From 6e6717fdc31a2a3a7f61a4b7da98a1f7842b6a1b Mon Sep 17 00:00:00 2001 From: Annie_wang Date: Wed, 26 Apr 2023 10:48:38 +0800 Subject: [PATCH] update docs Signed-off-by: Annie_wang --- .../security/cryptoFramework-guidelines.md | 84 +++++++++++-------- 1 file changed, 47 insertions(+), 37 deletions(-) diff --git a/en/application-dev/security/cryptoFramework-guidelines.md b/en/application-dev/security/cryptoFramework-guidelines.md index 0012db0fff..5da4bc32d6 100644 --- a/en/application-dev/security/cryptoFramework-guidelines.md +++ b/en/application-dev/security/cryptoFramework-guidelines.md @@ -10,11 +10,12 @@ Typical key generation operations involve the following: -- Randomly create a key instance for subsequent encryption and decryption. -- Convert external or stored binary data into a key instance for subsequent encryption and decryption. -- Obtain the binary data of a key for storage or transmission. +1. Randomly create a key instance for subsequent encryption and decryption. +2. Convert external or stored binary data into a key instance for subsequent encryption and decryption. +3. Obtain the binary data of a key for storage or transmission. > **NOTE**
The key instance can be a symmetric key instance (**SymKey**) or an asymmetric key pair instance (**KeyPair**). The **KeyPair** instance consists a public key (**PubKey**) and a private key (**PriKey**). For details about the relationship between keys, see [Crypto Framework](../reference/apis/js-apis-cryptoFramework.md). + **Available APIs** For details about the APIs, see [Crypto Framework](../reference/apis/js-apis-cryptoFramework.md). @@ -43,7 +44,7 @@ Example 1: Randomly generate an asymmetric key pair and obtain its binary data. 2. Randomly generate an asymmetric key pair using **AsyKeyGenerator**. 3. Obtain binary data of the key pair generated. -The following sample code presents how to randomly generate an RSA key (1024 bits and two primes) using promise-based APIs: +The following sample code demonstrates how to randomly generate an RSA key (1024 bits and two primes) using promise-based APIs. ```javascript import cryptoFramework from '@ohos.security.cryptoFramework'; @@ -72,7 +73,7 @@ Example 2: Randomly generate a symmetric key and obtain its binary data. 2. Randomly generate a symmetric key using **SymKeyGenerator**. 3. Obtain binary data of the key generated. -The following sample code presents how to randomly generate a 256-bit AES key using promise-based APIs: +The following example demonstrates how to randomly generate a 256-bit AES key using promise-based APIs. ```javascript import cryptoFramework from '@ohos.security.cryptoFramework'; @@ -122,20 +123,20 @@ function convertAsyKey() { > > The public key material to be converted in **convertKey()** must be in the DER format complying with X.509 specifications, and the private key material must be in the DER format complying with PKCS #8 specifications. - - Example 4: Generate an asymmetric key pair from the binary ECC key data. 1. Obtain the ECC binary key data and encapsulate it into a **DataBlob** instance. -2. Call **convertKey()** to convert the key binary data (data of the private or public key, or both) into to a **KeyPair** instance. +2. Call **convertKey()** to convert the key binary data (data of the private or public key, or both) into a **KeyPair** instance. ```javascript +import cryptoFramework from "@ohos.security.cryptoFramework" + function convertEccAsyKey() { let pubKeyArray = new Uint8Array([48,89,48,19,6,7,42,134,72,206,61,2,1,6,8,42,134,72,206,61,3,1,7,3,66,0,4,83,96,142,9,86,214,126,106,247,233,92,125,4,128,138,105,246,162,215,71,81,58,202,121,26,105,211,55,130,45,236,143,55,16,248,75,167,160,167,106,2,152,243,44,68,66,0,167,99,92,235,215,159,239,28,106,124,171,34,145,124,174,57,92]); let priKeyArray = new Uint8Array([48,49,2,1,1,4,32,115,56,137,35,207,0,60,191,90,61,136,105,210,16,27,4,171,57,10,61,123,40,189,28,34,207,236,22,45,223,10,189,160,10,6,8,42,134,72,206,61,3,1,7]); let pubKeyBlob = { data: pubKeyArray }; let priKeyBlob = { data: priKeyArray }; - let generator = cryptoFrameWork.createAsyKeyGenerator("ECC256"); + let generator = cryptoFramework.createAsyKeyGenerator("ECC256"); generator.convertKey(pubKeyBlob, priKeyBlob, (error, data) => { if (error) { AlertDialog.show({message : "Convert keypair fail"}); @@ -151,7 +152,7 @@ Example 5: Generate a symmetric key from binary data. 2. Generate a symmetric key from the binary data passed in. 3. Obtain binary data of the key generated. -The following sample code presents how to generate a 3DES key (192 bits only) using callback-based APIs: +The following example demonstrates how to generate a 3DES key (192 bits only) using callback-based APIs. ```javascript import cryptoFramework from '@ohos.security.cryptoFramework'; @@ -200,8 +201,8 @@ function testConvertAesKey() { **When to Use** Important data needs to be encrypted in data storage or transmission for security purposes. Typical encryption and decryption operations involve the following: -- Encrypt and decrypt data using a symmetric key. -- Encrypt and decrypt data using an asymmetric key pair. +1. Encrypt and decrypt data using a symmetric key. +2. Encrypt and decrypt data using an asymmetric key pair. **Available APIs** @@ -228,7 +229,7 @@ Example 1: Encrypt and decrypt data using a symmetric key. 3. Create a **Cipher** instance. 4. Encrypt or decrypt data. -The following sample code presents how to use the AES-GCM to encrypt and decrypt data with promise-based APIs: +The following example demonstrates how to use the AES-GCM to encrypt and decrypt data with promise-based APIs. ```js import cryptoFramework from '@ohos.security.cryptoFramework'; @@ -364,7 +365,7 @@ function testAesGcm() { } ``` -The following sample code presents how to use the the 3DES ECB to convert existing data into a key and encrypt and decrypt data using callback-based APIs: +The following example demonstrates how to use the the 3DES ECB to convert existing data into a key and encrypt and decrypt data using callback-based APIs. ```js import cryptoFramework from '@ohos.security.cryptoFramework'; @@ -489,7 +490,7 @@ function test3DesEcb() { } } ``` -The following sample code presents how to call **update()** multiple times to implement AES GCM encryption and decryption by using promise-based APIs: +The following example demonstrates how to call **update()** multiple times to implement AES GCM encryption and decryption by using promise-based APIs. ```javascript import cryptoFramework from '@ohos.security.cryptoFramework'; @@ -737,7 +738,7 @@ function decryptMessageCallback() { }); } ``` -The following sample code presents how to implement RSA asymmetric encryption and decryption (**doFinal()** is called multiple times): +The following example demonstrates how to implement RSA asymmetric encryption and decryption (**doFinal()** is called multiple times). ```javascript import cryptoFramework from "@ohos.security.cryptoFramework" @@ -1027,8 +1028,7 @@ function verifyMessageCallback() { }) } ``` -The following sample code presents how to call **update()** multiple times to implement signing and signature verification: - +The following example demonstrates how to call **update()** multiple times to implement signing and signature verification. ```javascript import cryptoFramework from "@ohos.security.cryptoFramework" @@ -1213,7 +1213,7 @@ function doMdByCallback(algName) { }); } ``` -The following sample code presents how to call **update()** multiple times to update the MD: +The following example demonstrates how to call **update()** multiple times to update the MD. ```javascript import cryptoFramework from "@ohos.security.cryptoFramework" @@ -1289,41 +1289,51 @@ For details about the APIs, see [Crypto Framework](../reference/apis/js-apis-cry **How to Develop** -1. Generate an ECC key.
Call **createAsyKeyGenerator()** to create an **AsyKeyGenerator** instance and generate an ECC asymmetric key pair. -2. Generate a shared secret by using the private and public ECC keys. +1. Use **createKeyAgreement()** to create a **KeyAgreement** object for subsequent key agreement operations. +2. Use **generateSecret()** provided by **KeyAgreement** to pass in the peer ECC public key object and the ECC private key object generated locally. ```javascript import cryptoFramework from "@ohos.security.cryptoFramework" -let globalKeyPair; +let globalSelfPriKey; +let globalPeerPubKey; function ecdhPromise() { + let peerPubKeyArray = new Uint8Array([48,89,48,19,6,7,42,134,72,206,61,2,1,6,8,42,134,72,206,61,3,1,7,3,66,0,4,83,96,142,9,86,214,126,106,247,233,92,125,4,128,138,105,246,162,215,71,81,58,202,121,26,105,211,55,130,45,236,143,55,16,248,75,167,160,167,106,2,152,243,44,68,66,0,167,99,92,235,215,159,239,28,106,124,171,34,145,124,174,57,92]); + let peerPubKeyBlob = { data: peerPubKeyArray }; let eccGenerator = cryptoFramework.createAsyKeyGenerator("ECC256"); let eccKeyAgreement = cryptoFramework.createKeyAgreement("ECC256"); - let keyGenPromise = eccGenerator.generateKeyPair(); - keyGenPromise.then( keyPair => { - globalKeyPair = keyPair; - return eccKeyAgreement.generateSecret(keyPair.priKey, keyPair.pubKey); + eccGenerator.convertKey(peerPubKeyBlob, null).then((peerKeyPair) => { + globalPeerPubKey = peerKeyPair.pubKey; + return eccGenerator.generateKeyPair(); + }).then((keyPair) => { + globalSelfPriKey = keyPair.priKey; + return eccKeyAgreement.generateSecret(globalSelfPriKey, globalPeerPubKey); }).then((secret) => { - console.info("ecdh output is " + secret.data); + console.info("ecdh promise output is " + secret.data); }).catch((error) => { console.error("ecdh error."); }); } function ecdhCallback() { + let peerPubKeyArray = new Uint8Array([48,89,48,19,6,7,42,134,72,206,61,2,1,6,8,42,134,72,206,61,3,1,7,3,66,0,4,83,96,142,9,86,214,126,106,247,233,92,125,4,128,138,105,246,162,215,71,81,58,202,121,26,105,211,55,130,45,236,143,55,16,248,75,167,160,167,106,2,152,243,44,68,66,0,167,99,92,235,215,159,239,28,106,124,171,34,145,124,174,57,92]); + let peerPubKeyBlob = { data: peerPubKeyArray }; let eccGenerator = cryptoFramework.createAsyKeyGenerator("ECC256"); let eccKeyAgreement = cryptoFramework.createKeyAgreement("ECC256"); - eccGenerator.generateKeyPair(function (err, keyPair) { - globalKeyPair = keyPair; - eccKeyAgreement.generateSecret(keyPair.priKey, keyPair.pubKey, function (err, secret) { - if (err) { - console.error("ecdh error."); - return; - } - console.info("ecdh output is " + secret.data); + eccGenerator.convertKey(peerPubKeyBlob, null, function (err, peerKeyPair) { + globalPeerPubKey = peerKeyPair.pubKey; + eccGenerator.generateKeyPair(function (err, keyPair) { + globalSelfPriKey = keyPair.priKey; + eccKeyAgreement.generateSecret(globalSelfPriKey, globalPeerPubKey, function (err, secret) { + if (err) { + console.error("ecdh error."); + return; + } + console.info("ecdh callback output is " + secret.data); + }); }); - }); + }) } ``` @@ -1470,7 +1480,7 @@ function doHmacByCallback(algName) { }); } ``` -The following sample code presents how to call **update()** multiple times to update the MAC: +The following example demonstrates how to call **update()** multiple times to update the MAC. ```javascript import cryptoFramework from "@ohos.security.cryptoFramework" -- GitLab