diff --git a/zh-cn/device-dev/driver/driver-platform-uart-develop.md b/zh-cn/device-dev/driver/driver-platform-uart-develop.md index 0a2abe456278938fe723ef09076f43f6045b9e87..29495e8eec5394b09e1d0a9446575abd59a097e3 100755 --- a/zh-cn/device-dev/driver/driver-platform-uart-develop.md +++ b/zh-cn/device-dev/driver/driver-platform-uart-develop.md @@ -3,7 +3,7 @@ ## 概述 -UART指通用异步收发传输器(Universal Asynchronous Receiver/Transmitter)。在HDF框架中,UART的接口适配模式采用独立服务模式。在这种模式下,每一个设备对象会独立发布一个设备服务来处理外部访问,设备管理器收到API的访问请求之后,通过提取该请求的参数,达到调用实际设备对象的相应内部方法的目的。独立服务模式可以直接借助HDFDeviceManager的服务管理能力,但需要为每个设备单独配置设备节点,增加内存占用。 +在HDF框架中,UART(Universal Asynchronous Receiver/Transmitter,通用异步收发传输器)的接口适配模式采用独立服务模式。在这种模式下,每一个设备对象会独立发布一个设备服务来处理外部访问,设备管理器收到API的访问请求之后,通过提取该请求的参数,达到调用实际设备对象的相应内部方法的目的。独立服务模式可以直接借助HDFDeviceManager的服务管理能力,但需要为每个设备单独配置设备节点,增加内存占用。 **图1** UART独立服务模式结构图 @@ -34,37 +34,38 @@ struct UartHostMethod { | 函数 | 入参 | 出参 | 返回值 | 功能 | | -------- | -------- | -------- | -------- | -------- | -| Init | host: 结构体指针,核心层UART控制器 | 无 | HDF_STATUS相关状态 | 初始化Uart设备 | -| Deinit | host: 结构体指针,核心层UART控制器 | 无 | HDF_STATUS相关状态 | 去初始化Uart设备 | -| Read | host: 结构体指针,核心层UART控制器
size:uint32_t,数据大小 | data: uint8_t指针,传出的数据 | HDF_STATUS相关状态 | 接收数据RX | -| Write | host: 结构体指针,核心层UART控制器
data:uint8_t指针,传入数据
size:uint32_t,数据大小 | 无 | HDF_STATUS相关状态 | 发送数据TX | -| SetBaud | host: 结构体指针,核心层UART控制器
baudRate: uint32_t指针,波特率传入值 | 无 | HDF_STATUS相关状态 | 设置波特率 | -| GetBaud | host: 结构体指针,核心层UART控制器 | baudRate: uint32_t指针,传出的波特率 | HDF_STATUS相关状态 | 获取当前设置的波特率 | -| GetAttribute | host: 结构体指针,核心层UART控制器 | attribute: 结构体指针,传出的属性值(见uart_if.h中UartAttribute定义) | HDF_STATUS相关状态 | 获取设备uart相关属性 | -| SetAttribute | host: 结构体指针,核心层UART控制器
attribute: 结构体指针,属性传入值 | 无 | HDF_STATUS相关状态 | 设置设备UART相关属性 | -| SetTransMode | host: 结构体指针,核心层UART控制器
mode: 枚举值(见uart_if.h中UartTransMode定义),传输模式 | 无 | HDF_STATUS相关状态 | 设置传输模式 | -| PollEvent | host: 结构体指针,核心层UART控制器
filep: void 指针file
table: void 指针poll_table | 无 | HDF_STATUS相关状态 | poll机制 | +| Init | host:结构体指针,核心层UART控制器 | 无 | HDF_STATUS相关状态 | 初始化Uart设备 | +| Deinit | host:结构体指针,核心层UART控制器 | 无 | HDF_STATUS相关状态 | 去初始化Uart设备 | +| Read | host:结构体指针,核心层UART控制器
size:uint32_t,数据大小 | data:uint8_t指针,传出的数据 | HDF_STATUS相关状态 | 接收数据RX | +| Write | host:结构体指针,核心层UART控制器
data:uint8_t指针,传入数据
size:uint32_t,数据大小 | 无 | HDF_STATUS相关状态 | 发送数据TX | +| SetBaud | host:结构体指针,核心层UART控制器
baudRate:uint32_t指针,波特率传入值 | 无 | HDF_STATUS相关状态 | 设置波特率 | +| GetBaud | host:结构体指针,核心层UART控制器 | baudRate:uint32_t指针,传出的波特率 | HDF_STATUS相关状态 | 获取当前设置的波特率 | +| GetAttribute | host:结构体指针,核心层UART控制器 | attribute:结构体指针,传出的属性值(见uart_if.h中UartAttribute定义) | HDF_STATUS相关状态 | 获取设备uart相关属性 | +| SetAttribute | host:结构体指针,核心层UART控制器
attribute:结构体指针,属性传入值 | 无 | HDF_STATUS相关状态 | 设置设备UART相关属性 | +| SetTransMode | host:结构体指针,核心层UART控制器
mode:枚举值(见uart_if.h中UartTransMode定义),传输模式 | 无 | HDF_STATUS相关状态 | 设置传输模式 | +| PollEvent | host:结构体指针,核心层UART控制器
filep:void指针file
table:void指针poll_table | 无 | HDF_STATUS相关状态 | poll机制 | ## 开发步骤 -UART模块适配HDF框架的三个环节是配置属性文件,实例化驱动入口,以及实例化核心层接口函数。 +UART模块适配HDF框架的三个必选环节是实例化驱动入口,配置属性文件,以及实例化核心层接口函数。 -1. **实例化驱动入口:** +1. 实例化驱动入口 - 实例化HdfDriverEntry结构体成员。 - 调用HDF_INIT将HdfDriverEntry实例化对象注册到HDF框架中。 -2. **配置属性文件:** +2. 配置属性文件 - 在device_info.hcs文件中添加deviceNode描述。 - 【可选】添加uart_config.hcs器件属性文件。 -3. **实例化UART控制器对象:** +3. 实例化UART控制器对象 - 初始化UartHost成员。 - 实例化UartHost成员UartHostMethod。 > ![icon-note.gif](public_sys-resources/icon-note.gif) **说明:**
> 实例化UartHost成员UartHostMethod,其定义和成员说明见[接口说明](#接口说明)。 -4. **驱动调试:** +4. 驱动调试 + 【可选】针对新增驱动程序,建议验证驱动基本功能,例如UART控制状态,中断响应情况等。 @@ -72,10 +73,15 @@ UART模块适配HDF框架的三个环节是配置属性文件,实例化驱动 下方将以uart_hi35xx.c为示例,展示需要厂商提供哪些内容来完整实现设备功能。 -1. 驱动开发首先需要实例化驱动入口,驱动入口必须为HdfDriverEntry(在 hdf_device_desc.h 中定义)类型的全局变量,且moduleName要和device_info.hcs中保持一致。HDF框架会将所有加载的驱动的HdfDriverEntry对象首地址汇总,形成一个类似数组的段地址空间,方便上层调用。 +1. 驱动开发首先需要实例化驱动入口。 + + 驱动入口必须为HdfDriverEntry(在hdf_device_desc.h中定义)类型的全局变量,且moduleName要和device_info.hcs中保持一致。 + + HDF框架会将所有加载的驱动的HdfDriverEntry对象首地址汇总,形成一个类似数组的段地址空间,方便上层调用。 + 一般在加载驱动时HDF会先调用Bind函数,再调用Init函数加载该驱动。当Init调用异常时,HDF框架会调用Release释放驱动资源并退出。 - UART驱动入口参考: + UART驱动入口参考: ``` struct HdfDriverEntry g_hdfUartDevice = { @@ -89,8 +95,12 @@ UART模块适配HDF框架的三个环节是配置属性文件,实例化驱动 HDF_INIT(g_hdfUartDevice); ``` -2. 完成驱动入口注册之后,下一步请在device_info.hcs文件中添加deviceNode信息,并在 uart_config.hcs 中配置器件属性。deviceNode信息与驱动入口注册相关,器件属性值与核心层UartHost成员的默认值或限制范围有密切关系。 - 本例只有一个UART控制器,如有多个器件信息,则需要在device_info文件增加deviceNode信息,以及在uart_config文件中增加对应的器件属性。 +2. 完成驱动入口注册之后,下一步请在device_info.hcs文件中添加deviceNode信息,并在uart_config.hcs中配置器件属性。 + + deviceNode信息与驱动入口注册相关,器件属性值与核心层UartHost成员的默认值或限制范围有密切关系。 + + 本例只有一个UART控制器,如有多个器件信息,则需要在device_info文件增加deviceNode信息,以及在uart_config文件中增加对应的器件属性。 + - device_info.hcs 配置参考: @@ -103,12 +113,12 @@ UART模块适配HDF框架的三个环节是配置属性文件,实例化驱动 priority = 50; device_uart :: device { device0 :: deviceNode { - policy = 1; // 驱动服务发布的策略,policy大于等于1(用户态可见为2,仅内核态可见为1); - priority = 40; // 驱动启动优先级 - permission = 0644; // 驱动创建设备节点权限 - moduleName = "HDF_PLATFORM_UART"; // 驱动名称,该字段的值必须和驱动入口结构的moduleName值一致 - serviceName = "HDF_PLATFORM_UART_0";// 驱动对外发布服务的名称,必须唯一,必须要按照HDF_PLATFORM_UART_X的格式,X为UART控制器编号 - deviceMatchAttr = "hisilicon_hi35xx_uart_0";// 驱动私有数据匹配的关键字,必须和驱动私有数据配置表中的match_attr值一致 + policy = 1; // 驱动服务发布的策略,policy大于等于1(用户态可见为2,仅内核态可见为1)。 + priority = 40; // 驱动启动优先级 + permission = 0644; // 驱动创建设备节点权限 + moduleName = "HDF_PLATFORM_UART"; // 驱动名称,该字段的值必须和驱动入口结构的moduleName值一致。 + serviceName = "HDF_PLATFORM_UART_0"; // 驱动对外发布服务的名称,必须唯一,必须要按照HDF_PLATFORM_UART_X的格式,X为UART控制器编号。 + deviceMatchAttr = "hisilicon_hi35xx_uart_0";// 驱动私有数据匹配的关键字,必须和驱动私有数据配置表中的match_attr值一致。 } device1 :: deviceNode { policy = 2; @@ -158,10 +168,11 @@ UART模块适配HDF框架的三个环节是配置属性文件,实例化驱动 } ``` -3. 完成驱动入口注册之后,最后一步就是以核心层UartHost对象的初始化为核心,包括厂商自定义结构体(传递参数和数据),实例化UartHost成员UartHostMethod(让用户可以通过接口来调用驱动底层函数),实现HdfDriverEntry成员函数(Bind,Init,Release)。 +3. 完成属性文件配置之后,下一步就是以核心层UartHost对象的初始化为核心,包括厂商自定义结构体(传递参数和数据),实例化UartHost成员UartHostMethod(让用户可以通过接口来调用驱动底层函数),实现HdfDriverEntry成员函数(Bind、Init、Release)。 + - 自定义结构体参考 - 从驱动的角度看,自定义结构体是参数和数据的载体,而且uart_config.hcs文件中的数值会被HDF读入通过DeviceResourceIface来初始化结构体成员,一些重要数值也会传递给核心层对象,例如设备号等。 + 从驱动的角度看,自定义结构体是参数和数据的载体,而且uart_config.hcs文件中的数值会被HDF读入并通过DeviceResourceIface来初始化结构体成员,一些重要数值也会传递给核心层对象,例如设备号等。 ``` @@ -170,7 +181,7 @@ UART模块适配HDF框架的三个环节是配置属性文件,实例化驱动 unsigned long physBase; // 物理地址 uint32_t irqNum; // 中断号 uint32_t defaultBaudrate;// 默认波特率 - uint32_t flags; // 标志信号,下面三个宏与之相关 + uint32_t flags; // 标志信号,下面三个宏与之相关。 #define PL011_FLG_IRQ_REQUESTED (1 << 0) #define PL011_FLG_DMA_RX_REQUESTED (1 << 1) #define PL011_FLG_DMA_TX_REQUESTED (1 << 2) @@ -180,8 +191,8 @@ UART模块适配HDF框架的三个环节是配置属性文件,实例化驱动 struct UartDriverData { // 数据传输相关的结构体 uint32_t num; uint32_t baudrate; // 波特率(可设置) - struct UartAttribute attr; // 数据位、停止位等传输属性相关 - struct UartTransfer *rxTransfer; // 缓冲区相关,可理解为FIFO结构 + struct UartAttribute attr; // 数据位、停止位等传输属性相关。 + struct UartTransfer *rxTransfer; // 缓冲区相关,可理解为FIFO结构。 wait_queue_head_t wait; // 条件变量相关的排队等待信号 int32_t count; // 数据数量 int32_t state; // UART控制器状态 @@ -193,21 +204,22 @@ UART模块适配HDF框架的三个环节是配置属性文件,实例化驱动 #define UART_FLG_DMA_RX (1 << 0) #define UART_FLG_DMA_TX (1 << 1) #define UART_FLG_RD_BLOCK (1 << 2) - RecvNotify recv; // 函数指针类型,指向串口数据接收函数 - struct UartOps *ops; // 自定义函数指针结构体,详情见device/hisilicon/drivers/uart/uart_pl011.c - void *private; // 一般用来存储UartPl011Port首地址,方便调用 + RecvNotify recv; // 函数指针类型,指向串口数据接收函数。 + struct UartOps *ops; // 自定义函数指针结构体,详情见device/hisilicon/drivers/uart/uart_pl011.c。 + void *private; // 一般用来存储UartPl011Port首地址,方便调用。 }; - // UartHost是核心层控制器结构体,其中的成员在Init函数中会被赋值 + // UartHost是核心层控制器结构体,其中的成员在Init函数中会被赋值。 struct UartHost { struct IDeviceIoService service; struct HdfDeviceObject *device; uint32_t num; OsalAtomic atom; - void *priv; // 一般存储厂商自定义结构体首地址,方便后者被调用 - struct UartHostMethod *method; // 核心层钩子函数,厂商需要实现其成员函数功能并实例化 + void *priv; // 一般存储厂商自定义结构体首地址,方便后者被调用。 + struct UartHostMethod *method; // 核心层钩子函数,厂商需要实现其成员函数功能并实例化。 }; ``` + - UartHost成员回调函数结构体UartHostMethod的实例化,其他成员在Bind函数中初始化。 @@ -267,10 +279,10 @@ UART模块适配HDF框架的三个环节是配置属性文件,实例化驱动 ... host = (struct UartHost *)OsalMemCalloc(sizeof(*host));//分配内存 ... - host->device = device; // 【必要】使HdfDeviceObject与UartHost可以相互转化的前提 - device->service = &(host->service); // 【必要】使HdfDeviceObject与UartHost可以相互转化的前提 - host->device->service->Dispatch = UartIoDispatch;// 为service成员的Dispatch方法赋值 - OsalAtomicSet(&host->atom, 0); // 原子量初始化或者原子量设置 + host->device = device; // 【必要】使HdfDeviceObject与UartHost可以相互转化的前提 + device->service = &(host->service); // 【必要】使HdfDeviceObject与UartHost可以相互转化的前提 + host->device->service->Dispatch = UartIoDispatch; // 为service成员的Dispatch方法赋值 + OsalAtomicSet(&host->atom, 0); // 原子量初始化或者原子量设置 host->priv = NULL; host->method = NULL; return host; @@ -299,27 +311,27 @@ UART模块适配HDF框架的三个环节是配置属性文件,实例化驱动 struct UartHost *host = NULL; HDF_LOGI("%s: entry", __func__); ... - host = UartHostFromDevice(device);// 通过service成员后强制转为UartHost,赋值是在Bind函数中 + host = UartHostFromDevice(device);// 通过service成员后强制转为UartHost,赋值是在Bind函数中。 ... - ret = Hi35xxAttach(host, device); // 完成UartHost对象的初始化,见下 + ret = Hi35xxAttach(host, device); // 完成UartHost对象的初始化,见下。 ... - host->method = &g_uartHostMethod; // UartHostMethod的实例化对象的挂载 + host->method = &g_uartHostMethod; // UartHostMethod的实例化对象的挂载。 return ret; } - // 完成 UartHost 对象的初始化 + // 完成UartHost对象的初始化。 static int32_t Hi35xxAttach(struct UartHost *host, struct HdfDeviceObject *device) { int32_t ret; - // udd和port对象是厂商自定义的结构体对象,可根据需要实现相关功能 + // udd和port对象是厂商自定义的结构体对象,可根据需要实现相关功能。 struct UartDriverData *udd = NULL; struct UartPl011Port *port = NULL; ... - // 【必要】步骤【1】~【7】主要实现对 udd 对象的实例化赋值,然后赋值给核心层UartHost对象 + // 【必要】步骤【1】~【7】主要实现对udd对象的实例化赋值,然后赋值给核心层UartHost对象。 udd = (struct UartDriverData *)OsalMemCalloc(sizeof(*udd));//【1】 ... port = (struct UartPl011Port *)OsalMemCalloc(sizeof(struct UartPl011Port));//【2】 ... - udd->ops = Pl011GetOps(); // 【3】设备开启、关闭、属性设置、发送操作等函数挂载 + udd->ops = Pl011GetOps(); // 【3】设备开启、关闭、属性设置、发送操作等函数挂载。 udd->recv = PL011UartRecvNotify;// 【4】数据接收通知函数(条件锁机制)挂载 udd->count = 0; // 【5】 port->udd = udd; // 【6】使UartPl011Port与UartDriverData可以相互转化的前提 @@ -330,7 +342,7 @@ UART模块适配HDF框架的三个环节是配置属性文件,实例化驱动 host->priv = udd; // 【必要】使UartHost与UartDriverData可以相互转化的前提 host->num = udd->num; // 【必要】UART设备号 - UartAddDev(host); // 【必要】核心层uart_dev.c 中的函数,作用:注册一个字符设备节点到vfs,这样从用户态可以通过这个虚拟文件节点访问UART + UartAddDev(host); // 【必要】核心层uart_dev.c中的函数,作用:注册一个字符设备节点到vfs,这样从用户态可以通过这个虚拟文件节点访问UART。 return HDF_SUCCESS; } @@ -340,7 +352,7 @@ UART模块适配HDF框架的三个环节是配置属性文件,实例化驱动 struct UartDriverData *udd = port->udd; struct DeviceResourceIface *iface = DeviceResourceGetIfaceInstance(HDF_CONFIG_SOURCE); ... - // 通过请求参数提取相应的值,并赋值给厂商自定义的结构体 + // 通过请求参数提取相应的值,并赋值给厂商自定义的结构体。 if (iface->GetUint32(node, "num", &udd->num, 0) != HDF_SUCCESS) { HDF_LOGE("%s: read busNum fail", __func__); return HDF_FAILURE; @@ -361,7 +373,10 @@ UART模块适配HDF框架的三个环节是配置属性文件,实例化驱动 函数说明: - 该函数需要在驱动入口结构体中赋值给Release接口,当HDF框架调用Init函数初始化驱动失败时,可以调用Release释放驱动资源,该函数中需包含释放内存和删除控制器等操作。所有强制转换获取相应对象的操作前提是在Init函数中具备对应赋值的操作。 + 该函数需要在驱动入口结构体中赋值给Release接口,当HDF框架调用Init函数初始化驱动失败时,可以调用Release释放驱动资源,该函数中需包含释放内存和删除控制器等操作。 + + > ![icon-note.gif](public_sys-resources/icon-note.gif) **说明:**
+ > 所有强制转换获取相应对象的操作前提是在Init函数中具备对应赋值的操作。 ``` @@ -369,10 +384,10 @@ UART模块适配HDF框架的三个环节是配置属性文件,实例化驱动 { struct UartHost *host = NULL; ... - host = UartHostFromDevice(device);// 这里有HdfDeviceObject到UartHost的强制转化,通过service成员,赋值见Bind函数 + host = UartHostFromDevice(device);// 这里有HdfDeviceObject到UartHost的强制转化,通过service成员,赋值见Bind函数。 ... if (host->priv != NULL) { - Hi35xxDetach(host); // 厂商自定义的内存释放函数,见下 + Hi35xxDetach(host); // 厂商自定义的内存释放函数,见下。 } UartHostDestroy(host); // 调用核心层函数释放host } @@ -382,10 +397,10 @@ UART模块适配HDF框架的三个环节是配置属性文件,实例化驱动 struct UartDriverData *udd = NULL; struct UartPl011Port *port = NULL; ... - udd = host->priv; // 这里有UartHost到UartDriverData的转化 + udd = host->priv; // 这里有UartHost到UartDriverData的转化 ... - UartRemoveDev(host);// VFS注销 - port = udd->private;// 这里有UartDriverData到UartPl011Port的转化 + UartRemoveDev(host); // VFS注销 + port = udd->private; // 这里有UartDriverData到UartPl011Port的转化 if (port != NULL) { if (port->physBase != 0) { OsalIoUnmap((void *)port->physBase);// 地址反映射 @@ -393,7 +408,7 @@ UART模块适配HDF框架的三个环节是配置属性文件,实例化驱动 OsalMemFree(port); udd->private = NULL; } - OsalMemFree(udd);// 释放UartDriverData + OsalMemFree(udd); // 释放UartDriverData host->priv = NULL; } ```