Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
OpenHarmony
Docs
提交
4e2e2c70
D
Docs
项目概览
OpenHarmony
/
Docs
1 年多 前同步成功
通知
159
Star
292
Fork
28
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
D
Docs
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4e2e2c70
编写于
1月 16, 2023
作者:
Z
zengyawen
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update docs
Signed-off-by:
N
zengyawen
<
zengyawen1@huawei.com
>
上级
b08387ce
变更
8
展开全部
显示空白变更内容
内联
并排
Showing
8 changed file
with
1788 addition
and
0 deletion
+1788
-0
zh-cn/application-dev/reference/native-apis/Readme-CN.md
zh-cn/application-dev/reference/native-apis/Readme-CN.md
+7
-0
zh-cn/application-dev/reference/native-apis/_neural_nework_runtime.md
...ation-dev/reference/native-apis/_neural_nework_runtime.md
+1377
-0
zh-cn/application-dev/reference/native-apis/_o_h___n_n___memory.md
...lication-dev/reference/native-apis/_o_h___n_n___memory.md
+52
-0
zh-cn/application-dev/reference/native-apis/_o_h___n_n___quant_param.md
...ion-dev/reference/native-apis/_o_h___n_n___quant_param.md
+94
-0
zh-cn/application-dev/reference/native-apis/_o_h___n_n___tensor.md
...lication-dev/reference/native-apis/_o_h___n_n___tensor.md
+97
-0
zh-cn/application-dev/reference/native-apis/_o_h___n_n___u_int32_array.md
...n-dev/reference/native-apis/_o_h___n_n___u_int32_array.md
+52
-0
zh-cn/application-dev/reference/native-apis/neural__network__runtime_8h.md
...-dev/reference/native-apis/neural__network__runtime_8h.md
+54
-0
zh-cn/application-dev/reference/native-apis/neural__network__runtime__type_8h.md
...eference/native-apis/neural__network__runtime__type_8h.md
+55
-0
未找到文件。
zh-cn/application-dev/reference/native-apis/Readme-CN.md
浏览文件 @
4e2e2c70
...
...
@@ -11,6 +11,7 @@
-
[
Image
](
image.md
)
-
[
Rawfile
](
rawfile.md
)
-
[
MindSpore
](
_mind_spore.md
)
-
[
NeuralNeworkRuntime
](
_neural_nework_runtime.md
)
-
[
AudioDecoder
](
_audio_decoder.md
)
-
[
AudioEncoder
](
_audio_encoder.md
)
-
[
CodecBase
](
_codec_base.md
)
...
...
@@ -48,6 +49,8 @@
-
[
status.h
](
status_8h.md
)
-
[
tensor.h
](
tensor_8h.md
)
-
[
types.h
](
types_8h.md
)
-
[
neural_network_runtime_type.h
](
neural__network__runtime__type_8h.md
)
-
[
neural_network_runtime.h
](
neural__network__runtime_8h.md
)
-
[
native_avcodec_audiodecoder.h
](
native__avcodec__audiodecoder_8h.md
)
-
[
native_avcodec_audioencoder.h
](
native__avcodec__audioencoder_8h.md
)
-
[
native_avcodec_base.h
](
native__avcodec__base_8h.md
)
...
...
@@ -76,6 +79,10 @@
-
[
OH_AI_CallBackParam
](
_o_h___a_i___call_back_param.md
)
-
[
OH_AI_ShapeInfo
](
_o_h___a_i___shape_info.md
)
-
[
OH_AI_TensorHandleArray
](
_o_h___a_i___tensor_handle_array.md
)
-
[
OH_NN_Memory
](
_o_h___n_n___memory.md
)
-
[
OH_NN_QuantParam
](
_o_h___n_n___quant_param.md
)
-
[
OH_NN_Tensor
](
_o_h___n_n___tensor.md
)
-
[
OH_NN_UInt32Array
](
_o_h___n_n___u_int32_array.md
)
-
[
OH_AVCodecAsyncCallback
](
_o_h___a_v_codec_async_callback.md
)
-
[
OH_AVCodecBufferAttr
](
_o_h___a_v_codec_buffer_attr.md
)
-
[
OH_Huks_Blob
](
_o_h___huks___blob.md
)
...
...
zh-cn/application-dev/reference/native-apis/_neural_nework_runtime.md
0 → 100644
浏览文件 @
4e2e2c70
此差异已折叠。
点击以展开。
zh-cn/application-dev/reference/native-apis/_o_h___n_n___memory.md
0 → 100644
浏览文件 @
4e2e2c70
# OH_NN_Memory
## 概述
内存结构体。
**起始版本:**
9
**相关模块:**
[
NeuralNeworkRuntime
](
_neural_nework_runtime.md
)
## 汇总
### 成员变量
| 成员变量名称 | 描述 |
| -------- | -------- |
|
[
data
](
#data
)
| 指向共享内存的指针,该共享内存通常由底层硬件驱动申请。 |
|
[
length
](
#length
)
| 记录共享内存的字节长度。 |
## 结构体成员变量说明
### data
```
void* const OH_NN_Memory::data
```
**描述:**
指向共享内存的指针,该共享内存通常由底层硬件驱动申请。
### length
```
const size_t OH_NN_Memory::length
```
**描述:**
记录共享内存的字节长度。
zh-cn/application-dev/reference/native-apis/_o_h___n_n___quant_param.md
0 → 100644
浏览文件 @
4e2e2c70
# OH_NN_QuantParam
## 概述
量化信息。
在量化的场景中,32位浮点型数据根据以下公式量化为定点数据:
![
zh-cn_formulaimage_0000001405137102
](
figures/zh-cn_formulaimage_0000001405137102.png
)
其中s和z是量化参数,在OH_NN_QuanParam中通过scale和zeroPoint保存,r是浮点数,q是量化后的结果,q_min是量化后下界,q_max是量化后的上界,计算方式如下:
![
zh-cn_formulaimage_0000001459019845
](
figures/zh-cn_formulaimage_0000001459019845.png
)
![
zh-cn_formulaimage_0000001408820090
](
figures/zh-cn_formulaimage_0000001408820090.png
)
clamp函数定义如下:
![
zh-cn_formulaimage_0000001455538697
](
figures/zh-cn_formulaimage_0000001455538697.png
)
**起始版本:**
9
**相关模块:**
[
NeuralNeworkRuntime
](
_neural_nework_runtime.md
)
## 汇总
### 成员变量
| 成员变量名称 | 描述 |
| -------- | -------- |
|
[
quantCount
](
#quantcount
)
| 指定numBits、scale和zeroPoint数组的长度。
<br/>
在per-layer量化的场景下,quantCount通常指定为1,即一个张量所有通道共享一套量化参数;在per-channel量化场景下,quantCount通常和张量通道数一致,每个通道使用自己的量化参数。 |
|
[
numBits
](
#numbits
)
| 量化位数。 |
|
[
scale
](
#scale
)
| 指向量化公式中量化参数s的指针。 |
|
[
zeroPoint
](
#zeropoint
)
| 指向量化公式中量化参数z的指针。 |
## 结构体成员变量说明
### numBits
```
const uint32_t* OH_NN_QuantParam::numBits
```
**描述:**
量化位数。
### quantCount
```
uint32_t OH_NN_QuantParam::quantCount
```
**描述:**
指定numBits、scale和zeroPoint数组的长度。
在per-layer量化的场景下,quantCount通常指定为1,即一个张量所有通道 共享一套量化参数;在per-channel量化场景下,quantCount通常和张量通道数一致,每个通道使用自己的量化参数。
### scale
```
const double* OH_NN_QuantParam::scale
```
**描述:**
指向量化公式中scale数据的指针。
### zeroPoint
```
const int32_t* OH_NN_QuantParam::zeroPoint
```
**描述:**
指向量化公式中zero point数据的指针。
zh-cn/application-dev/reference/native-apis/_o_h___n_n___tensor.md
0 → 100644
浏览文件 @
4e2e2c70
# OH_NN_Tensor
## 概述
张量结构体。
通常用于构造模型图中的数据节点和算子参数,在构造张量时需要明确数据类型、维数、维度信息和量化信息。
**起始版本:**
9
**相关模块:**
[
NeuralNeworkRuntime
](
_neural_nework_runtime.md
)
## 汇总
### 成员变量
| 成员变量名称 | 描述 |
| -------- | -------- |
|
[
dataType
](
#datatype
)
| 指定张量的数据类型,要求从
[
OH_NN_DataType
](
_neural_nework_runtime.md#ohnndatatype
)
枚举类型中取值。 |
|
[
dimensionCount
](
#dimensioncount
)
| 指定张量的维数。 |
|
[
dimensions
](
#dimensions
)
| 指定张量的维度信息(形状)。 |
|
[
quantParam
](
#quantparam
)
| 指定张量的量化信息,数据类型要求为
[
OH_NN_QuantParam
](
_o_h___n_n___quant_param.md
)
。 |
|
[
type
](
#type
)
| 指定张量的类型,type的取值和张量的用途相关。
<br/>
当张量作为模型的输入或输出,则要求type设置为OH_NN_TENSOR;
<br/>
当张量作为算子参数,则要求从
[
OH_NN_TensorType
](
_neural_nework_runtime.md#ohnntensortype
)
枚举类型中选择除OH_NN_TENSOR之外的合适的枚举值。 |
## 结构体成员变量说明
### dataType
```
OH_NN_DataType OH_NN_Tensor::dataType
```
**描述:**
指定张量的数据类型,要求从
[
OH_NN_DataType
](
_neural_nework_runtime.md#oh_nn_datatype
)
枚举类型中取值。
### dimensionCount
```
uint32_t OH_NN_Tensor::dimensionCount
```
**描述:**
指定张量的维数。
### dimensions
```
const int32_t* OH_NN_Tensor::dimensions
```
**描述:**
指定张量的维度信息(形状)。
### quantParam
```
const OH_NN_QuantParam* OH_NN_Tensor::quantParam
```
**描述:**
指定张量的量化信息,数据类型要求为
[
OH_NN_QuantParam
](
_o_h___n_n___quant_param.md
)
。
### type
```
OH_NN_TensorType OH_NN_Tensor::type
```
**描述:**
指定张量的类型,type的取值和张量的用途相关。
当张量作为模型的输入或输出,则要求type设置为OH_NN_TENSOR;
当张量作为算子参数,则要求从
[
OH_NN_TensorType
](
_neural_nework_runtime.md#oh_nn_tensortype
)
枚举类型中选择除OH_NN_TENSOR之外的合适的枚举值。
zh-cn/application-dev/reference/native-apis/_o_h___n_n___u_int32_array.md
0 → 100644
浏览文件 @
4e2e2c70
# OH_NN_UInt32Array
## 概述
该结构体用于存储32位无符号整型数组。
**起始版本:**
9
**相关模块:**
[
NeuralNeworkRuntime
](
_neural_nework_runtime.md
)
## 汇总
### 成员变量
| 成员变量名称 | 描述 |
| -------- | -------- |
|
[
data
](
#data
)
| 无符号整型数组的指针。 |
|
[
size
](
#size
)
| 数组长度。 |
## 结构体成员变量说明
### data
```
uint32_t* OH_NN_UInt32Array::data
```
**描述:**
无符号整型数组的指针。
### size
```
uint32_t OH_NN_UInt32Array::size
```
**描述:**
数组长度。
zh-cn/application-dev/reference/native-apis/neural__network__runtime_8h.md
0 → 100644
浏览文件 @
4e2e2c70
# neural_network_runtime.h
## 概述
Neural Network Runtime部件接口定义,AI推理框架通过Neural Network Runtime提供的Native接口,完成模型构造与编译,并在加速硬件上执行推理计算。
**起始版本:**
9
**相关模块:**
[
NeuralNeworkRuntime
](
_neural_nework_runtime.md
)
## 汇总
### 函数
| 函数名称 | 描述 |
| -------- | -------- |
|
[
OH_NNModel_Construct
](
_neural_nework_runtime.md#oh_nnmodel_construct
)
(
void
)
| 创建
[
OH_NNModel
](
_neural_nework_runtime.md#oh_nnmodel
)
类型的模型实例,搭配OH_NNModel模块提供的其他接口,完成模型实例的构造。 |
|
[
OH_NNModel_AddTensor
](
_neural_nework_runtime.md#oh_nnmodel_addtensor
)
(
OH_NNModel
\*
model, const OH_NN_Tensor
\*
tensor) | 向模型实例中添加张量。 |
|
[
OH_NNModel_SetTensorData
](
_neural_nework_runtime.md#oh_nnmodel_settensordata
)
(
OH_NNModel
\*
model, uint32_t index, const void
\*
dataBuffer, size_t length) | 设置张量的数值。 |
|
[
OH_NNModel_AddOperation
](
_neural_nework_runtime.md#oh_nnmodel_addoperation
)
(
OH_NNModel
\*
model, OH_NN_OperationType op, const OH_NN_UInt32Array
\*
paramIndices, const OH_NN_UInt32Array
\*
inputIndices, const OH_NN_UInt32Array
\*
outputIndices) | 向模型实例中添加算子。 |
|
[
OH_NNModel_SpecifyInputsAndOutputs
](
_neural_nework_runtime.md#oh_nnmodel_specifyinputsandoutputs
)
(
OH_NNModel
\*
model, const OH_NN_UInt32Array
\*
inputIndices, const OH_NN_UInt32Array
\*
outputIndices) | 指定模型的输入输出。 |
|
[
OH_NNModel_Finish
](
_neural_nework_runtime.md#oh_nnmodel_finish
)
(
OH_NNModel
\*
model) | 完成模型构图。 |
|
[
OH_NNModel_Destroy
](
_neural_nework_runtime.md#oh_nnmodel_destroy
)
(
OH_NNModel
\*\*
model) | 释放模型实例。 |
|
[
OH_NNModel_GetAvailableOperations
](
_neural_nework_runtime.md#oh_nnmodel_getavailableoperations
)
(
OH_NNModel
\*
model, size_t deviceID, const bool
\*\*
isSupported, uint32_t
\*
opCount) | 查询硬件对模型内所有算子的支持情况,通过布尔值序列指示支持情况。 |
|
[
OH_NNCompilation_Construct
](
_neural_nework_runtime.md#oh_nncompilation_construct
)
(
const
OH_NNModel
\*
model) | 创建
[
OH_NNCompilation
](
_neural_nework_runtime.md#oh_nncompilation
)
类型的编译实例。 |
|
[
OH_NNCompilation_SetDevice
](
_neural_nework_runtime.md#oh_nncompilation_setdevice
)
(
OH_NNCompilation
\*
compilation, size_t deviceID) | 指定模型编译和计算的硬件。 |
|
[
OH_NNCompilation_SetCache
](
_neural_nework_runtime.md#oh_nncompilation_setcache
)
(
OH_NNCompilation
\*
compilation, const char
\*
cachePath, uint32_t version) | 设置编译后的模型缓存路径和缓存版本。 |
|
[
OH_NNCompilation_SetPerformanceMode
](
_neural_nework_runtime.md#oh_nncompilation_setperformancemode
)
(
OH_NNCompilation
\*
compilation, OH_NN_PerformanceMode performanceMode) | 设置模型计算的性能模式。 |
|
[
OH_NNCompilation_SetPriority
](
_neural_nework_runtime.md#oh_nncompilation_setpriority
)
(
OH_NNCompilation
\*
compilation, OH_NN_Priority priority) | 设置模型计算的优先级。 |
|
[
OH_NNCompilation_EnableFloat16
](
_neural_nework_runtime.md#oh_nncompilation_enablefloat16
)
(
OH_NNCompilation
\*
compilation, bool enableFloat16) | 是否以float16的浮点数精度计算。 |
|
[
OH_NNCompilation_Build
](
_neural_nework_runtime.md#oh_nncompilation_build
)
(
OH_NNCompilation
\*
compilation) | 进行模型编译。 |
|
[
OH_NNCompilation_Destroy
](
_neural_nework_runtime.md#oh_nncompilation_destroy
)
(
OH_NNCompilation
\*\*
compilation) | 释放Compilation对象。 |
|
[
OH_NNExecutor_Construct
](
_neural_nework_runtime.md#oh_nnexecutor_construct
)
(
OH_NNCompilation
\*
compilation) | 创建
[
OH_NNExecutor
](
_neural_nework_runtime.md#oh_nnexecutor
)
类型的执行器实例。 |
|
[
OH_NNExecutor_SetInput
](
_neural_nework_runtime.md#oh_nnexecutor_setinput
)
(
OH_NNExecutor
\*
executor, uint32_t inputIndex, const OH_NN_Tensor
\*
tensor, const void
\*
dataBuffer, size_t length) | 设置模型单个输入的数据。 |
|
[
OH_NNExecutor_SetOutput
](
_neural_nework_runtime.md#oh_nnexecutor_setoutput
)
(
OH_NNExecutor
\*
executor, uint32_t outputIndex, void
\*
dataBuffer, size_t length) | 设置模型单个输出的缓冲区。 |
|
[
OH_NNExecutor_GetOutputShape
](
_neural_nework_runtime.md#oh_nnexecutor_getoutputshape
)
(
OH_NNExecutor
\*
executor, uint32_t outputIndex, int32_t
\*\*
shape, uint32_t
\*
shapeLength) | 获取输出张量的维度信息。 |
|
[
OH_NNExecutor_Run
](
_neural_nework_runtime.md#oh_nnexecutor_run
)
(
OH_NNExecutor
\*
executor) | 执行推理。 |
|
[
OH_NNExecutor_AllocateInputMemory
](
_neural_nework_runtime.md#oh_nnexecutor_allocateinputmemory
)
(
OH_NNExecutor
\*
executor, uint32_t inputIndex, size_t length) | 在硬件上为单个输入申请共享内存。 |
|
[
OH_NNExecutor_AllocateOutputMemory
](
_neural_nework_runtime.md#oh_nnexecutor_allocateoutputmemory
)
(
OH_NNExecutor
\*
executor, uint32_t outputIndex, size_t length) | 在硬件上为单个输出申请共享内存。 |
|
[
OH_NNExecutor_DestroyInputMemory
](
_neural_nework_runtime.md#oh_nnexecutor_destroyinputmemory
)
(
OH_NNExecutor
\*
executor, uint32_t inputIndex, OH_NN_Memory
\*\*
memory) | 释放
[
OH_NN_Memory
](
_o_h___n_n___memory.md
)
实例指向的输入内存。 |
|
[
OH_NNExecutor_DestroyOutputMemory
](
_neural_nework_runtime.md#oh_nnexecutor_destroyoutputmemory
)
(
OH_NNExecutor
\*
executor, uint32_t outputIndex, OH_NN_Memory
\*\*
memory) | 释放
[
OH_NN_Memory
](
_o_h___n_n___memory.md
)
实例指向的输出内存。 |
|
[
OH_NNExecutor_SetInputWithMemory
](
_neural_nework_runtime.md#oh_nnexecutor_setinputwithmemory
)
(
OH_NNExecutor
\*
executor, uint32_t inputIndex, const OH_NN_Tensor
\*
tensor, const OH_NN_Memory
\*
memory) | 将
[
OH_NN_Memory
](
_o_h___n_n___memory.md
)
实例指向的硬件共享内存,指定为单个输入使用的共享内存。 |
|
[
OH_NNExecutor_SetOutputWithMemory
](
_neural_nework_runtime.md#oh_nnexecutor_setoutputwithmemory
)
(
OH_NNExecutor
\*
executor, uint32_t outputIndex, const OH_NN_Memory
\*
memory) | 将
[
OH_NN_Memory
](
_o_h___n_n___memory.md
)
实例指向的硬件共享内存,指定为单个输出使用的共享内存。 |
|
[
OH_NNExecutor_Destroy
](
_neural_nework_runtime.md#oh_nnexecutor_destroy
)
(
OH_NNExecutor
\*\*
executor) | 销毁执行器实例,释放执行器占用的内存。 |
|
[
OH_NNDevice_GetAllDevicesID
](
_neural_nework_runtime.md#oh_nndevice_getalldevicesid
)
(
const
size_t
\*\*
allDevicesID, uint32_t
\*
deviceCount) | 获取对接到 Neural Network Runtime 的硬件ID。 |
|
[
OH_NNDevice_GetName
](
_neural_nework_runtime.md#oh_nndevice_getname
)
(
size_t
deviceID, const char
\*\*
name) | 获取指定硬件的类型信息。 |
|
[
OH_NNDevice_GetType
](
_neural_nework_runtime.md#oh_nndevice_gettype
)
(
size_t
deviceID,
[
OH_NN_DeviceType
](
_neural_nework_runtime.md#oh_nn_devicetype
)
\*
deviceType) | 获取指定硬件的类别信息。 |
zh-cn/application-dev/reference/native-apis/neural__network__runtime__type_8h.md
0 → 100644
浏览文件 @
4e2e2c70
# neural_network_runtime_type.h
## 概述
Neural Network Runtime定义的结构体和枚举值。
**起始版本:**
9
**相关模块:**
[
NeuralNeworkRuntime
](
_neural_nework_runtime.md
)
## 汇总
### 结构体
| 结构体名称 | 描述 |
| -------- | -------- |
|
[
OH_NN_UInt32Array
](
_o_h___n_n___u_int32_array.md
)
| 自定义的32位无符号整型数组类型。 |
|
[
OH_NN_QuantParam
](
_o_h___n_n___quant_param.md
)
| 量化信息。 |
|
[
OH_NN_Tensor
](
_o_h___n_n___tensor.md
)
| 张量结构体。 |
|
[
OH_NN_Memory
](
_o_h___n_n___memory.md
)
| 内存结构体。 |
### 类型定义
| 类型定义名称 | 描述 |
| -------- | -------- |
|
[
OH_NNModel
](
_neural_nework_runtime.md#oh_nnmodel
)
| Neural Network Runtime的模型句柄。 |
|
[
OH_NNCompilation
](
_neural_nework_runtime.md#oh_nncompilation
)
| Neural Network Runtime的编译器句柄。 |
|
[
OH_NNExecutor
](
_neural_nework_runtime.md#oh_nnexecutor
)
| Neural Network Runtime的执行器句柄。 |
|
[
OH_NN_UInt32Array
](
_neural_nework_runtime.md#oh_nn_uint32array
)
| 自定义的32位无符号整型数组类型。 |
|
[
OH_NN_QuantParam
](
_neural_nework_runtime.md#oh_nn_quantparam
)
| 量化信息。 |
|
[
OH_NN_Tensor
](
_neural_nework_runtime.md#oh_nn_tensor
)
| 张量结构体。 |
|
[
OH_NN_Memory
](
_neural_nework_runtime.md#oh_nn_memory
)
| 内存结构体。 |
### 枚举
| 枚举名称 | 描述 |
| -------- | -------- |
|
[
OH_NN_PerformanceMode
](
_neural_nework_runtime.md#oh_nn_performancemode
)
{ OH_NN_PERFORMANCE_NONE = 0, OH_NN_PERFORMANCE_LOW = 1, OH_NN_PERFORMANCE_MEDIUM = 2, OH_NN_PERFORMANCE_HIGH = 3, OH_NN_PERFORMANCE_EXTREME = 4 } | 硬件的性能模式。 |
|
[
OH_NN_Priority
](
_neural_nework_runtime.md#oh_nn_priority
)
{ OH_NN_PRIORITY_NONE = 0, OH_NN_PRIORITY_LOW = 1, OH_NN_PRIORITY_MEDIUM = 2, OH_NN_PRIORITY_HIGH = 3 } | 模型推理任务优先级。 |
|
[
OH_NN_ReturnCode
](
_neural_nework_runtime.md#oh_nn_returncode
)
{ OH_NN_SUCCESS = 0, OH_NN_FAILED = 1, OH_NN_INVALID_PARAMETER = 2, OH_NN_MEMORY_ERROR = 3, OH_NN_OPERATION_FORBIDDEN = 4, OH_NN_NULL_PTR = 5, OH_NN_INVALID_FILE = 6, OH_NN_UNAVALIDABLE_DEVICE = 7, OH_NN_INVALID_PATH = 8 } | Neural Network Runtime定义的错误码类型。 |
|
[
OH_NN_FuseType
](
_neural_nework_runtime.md#oh_nn_fusetype
)
: int8_t { OH_NN_FUSED_NONE = 0, OH_NN_FUSED_RELU = 1, OH_NN_FUSED_RELU6 = 2 } | Neural Network Runtime融合算子中激活函数的类型。 |
|
[
OH_NN_Format
](
_neural_nework_runtime.md#oh_nn_format
)
{ OH_NN_FORMAT_NONE = 0, OH_NN_FORMAT_NCHW = 1, OH_NN_FORMAT_NHWC = 2 } | 张量数据的排布类型。 |
|
[
OH_NN_DeviceType
](
_neural_nework_runtime.md#oh_nn_devicetype
)
{ OH_NN_OTHERS = 0, OH_NN_CPU = 1, OH_NN_GPU = 2, OH_NN_ACCELERATOR = 3 } | Neural Network Runtime支持的设备类型。 |
|
[
OH_NN_DataType
](
_neural_nework_runtime.md#oh_nn_datatype
)
{ OH_NN_UNKNOWN = 0, OH_NN_BOOL = 1, OH_NN_INT8 = 2, OH_NN_INT16 = 3, OH_NN_INT32 = 4, OH_NN_INT64 = 5, OH_NN_UINT8 = 6, OH_NN_UINT16 = 7, OH_NN_UINT32 = 8, OH_NN_UINT64 = 9, OH_NN_FLOAT16 = 10, OH_NN_FLOAT32 = 11, OH_NN_FLOAT64 = 12 } | Neural Network Runtime支持的数据类型。 |
|
[
OH_NN_OperationType
](
_neural_nework_runtime.md#oh_nn_operationtype
)
{ OH_NN_OPS_ADD = 1, OH_NN_OPS_AVG_POOL = 2, OH_NN_OPS_BATCH_NORM = 3, OH_NN_OPS_BATCH_TO_SPACE_ND = 4, OH_NN_OPS_BIAS_ADD = 5, OH_NN_OPS_CAST = 6, OH_NN_OPS_CONCAT = 7, OH_NN_OPS_CONV2D = 8, OH_NN_OPS_CONV2D_TRANSPOSE = 9, OH_NN_OPS_DEPTHWISE_CONV2D_NATIVE = 10, OH_NN_OPS_DIV = 11, OH_NN_OPS_ELTWISE = 12, OH_NN_OPS_EXPAND_DIMS = 13, OH_NN_OPS_FILL = 14, OH_NN_OPS_FULL_CONNECTION = 15, OH_NN_OPS_GATHER = 16, OH_NN_OPS_HSWISH = 17, OH_NN_OPS_LESS_EQUAL = 18, OH_NN_OPS_MATMUL = 19, OH_NN_OPS_MAXIMUM = 20, OH_NN_OPS_MAX_POOL = 21, OH_NN_OPS_MUL = 22, OH_NN_OPS_ONE_HOT = 23, OH_NN_OPS_PAD = 24, OH_NN_OPS_POW = 25, OH_NN_OPS_SCALE = 26, OH_NN_OPS_SHAPE = 27, OH_NN_OPS_SIGMOID = 28, OH_NN_OPS_SLICE = 29, OH_NN_OPS_SOFTMAX = 30, OH_NN_OPS_SPACE_TO_BATCH_ND = 31, OH_NN_OPS_SPLIT = 32, OH_NN_OPS_SQRT = 33, OH_NN_OPS_SQUARED_DIFFERENCE = 34, OH_NN_OPS_SQUEEZE = 35, OH_NN_OPS_STACK = 36, OH_NN_OPS_STRIDED_SLICE = 37, OH_NN_OPS_SUB = 38, OH_NN_OPS_TANH = 39, OH_NN_OPS_TILE = 40, OH_NN_OPS_TRANSPOSE = 41, OH_NN_OPS_REDUCE_MEAN = 42, OH_NN_OPS_RESIZE_BILINEAR = 43, OH_NN_OPS_RSQRT = 44, OH_NN_OPS_RESHAPE = 45, OH_NN_OPS_PRELU = 46, OH_NN_OPS_RELU = 47, OH_NN_OPS_RELU6 = 48, OH_NN_OPS_LAYER_NORM = 49, OH_NN_OPS_REDUCE_PROD = 50, OH_NN_OPS_REDUCE_ALL = 51, OH_NN_OPS_QUANT_DTYPE_CAST = 52, OH_NN_OPS_TOP_K = 53, OH_NN_OPS_ARG_MAX = 54, OH_NN_OPS_UNSQUEEZE = 55, OH_NN_OPS_GELU = 56 } | Neural Network Runtime支持算子的类型。 |
|
[
OH_NN_TensorType
](
_neural_nework_runtime.md#oh_nn_tensortype
)
{ OH_NN_TENSOR = 0, OH_NN_ADD_ACTIVATIONTYPE = 1, OH_NN_AVG_POOL_KERNEL_SIZE = 2, OH_NN_AVG_POOL_STRIDE = 3, OH_NN_AVG_POOL_PAD_MODE = 4, OH_NN_AVG_POOL_PAD = 5, OH_NN_AVG_POOL_ACTIVATION_TYPE = 6, OH_NN_BATCH_NORM_EPSILON = 7, OH_NN_BATCH_TO_SPACE_ND_BLOCKSIZE = 8, OH_NN_BATCH_TO_SPACE_ND_CROPS = 9, OH_NN_CONCAT_AXIS = 10, OH_NN_CONV2D_STRIDES = 11, OH_NN_CONV2D_PAD = 12, OH_NN_CONV2D_DILATION = 13, OH_NN_CONV2D_PAD_MODE = 14, OH_NN_CONV2D_ACTIVATION_TYPE = 15, OH_NN_CONV2D_GROUP = 16, OH_NN_CONV2D_TRANSPOSE_STRIDES = 17, OH_NN_CONV2D_TRANSPOSE_PAD = 18, OH_NN_CONV2D_TRANSPOSE_DILATION = 19, OH_NN_CONV2D_TRANSPOSE_OUTPUT_PADDINGS = 20, OH_NN_CONV2D_TRANSPOSE_PAD_MODE = 21, OH_NN_CONV2D_TRANSPOSE_ACTIVATION_TYPE = 22, OH_NN_CONV2D_TRANSPOSE_GROUP = 23, OH_NN_DEPTHWISE_CONV2D_NATIVE_STRIDES = 24, OH_NN_DEPTHWISE_CONV2D_NATIVE_PAD = 25, OH_NN_DEPTHWISE_CONV2D_NATIVE_DILATION = 26, OH_NN_DEPTHWISE_CONV2D_NATIVE_PAD_MODE = 27, OH_NN_DEPTHWISE_CONV2D_NATIVE_ACTIVATION_TYPE = 28, OH_NN_DIV_ACTIVATIONTYPE = 29, OH_NN_ELTWISE_MODE = 30, OH_NN_FULL_CONNECTION_AXIS = 31, OH_NN_FULL_CONNECTION_ACTIVATIONTYPE = 32, OH_NN_MATMUL_TRANSPOSE_A = 33, OH_NN_MATMUL_TRANSPOSE_B = 34, OH_NN_MATMUL_ACTIVATION_TYPE = 35, OH_NN_MAX_POOL_KERNEL_SIZE = 36, OH_NN_MAX_POOL_STRIDE = 37, OH_NN_MAX_POOL_PAD_MODE = 38, OH_NN_MAX_POOL_PAD = 39, OH_NN_MAX_POOL_ACTIVATION_TYPE = 40, OH_NN_MUL_ACTIVATION_TYPE = 41, OH_NN_ONE_HOT_AXIS = 42, OH_NN_PAD_CONSTANT_VALUE = 43, OH_NN_SCALE_ACTIVATIONTYPE = 44, OH_NN_SCALE_AXIS = 45, OH_NN_SOFTMAX_AXIS = 46, OH_NN_SPACE_TO_BATCH_ND_BLOCK_SHAPE = 47, OH_NN_SPACE_TO_BATCH_ND_PADDINGS = 48, OH_NN_SPLIT_AXIS = 49, OH_NN_SPLIT_OUTPUT_NUM = 50, OH_NN_SPLIT_SIZE_SPLITS = 51, OH_NN_SQUEEZE_AXIS = 52, OH_NN_STACK_AXIS = 53, OH_NN_STRIDED_SLICE_BEGIN_MASK = 54, OH_NN_STRIDED_SLICE_END_MASK = 55, OH_NN_STRIDED_SLICE_ELLIPSIS_MASK = 56, OH_NN_STRIDED_SLICE_NEW_AXIS_MASK = 57, OH_NN_STRIDED_SLICE_SHRINK_AXIS_MASK = 58, OH_NN_SUB_ACTIVATIONTYPE = 59, OH_NN_REDUCE_MEAN_KEEP_DIMS = 60, OH_NN_RESIZE_BILINEAR_NEW_HEIGHT = 61, OH_NN_RESIZE_BILINEAR_NEW_WIDTH = 62, OH_NN_RESIZE_BILINEAR_PRESERVE_ASPECT_RATIO = 63, OH_NN_RESIZE_BILINEAR_COORDINATE_TRANSFORM_MODE = 64, OH_NN_RESIZE_BILINEAR_EXCLUDE_OUTSIDE = 65, OH_NN_LAYER_NORM_BEGIN_NORM_AXIS = 66, OH_NN_LAYER_NORM_EPSILON = 67, OH_NN_LAYER_NORM_BEGIN_PARAM_AXIS = 68, OH_NN_LAYER_NORM_ELEMENTWISE_AFFINE = 69, OH_NN_REDUCE_PROD_KEEP_DIMS = 70, OH_NN_REDUCE_ALL_KEEP_DIMS = 71, OH_NN_QUANT_DTYPE_CAST_SRC_T = 72, OH_NN_QUANT_DTYPE_CAST_DST_T = 73, OH_NN_TOP_K_SORTED = 74, OH_NN_ARG_MAX_AXIS = 75, OH_NN_ARG_MAX_KEEPDIMS = 76, OH_NN_UNSQUEEZE_AXIS = 77 } | 张量的类型。 |
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录