调测工程创建完成后,选择使用真机进行调测。 (1)将搭载OpenHarmony标准系统的开发板与电脑连接。 (2)点击File> Project Structure... > Project>SigningConfigs界面勾选“Automatically generate signature”,等待自动签名完成即可,最后点击“OK”。如下图所示: ![3d-graphic-creat-signature.png](figures/3d-graphic-signature.png) (3)在编辑窗口右上角的工具栏,点击"运行"按钮运行。 ![3d-graphic-run.png](figures/3d-graphic-run.png) ### 2、源码结构 - 代码结构分析,整个工程的代码结构如下: ![3d-graphic-creat-code-struct.png](figures/3d-graphic-code-struct.png) - 文件说明如下: ```shell . └── main ├── cpp │   ├── app_napi.cpp //C++与ArkTS中XComponent控件交互的napi接口实现 │   ├── CMakeLists.txt //CMake规则配置文件,NAPI C/C++代码编译需要配置该文件 │   ├── include │   │   ├── app_napi.h │   │   ├── tetrahedron.h //三棱锥类实现头文件 │   │   └── util │   ├── module.cpp //NAPI模块注册 │   ├── napi_manager.cpp │   ├── napi_util.cpp │   ├── tetrahedron.cpp //三棱锥的绘制OpenGL实现 │   └── type │   └── libentry ├── ets │   ├── entryability │   │   └── EntryAbility.ts │   └── pages │   └── Index.ets    //主页面 ├── module.json5 └── resources    //资源文件目录 ├── base │   ├── element │   ├── media │   └── profile ├── en_US │   └── element ├── rawfile └── zh_CN └── element ``` ### 3、绘制流程 - 3D绘制函数调用流程如下: ```mermaid graph LR A[napi init] B[AppNapi Export] C[AppNapi OnSurfaceCreatedCB] D[AppNapi OnSurfaceCreated] E[triangles Init] F[triangles Update] A ----> B B ----> C C -- Xcomponent, window--> D D -- Native window --> E E ----> F ``` - 在Tetrahedron类的Update方法中使用GLES3库着色器绘制,最终通过ArkUI的XComponent组件显示,流程如下: ```mermaid graph LR A[glClear] B[设置gl_Position] C[设置gl_FragColor] D[glDrawArrays] A ----> B B ----> C C ----> D ``` ### 4、C++(OpenGL)实现 C++端方法源码是工程的entry/src/main/cpp/tetrahedron.cpp文件。 - 注册模块先定义一个模块,在entry/src/main/cpp/module.cpp文件中,对应结构体类型为napi_module,模块定义好后,调用NAPI提供的模块注册函数napi_module_register(napi_module* mod)注册到系统中; ```cpp /* * Napi Module define */ static napi_module appNapiModule = { .nm_version = 1, .nm_flags = 0, .nm_filename = nullptr, .nm_register_func = Init, .nm_modname = "tetrahedron_napi", .nm_priv = ((void*)0), .reserved = { 0 }, }; /* * Module register function */ extern "C" __attribute__((constructor)) void RegisterModule(void) { napi_module_register(&appNapiModule); } ``` - 调用OpenGL相关图形API绘制三棱锥 (1)初始化 ```cpp int32_t Tetrahedron::Init(void *window, int32_t width, int32_t height) { window_ = window; width_ = width; height_ = height; LOGI("Init window = %{public}p, w = %{public}d, h = %{public}d.", window, width, height); mEglWindow = reinterpret_cast(window); // 1. create sharedcontext mEGLDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY); if (mEGLDisplay == EGL_NO_DISPLAY) { LOGE("unable to get EGL display."); return -1; } EGLint eglMajVers, eglMinVers; if (!eglInitialize(mEGLDisplay, &eglMajVers, &eglMinVers)) { mEGLDisplay = EGL_NO_DISPLAY; LOGE("unable to initialize display"); return -1; } int version = 3; mEGLConfig = getConfig(version, mEGLDisplay); if (mEGLConfig == nullptr) { LOGE("GLContextInit config ERROR"); return -1; } // 2. Create EGL Surface from Native Window EGLint winAttribs[] = {EGL_GL_COLORSPACE_KHR, EGL_GL_COLORSPACE_SRGB_KHR, EGL_NONE}; if (mEglWindow) { mEGLSurface = eglCreateWindowSurface(mEGLDisplay, mEGLConfig, mEglWindow, winAttribs); if (mEGLSurface == nullptr) { LOGE("eglCreateContext eglSurface is null"); return -1; } } // 3. Create EGLContext from int attrib3_list[] = { EGL_CONTEXT_CLIENT_VERSION, 2, EGL_NONE }; mEGLContext = eglCreateContext(mEGLDisplay, mEGLConfig, mSharedEGLContext, attrib3_list); if (!eglMakeCurrent(mEGLDisplay, mEGLSurface, mEGLSurface, mEGLContext)) { LOGE("eglMakeCurrent error = %{public}d", eglGetError()); } mProgramHandle = CreateProgram(vertexShader, fragmentShader); if (!mProgramHandle) { LOGE("Could not create CreateProgram"); return -1; } LOGI("Init success."); return 0; } ``` 其中,顶点着色器实现如下: ```cpp char vertexShader[] = "attribute vec4 apos;\n" "attribute vec4 a_color;\n" "attribute vec4 a_normal;\n" "uniform vec3 u_lightColor;\n" "uniform vec3 u_lightDirection;\n" "uniform mat4 a_mx;\n" "uniform mat4 a_my;\n" "varying vec4 v_color;\n" "void main(){\n" "float radian = radians(30.0);\n" "float cos = cos(radian);\n" "float sin = sin(radian);\n" " gl_Position = a_mx * a_my * vec4(apos.x, apos.y, apos.z, 1.0);\n" " vec3 normal = normalize((a_mx * a_my * a_normal).xyz);\n" " float dot = max(dot(u_lightDirection, normal), 0.0);\n" " vec3 reflectedLight = u_lightColor * a_color.rgb * dot;\n" " v_color = vec4(reflectedLight, a_color.a);\n" "}\n\0"; ``` (2)图像渲染 ​ OpenGL ES图像渲染中着色器涉及到内置变量如下,所谓内置变量就是不用声明可以直接赋值,主要是为了实现特定的功能。 | 序号 | 内置变量 | 含义 | 值数据类型 | | --- | ------------- | ----------------- | ----- | | 1 | gl_PointSize | 点渲染模式,方形点区域渲染像素大小 | float | | 2 | gl_Position | 顶点位置坐标 | vec4 | | 3 | gl_FragColor | 片元颜色值 | vec4 | | 4 | gl_FragCoord | 片元坐标,单位像素 | vec2 | | 5 | gl_PointCoord | 点渲染模式对应点像素坐标 | vec2 | ​ 而本次渲染涉及到两个内建变量:gl_Position和gl_FragColor; ​ 其中,gl_Position变量表示最终传入片元着色器片元化要使用的顶点位置坐标,取值范围为-1.0到1.0,点超过该范围将自动被裁剪。初始化代码如下: ```cpp gl_Position = a_mx * a_my * vec4(apos.x, apos.y, apos.z, 1.0); ``` ​ a_my为y轴旋转矩阵,获取到旋转角度后初始化旋转矩阵;a_mx为x轴旋转矩阵,apos为绘制多面体点矩阵; 这些值的初始化通过glUniformMatrix4fv函数实现: ```cpp mxGL_APICALL void GL_APIENTRY glUniformMatrix4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value) ``` 其中参数的含义如下: | 序号 | 参数名 | 含义 | | --- | --------- | ------------------------------------------------------------- | | 1 | location | uniform对应的变量名 | | 2 | count | 需要加载数据的数组元素的数量或者需要修改的矩阵的数量 | | 3 | transpose | 指明矩阵是列优先(column major)矩阵(GL_FALSE)还是行优先(row major)矩阵(GL_TRUE) | | 4 | value | 指向由count个元素的数组的指针 | ​ gl_FragColor变量用于确定图形的颜色,可通过设置不同片段着色器的颜色,实现立体效果。         片段着色器实现如下: ```cpp char fragmentShader[] = "precision mediump float;\n" "varying vec4 v_color;\n" "void main () {\n" " gl_FragColor = v_color;\n" "}\n\0"; ```        三棱锥核心绘制代码如下: ```cpp void Tetrahedron::Update(float angleX, float angleY) { angleY_ = angleY; angleX_ = angleX; glClearColor(1.0f, 1.0f, 1.0f, 1.0f); glClear(GL_COLOR_BUFFER_BIT); glUseProgram(mProgramHandle); unsigned int aposLocation = glGetAttribLocation(mProgramHandle, "apos"); unsigned int a_color = glGetAttribLocation(mProgramHandle, "a_color"); unsigned int a_normal = glGetAttribLocation(mProgramHandle, "a_normal"); unsigned int u_lightColor = glGetUniformLocation(mProgramHandle, "u_lightColor"); unsigned int u_lightDirection = glGetUniformLocation(mProgramHandle, "u_lightDirection"); unsigned int mx = glGetUniformLocation(mProgramHandle, "a_mx"); unsigned int my = glGetUniformLocation(mProgramHandle, "a_my"); /** y轴旋转度 **/ float radianY = angleY * PI /180.0; float cosY = cosf(radianY); float sinY = sinf(radianY); float myArr[] = { cosY,0,-sinY,0, 0,1,0,0, sinY,0,cosY,0, 0,0,0,1 }; glUniformMatrix4fv(my, 1,false, myArr); /** x轴旋转度 **/ float radianX = angleX * PI /180.0; float cosX = cosf(radianX); float sinX = sinf(radianX); float mxArr[] = { 1,0,0,0, 0,cosX,-sinX,0, 0,sinX,cosX,0, 0,0,0,1 }; glUniformMatrix4fv(mx, 1,false, mxArr); /** 给平行光传入颜色和方向数据,RGB(1,1,1),单位向量(x,y,z) **/ glUniform3f(u_lightColor, 1.0, 1.0, 1.0); // 保证向量(x,y,z)的长度为1,即单位向量 float x = 1.0/sqrt(15), y = 2.0/sqrt(15), z = 3.0/sqrt(15); glUniform3f(u_lightDirection, x,-y,z); /** 创建顶点位置数据数组data,原点到各顶点的距离都为1 **/ float data[] = { -0.75, -0.50, -0.43, 0.75, -0.50, -0.43, 0.00, -0.50, 0.87, 0.75, -0.50, -0.43, 0.00, -0.50, 0.87, 0.00, 1.00, 0.00, 0.00, -0.50, 0.87, 0.00, 1.00, 0.00, -0.75, -0.50, -0.43, 0.00, 1.00, 0.00, -0.75, -0.50, -0.43, 0.75, -0.50, -0.43, }; /** 创建顶点颜色数组colorData **/ float colorData[] = { 1,0,0, 1,0,0, 1,0,0,//红色——面1 1,0,0, 1,0,0, 1,0,0,//红色——面2 1,0,0, 1,0,0, 1,0,0,//红色——面3 1,0,0, 1,0,0, 1,0,0 //红色——面4 }; /** 顶点法向量数组normalData **/ float normalData[] = { 0.00, -1.00, 0.00, 0.00, -1.00, 0.00, 0.00, -1.00, 0.00, -0.83, -0.28, -0.48, -0.83, -0.28, -0.48, -0.83, -0.28, -0.48, -0.83, 0.28, 0.48, -0.83, 0.28, 0.48, -0.83, 0.28, 0.48, 0.00, -0.28, 0.96, 0.00, -0.28, 0.96, 0.00, -0.28, 0.96, }; /** 创建缓冲区buffer,传入顶点位置数据data **/ unsigned int buffer; glGenBuffers(1, &buffer); glBindBuffer(GL_ARRAY_BUFFER, buffer); glBufferData(GL_ARRAY_BUFFER, sizeof(data), data, GL_STATIC_DRAW); glVertexAttribPointer(aposLocation, 3, GL_FLOAT, GL_FALSE, 0, 0); glEnableVertexAttribArray(aposLocation); unsigned int normalBuffer; glGenBuffers(1, &normalBuffer); glBindBuffer(GL_ARRAY_BUFFER, normalBuffer); glBufferData(GL_ARRAY_BUFFER, sizeof(normalData), normalData, GL_STATIC_DRAW); glVertexAttribPointer(a_normal, 3, GL_FLOAT, GL_FALSE, 0, 0); glEnableVertexAttribArray(a_normal); /** 创建缓冲区colorBuffer,传入顶点颜色数据colorData **/ unsigned int colorBuffer; glGenBuffers(1, &colorBuffer); glBindBuffer(GL_ARRAY_BUFFER, colorBuffer); glBufferData(GL_ARRAY_BUFFER, sizeof(colorData), colorData, GL_STATIC_DRAW); glVertexAttribPointer(a_color, 3, GL_FLOAT, GL_FALSE, 0, 0); glEnableVertexAttribArray(a_color); /* 执行绘制命令 */ glDrawArrays(GL_TRIANGLES, 0, 12); } ``` ### 5、NAPI接口定义 接口定义为固定写法,在napi_property_descriptor desc[]中,我们需要使用DECLARE_NAPI_FUNCTION宏,以Add函数为例,将函数名字符串"Add"与具体的实现方法napi_value Add(napi_env env, napi_callback_info info)进行关联,即DECLARE_NAPI_FUNCTION("Add", Add)最终添加到desc[]。如下所示,其中UpdateAngle对应的是Native C++的接口,其应用端的接口对应为UpdateAngle,NAPI通过napi_define_properties接口将napi_property_descriptor结构体中的2个接口绑定在一起,并通过exports变量对外导出,使应用层可以调用UpdateAngle和getContext方法。 ```cpp /* * function for module exports */ EXTERN_C_START static napi_value Init(napi_env env, napi_value exports) { LOGE("Init"); napi_property_descriptor desc[] = { DECLARE_NAPI_FUNCTION("getContext", NapiManager::GetContext), DECLARE_NAPI_FUNCTION("UpdateAngle", AppNapi::UpdateAngle), }; NAPI_CALL(env, napi_define_properties(env, exports, sizeof(desc) / sizeof(desc[0]), desc)); bool ret = NapiManager::GetInstance()->Export(env, exports); if (!ret) { LOGE("Init failed"); } return exports; } EXTERN_C_END ``` ### 6、NAPI接口实现 ​ Tetrahedron::UpdateAngle:传入angleX和angleY两个参数,分别为为绕X,Y轴的旋转角度;作为参数调用```Tetrahedron::UpdateAngle(float angleX, float angleY)```重新渲染,具体代码如下: ```cpp napi_value AppNapi::UpdateAngle(napi_env env, napi_callback_info info){ LOGE("Tetrahedron UpdateAngle"); size_t requireArgc = 2; size_t argc = 2; int speed = 3; napi_value args[2] = {nullptr}; napi_get_cb_info(env, info, &argc, args , nullptr, nullptr); napi_valuetype valuetype0; napi_typeof(env, args[0], &valuetype0); napi_valuetype valuetype1; napi_typeof(env, args[1], &valuetype1); double offsetX; napi_get_value_double(env, args[0], &offsetX); double offsetY; napi_get_value_double(env, args[1], &offsetY); /* 处理offsetX偏移角度 */ float tetrahedron_angleX = tetrahedron_->GetAngleX(); float tetrahedron_angleY = tetrahedron_->GetAngleY(); /* 上下滑动绕x轴 */ if(offsetY < 0){ tetrahedron_angleX = tetrahedron_angleX + speed; } else{ tetrahedron_angleX = tetrahedron_angleX - speed; } /* 左右滑动绕y轴 */ if(offsetX < 0){ triangles_angleY = triangles_angleY + speed; } else{ triangles_angleY = triangles_angleY - speed; } tetrahedron_angleY = normalize(tetrahedron_angleY); tetrahedron_angleX = normalize(tetrahedron_angleX); tetrahedron_->Update(tetrahedron_angleX, tetrahedron_angleY); /* 创建一个数组 */ napi_value ret; napi_create_array(env, &ret); /* 设置数组并返回 */ napi_value num; napi_create_int32(env, tetrahedron_angleX, &num); napi_set_element(env, ret, 0, num); napi_create_int32(env, tetrahedron_angleY, &num); napi_set_element(env, ret, 1, num); return ret; } ``` ​ GetContext:得到渲染所XComponent的上下文context,以便后续绑定XComponentID渲染,具体代码如下: ```cpp napi_value NapiManager::GetContext(napi_env env, napi_callback_info info) { napi_status status; napi_value exports; size_t argc = 1; napi_value args[1]; NAPI_CALL(env, napi_get_cb_info(env, info, &argc, args, nullptr, nullptr)); if (argc != 1) { napi_throw_type_error(env, NULL, "Wrong number of arguments"); return nullptr; } napi_valuetype valuetype; status = napi_typeof(env, args[0], &valuetype); if (status != napi_ok) { return nullptr; } if (valuetype != napi_number) { napi_throw_type_error(env, NULL, "Wrong arguments"); return nullptr; } int64_t value; NAPI_CALL(env, napi_get_value_int64(env, args[0], &value)); NAPI_CALL(env, napi_create_object(env, &exports)); switch (value) { case int64_t(ContextType::APP_LIFECYCLE): { /* AppInit 对应 app.ets中的应用生命周期 onCreate, onShow, onHide, onDestroy */ LOGD("GetContext APP_LIFECYCLE"); /* Register App Lifecycle */ napi_property_descriptor desc[] = { DECLARE_NAPI_FUNCTION("onCreate", NapiManager::NapiOnCreate), DECLARE_NAPI_FUNCTION("onShow", NapiManager::NapiOnShow), DECLARE_NAPI_FUNCTION("onHide", NapiManager::NapiOnHide), DECLARE_NAPI_FUNCTION("onDestroy", NapiManager::NapiOnDestroy), }; NAPI_CALL(env, napi_define_properties(env, exports, sizeof(desc) / sizeof(desc[0]), desc)); } break; case int64_t(ContextType::JS_PAGE_LIFECYCLE): { /* JS Page */ LOGD("GetContext JS_PAGE_LIFECYCLE"); napi_property_descriptor desc[] = { DECLARE_NAPI_FUNCTION("onPageShow", NapiManager::NapiOnPageShow), DECLARE_NAPI_FUNCTION("onPageHide", NapiManager::NapiOnPageHide), }; NAPI_CALL(env, napi_define_properties(env, exports, sizeof(desc) / sizeof(desc[0]), desc)); } break; default: LOGE("unknown type"); } return exports; } ``` ​ Export:先拿到XComponentID等信息后,通过NapiManager得到context,再通过context得到处理3D绘画的appNapi类并进行相应输出处理。部分代码如下(具体请查看源码): ```cpp bool NapiManager::Export(napi_env env, napi_value exports) { napi_status status; napi_value exportInstance = nullptr; OH_NativeXComponent *nativeXComponent = nullptr; int32_t ret; char idStr[OH_XCOMPONENT_ID_LEN_MAX + 1] = { }; uint64_t idSize = OH_XCOMPONENT_ID_LEN_MAX + 1; status = napi_get_named_property(env, exports, OH_NATIVE_XCOMPONENT_OBJ, &exportInstance); if (status != napi_ok) { return false; } status = napi_unwrap(env, exportInstance, reinterpret_cast(&nativeXComponent)); if (status != napi_ok) { return false; } ret = OH_NativeXComponent_GetXComponentId(nativeXComponent, idStr, &idSize); if (ret != OH_NATIVEXCOMPONENT_RESULT_SUCCESS) { return false; } std::string id(idStr); auto context = NapiManager::GetInstance(); if (context) { context->SetNativeXComponent(id, nativeXComponent); auto app = context->GetApp(id); app->SetNativeXComponent(nativeXComponent); app->Export(env, exports); return true; } return false; } ``` ### 7、ArkTS接口定义 (1)修改 index.d.ts 用于对外提供方法、说明(命名为tetrahedron_napi.d.ts)。 ```ts //传入x,y偏移量并返回x,y旋转角 export const UpdateAngle:(offsetX:number,offsetY:number)=>Array; ``` (2)在同目录下的 oh-package.json5 文件中将 tetrahedron_napi.d.ts 与cpp文件关联起来。 ```json { "name": "libtetrahedron_napi.so", "types": "./tetrahedron_napi.d.ts", "version": "1.0.0", "description": "Please describe the basic information." } ``` (3)修改项目的oh-package.json5文件,添加动态库。 ```json { "license": "", "devDependencies": { "@types/libtetrahedron_napi.so": "file:./src/main/cpp/type/libentry" }, "author": "", "name": "entry", "description": "Please describe the basic information.", "main": "", "version": "1.0.0", "dependencies": {} } ``` ### 8、CMake规则配置 entry/src/main/cpp/CMakeLists.txt是CMake规则文件。 `project`:用于设置项目(project)的名称。 `set(CMAKE_CXX_STANDARD 11)`:设置C++标准。 `include_directories`:用于包含头文件。 `add_library`:编译产生链接库。 `target_link_libraries`:指定链接给定目标和/或其依赖项时要使用的库或标志,在PUBLIC字段后的库会被链接到tetrahedron_napi中。 ```textile # the minimum version of CMake. cmake_minimum_required(VERSION 3.4.1) project(TetrahedronHap) set(NATIVE_ROOT_PATH ${CMAKE_CURRENT_SOURCE_DIR}) include_directories(${NATIVE_ROOT_PATH} ${NATIVE_ROOT_PATH}/include ${NATIVE_ROOT_PATH}/include/util) add_library(triangles_napi SHARED module.cpp app_napi.cpp tetrahedron.cpp napi_manager.cpp napi_util.cpp) target_link_libraries(tetrahedron_napi PUBLIC EGL) target_link_libraries(tetrahedron_napi PUBLIC GLESv3) target_link_libraries(tetrahedron_napi PUBLIC hilog_ndk.z) target_link_libraries(tetrahedron_napi PUBLIC ace_ndk.z) target_link_libraries(tetrahedron_napi PUBLIC ace_napi.z) target_link_libraries(tetrahedron_napi PUBLIC libc++.a) target_link_libraries(tetrahedron_napi PUBLIC z) target_link_libraries(tetrahedron_napi PUBLIC uv) target_link_libraries(tetrahedron_napi PUBLIC libace_napi.z.so) ``` ### 9、ArkTS实现 界面实现部分代码如下(具体请参考源码),其中:libraryname参数对应先前设置的模块名:tetrahedron_napi ```ts import hilog from '@ohos.hilog'; import tetrahedron_napi from 'libtetrahedron_napi.so' @Entry @Component struct Index { private xcomponentContext = null; private xcomponentId = 'tetrahedron'; private offset_x: number = 0.000; private offset_y: number = 0.000; private index: number = 0; private type_: number = 5; private touchTypeDown: number = 0; private touchTypeUp: number = 1; private touchTypeMove: number = 2; private touchTypeCancel: number = 3; @State startVisible: Visibility = Visibility.Visible; @State angleArray: Array = new Array(); private panOption: PanGestureOptions = new PanGestureOptions({ direction: PanDirection.All }) @State offsetX: number = 0 @State offsetY: number = 0 @State positionX: number = 0 @State positionY: number = 0 @State message: string = 'wu' async aboutToAppear() { } build() { Column() { Text($r('app.string.EntryAbility_desc')) .fontSize($r('app.float.head_font_24')) .lineHeight($r('app.float.wh_value_33')) .fontFamily('HarmonyHeiTi-Bold') .fontWeight(FontWeight.Bold) .fontColor($r('app.color.font_color_182431')) .textOverflow({ overflow: TextOverflow.Ellipsis }) .textAlign(TextAlign.Start) .margin({ top: $r('app.float.wh_value_13'), bottom: $r('app.float.wh_value_15') }); Text(this.angleArray[0]&this.angleArray[1]?'X轴旋转:'+this.angleArray[0].toString() +'°\nY轴旋转:'+this.angleArray[1].toString() + '°':'') .fontSize($r('app.float.head_font_24')) .lineHeight($r('app.float.wh_value_33')) .fontFamily('HarmonyHeiTi-Bold') .fontWeight(FontWeight.Bold) .fontColor($r('app.color.font_color_182431')) .textOverflow({ overflow: TextOverflow.Ellipsis }) .textAlign(TextAlign.Start) .margin({ top: $r('app.float.wh_value_13'), bottom: $r('app.float.wh_value_15') }); Stack({ alignContent: Alignment.Center }) { XComponent({ id: this.xcomponentId, type: 'surface', libraryname: 'tetrahedron_napi' }) .onLoad((context) => { hilog.info(0x0000, 'Xcomponent', 'onLoad') this.xcomponentContext = context; globalThis.xcomponentContext = this.xcomponentContext; globalThis.xcomponentId = this.xcomponentId; globalThis.touchTypeDown = this.touchTypeDown; globalThis.touchTypeUp = this.touchTypeUp; globalThis.type_ = this.type_; globalThis.index = this.index; globalThis.touchTypeMove = this.touchTypeMove; globalThis.touchTypeCancel = this.touchTypeCancel; globalThis.offset_x = this.offset_x; globalThis.offset_y = this.offset_y; }) .width($r('app.float.wh_value_362')) .height($r('app.float.wh_value_362')) .key('tetrahedron') .backgroundColor('#00000000') .onDestroy(() => { globalThis.flag = false; hilog.info(0x0000, "Xcomponent", 'onDestroy') }) } .gesture( PanGesture(this.panOption) .onActionStart((event: GestureEvent) => { console.info('onActionStart'); }) .onActionUpdate((event: GestureEvent) => { this.angleArray = tetrahedron_napi.UpdateAngle(event.offsetX, event.offsetY); hilog.info(0x0000, "Gesture", 'offSet:' + event.offsetX + "," + event.offsetY); }) .onActionEnd(() => { this.positionX = this.offsetX; this.positionY = this.offsetY; console.info('onActionEnd'); }) ) .width('100%') .height('100%') .backgroundColor('#00000000') } } } ```