/* * pxa-ssp.c -- ALSA Soc Audio Layer * * Copyright 2005,2008 Wolfson Microelectronics PLC. * Author: Liam Girdwood * Mark Brown * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * TODO: * o Test network mode for > 16bit sample size */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "pxa2xx-pcm.h" #include "pxa-ssp.h" /* * SSP audio private data */ struct ssp_priv { struct ssp_dev dev; unsigned int sysclk; int dai_fmt; #ifdef CONFIG_PM struct ssp_state state; #endif }; static void dump_registers(struct ssp_device *ssp) { dev_dbg(&ssp->pdev->dev, "SSCR0 0x%08x SSCR1 0x%08x SSTO 0x%08x\n", ssp_read_reg(ssp, SSCR0), ssp_read_reg(ssp, SSCR1), ssp_read_reg(ssp, SSTO)); dev_dbg(&ssp->pdev->dev, "SSPSP 0x%08x SSSR 0x%08x SSACD 0x%08x\n", ssp_read_reg(ssp, SSPSP), ssp_read_reg(ssp, SSSR), ssp_read_reg(ssp, SSACD)); } struct pxa2xx_pcm_dma_data { struct pxa2xx_pcm_dma_params params; char name[20]; }; static struct pxa2xx_pcm_dma_params * ssp_get_dma_params(struct ssp_device *ssp, int width4, int out) { struct pxa2xx_pcm_dma_data *dma; dma = kzalloc(sizeof(struct pxa2xx_pcm_dma_data), GFP_KERNEL); if (dma == NULL) return NULL; snprintf(dma->name, 20, "SSP%d PCM %s %s", ssp->port_id, width4 ? "32-bit" : "16-bit", out ? "out" : "in"); dma->params.name = dma->name; dma->params.drcmr = &DRCMR(out ? ssp->drcmr_tx : ssp->drcmr_rx); dma->params.dcmd = (out ? (DCMD_INCSRCADDR | DCMD_FLOWTRG) : (DCMD_INCTRGADDR | DCMD_FLOWSRC)) | (width4 ? DCMD_WIDTH4 : DCMD_WIDTH2) | DCMD_BURST16; dma->params.dev_addr = ssp->phys_base + SSDR; return &dma->params; } static int pxa_ssp_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct snd_soc_pcm_runtime *rtd = substream->private_data; struct snd_soc_dai *cpu_dai = rtd->dai->cpu_dai; struct ssp_priv *priv = cpu_dai->private_data; int ret = 0; if (!cpu_dai->active) { priv->dev.port = cpu_dai->id + 1; priv->dev.irq = NO_IRQ; clk_enable(priv->dev.ssp->clk); ssp_disable(&priv->dev); } kfree(snd_soc_dai_get_dma_data(cpu_dai, substream)); snd_soc_dai_set_dma_data(cpu_dai, substream, NULL); return ret; } static void pxa_ssp_shutdown(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct snd_soc_pcm_runtime *rtd = substream->private_data; struct snd_soc_dai *cpu_dai = rtd->dai->cpu_dai; struct ssp_priv *priv = cpu_dai->private_data; if (!cpu_dai->active) { ssp_disable(&priv->dev); clk_disable(priv->dev.ssp->clk); } kfree(snd_soc_dai_get_dma_data(cpu_dai, substream)); snd_soc_dai_set_dma_data(cpu_dai, substream, NULL); } #ifdef CONFIG_PM static int pxa_ssp_suspend(struct snd_soc_dai *cpu_dai) { struct ssp_priv *priv = cpu_dai->private_data; if (!cpu_dai->active) clk_enable(priv->dev.ssp->clk); ssp_save_state(&priv->dev, &priv->state); clk_disable(priv->dev.ssp->clk); return 0; } static int pxa_ssp_resume(struct snd_soc_dai *cpu_dai) { struct ssp_priv *priv = cpu_dai->private_data; clk_enable(priv->dev.ssp->clk); ssp_restore_state(&priv->dev, &priv->state); if (cpu_dai->active) ssp_enable(&priv->dev); else clk_disable(priv->dev.ssp->clk); return 0; } #else #define pxa_ssp_suspend NULL #define pxa_ssp_resume NULL #endif /** * ssp_set_clkdiv - set SSP clock divider * @div: serial clock rate divider */ static void ssp_set_scr(struct ssp_device *ssp, u32 div) { u32 sscr0 = ssp_read_reg(ssp, SSCR0); if (cpu_is_pxa25x() && ssp->type == PXA25x_SSP) { sscr0 &= ~0x0000ff00; sscr0 |= ((div - 2)/2) << 8; /* 2..512 */ } else { sscr0 &= ~0x000fff00; sscr0 |= (div - 1) << 8; /* 1..4096 */ } ssp_write_reg(ssp, SSCR0, sscr0); } /** * ssp_get_clkdiv - get SSP clock divider */ static u32 ssp_get_scr(struct ssp_device *ssp) { u32 sscr0 = ssp_read_reg(ssp, SSCR0); u32 div; if (cpu_is_pxa25x() && ssp->type == PXA25x_SSP) div = ((sscr0 >> 8) & 0xff) * 2 + 2; else div = ((sscr0 >> 8) & 0xfff) + 1; return div; } /* * Set the SSP ports SYSCLK. */ static int pxa_ssp_set_dai_sysclk(struct snd_soc_dai *cpu_dai, int clk_id, unsigned int freq, int dir) { struct ssp_priv *priv = cpu_dai->private_data; struct ssp_device *ssp = priv->dev.ssp; int val; u32 sscr0 = ssp_read_reg(ssp, SSCR0) & ~(SSCR0_ECS | SSCR0_NCS | SSCR0_MOD | SSCR0_ACS); dev_dbg(&ssp->pdev->dev, "pxa_ssp_set_dai_sysclk id: %d, clk_id %d, freq %u\n", cpu_dai->id, clk_id, freq); switch (clk_id) { case PXA_SSP_CLK_NET_PLL: sscr0 |= SSCR0_MOD; break; case PXA_SSP_CLK_PLL: /* Internal PLL is fixed */ if (cpu_is_pxa25x()) priv->sysclk = 1843200; else priv->sysclk = 13000000; break; case PXA_SSP_CLK_EXT: priv->sysclk = freq; sscr0 |= SSCR0_ECS; break; case PXA_SSP_CLK_NET: priv->sysclk = freq; sscr0 |= SSCR0_NCS | SSCR0_MOD; break; case PXA_SSP_CLK_AUDIO: priv->sysclk = 0; ssp_set_scr(ssp, 1); sscr0 |= SSCR0_ACS; break; default: return -ENODEV; } /* The SSP clock must be disabled when changing SSP clock mode * on PXA2xx. On PXA3xx it must be enabled when doing so. */ if (!cpu_is_pxa3xx()) clk_disable(priv->dev.ssp->clk); val = ssp_read_reg(ssp, SSCR0) | sscr0; ssp_write_reg(ssp, SSCR0, val); if (!cpu_is_pxa3xx()) clk_enable(priv->dev.ssp->clk); return 0; } /* * Set the SSP clock dividers. */ static int pxa_ssp_set_dai_clkdiv(struct snd_soc_dai *cpu_dai, int div_id, int div) { struct ssp_priv *priv = cpu_dai->private_data; struct ssp_device *ssp = priv->dev.ssp; int val; switch (div_id) { case PXA_SSP_AUDIO_DIV_ACDS: val = (ssp_read_reg(ssp, SSACD) & ~0x7) | SSACD_ACDS(div); ssp_write_reg(ssp, SSACD, val); break; case PXA_SSP_AUDIO_DIV_SCDB: val = ssp_read_reg(ssp, SSACD); val &= ~SSACD_SCDB; #if defined(CONFIG_PXA3xx) if (cpu_is_pxa3xx()) val &= ~SSACD_SCDX8; #endif switch (div) { case PXA_SSP_CLK_SCDB_1: val |= SSACD_SCDB; break; case PXA_SSP_CLK_SCDB_4: break; #if defined(CONFIG_PXA3xx) case PXA_SSP_CLK_SCDB_8: if (cpu_is_pxa3xx()) val |= SSACD_SCDX8; else return -EINVAL; break; #endif default: return -EINVAL; } ssp_write_reg(ssp, SSACD, val); break; case PXA_SSP_DIV_SCR: ssp_set_scr(ssp, div); break; default: return -ENODEV; } return 0; } /* * Configure the PLL frequency pxa27x and (afaik - pxa320 only) */ static int pxa_ssp_set_dai_pll(struct snd_soc_dai *cpu_dai, int pll_id, int source, unsigned int freq_in, unsigned int freq_out) { struct ssp_priv *priv = cpu_dai->private_data; struct ssp_device *ssp = priv->dev.ssp; u32 ssacd = ssp_read_reg(ssp, SSACD) & ~0x70; #if defined(CONFIG_PXA3xx) if (cpu_is_pxa3xx()) ssp_write_reg(ssp, SSACDD, 0); #endif switch (freq_out) { case 5622000: break; case 11345000: ssacd |= (0x1 << 4); break; case 12235000: ssacd |= (0x2 << 4); break; case 14857000: ssacd |= (0x3 << 4); break; case 32842000: ssacd |= (0x4 << 4); break; case 48000000: ssacd |= (0x5 << 4); break; case 0: /* Disable */ break; default: #ifdef CONFIG_PXA3xx /* PXA3xx has a clock ditherer which can be used to generate * a wider range of frequencies - calculate a value for it. */ if (cpu_is_pxa3xx()) { u32 val; u64 tmp = 19968; tmp *= 1000000; do_div(tmp, freq_out); val = tmp; val = (val << 16) | 64; ssp_write_reg(ssp, SSACDD, val); ssacd |= (0x6 << 4); dev_dbg(&ssp->pdev->dev, "Using SSACDD %x to supply %uHz\n", val, freq_out); break; } #endif return -EINVAL; } ssp_write_reg(ssp, SSACD, ssacd); return 0; } /* * Set the active slots in TDM/Network mode */ static int pxa_ssp_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width) { struct ssp_priv *priv = cpu_dai->private_data; struct ssp_device *ssp = priv->dev.ssp; u32 sscr0; sscr0 = ssp_read_reg(ssp, SSCR0); sscr0 &= ~(SSCR0_MOD | SSCR0_SlotsPerFrm(8) | SSCR0_EDSS | SSCR0_DSS); /* set slot width */ if (slot_width > 16) sscr0 |= SSCR0_EDSS | SSCR0_DataSize(slot_width - 16); else sscr0 |= SSCR0_DataSize(slot_width); if (slots > 1) { /* enable network mode */ sscr0 |= SSCR0_MOD; /* set number of active slots */ sscr0 |= SSCR0_SlotsPerFrm(slots); /* set active slot mask */ ssp_write_reg(ssp, SSTSA, tx_mask); ssp_write_reg(ssp, SSRSA, rx_mask); } ssp_write_reg(ssp, SSCR0, sscr0); return 0; } /* * Tristate the SSP DAI lines */ static int pxa_ssp_set_dai_tristate(struct snd_soc_dai *cpu_dai, int tristate) { struct ssp_priv *priv = cpu_dai->private_data; struct ssp_device *ssp = priv->dev.ssp; u32 sscr1; sscr1 = ssp_read_reg(ssp, SSCR1); if (tristate) sscr1 &= ~SSCR1_TTE; else sscr1 |= SSCR1_TTE; ssp_write_reg(ssp, SSCR1, sscr1); return 0; } /* * Set up the SSP DAI format. * The SSP Port must be inactive before calling this function as the * physical interface format is changed. */ static int pxa_ssp_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt) { struct ssp_priv *priv = cpu_dai->private_data; struct ssp_device *ssp = priv->dev.ssp; u32 sscr0; u32 sscr1; u32 sspsp; /* check if we need to change anything at all */ if (priv->dai_fmt == fmt) return 0; /* we can only change the settings if the port is not in use */ if (ssp_read_reg(ssp, SSCR0) & SSCR0_SSE) { dev_err(&ssp->pdev->dev, "can't change hardware dai format: stream is in use"); return -EINVAL; } /* reset port settings */ sscr0 = ssp_read_reg(ssp, SSCR0) & (SSCR0_ECS | SSCR0_NCS | SSCR0_MOD | SSCR0_ACS); sscr1 = SSCR1_RxTresh(8) | SSCR1_TxTresh(7); sspsp = 0; switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBM_CFM: sscr1 |= SSCR1_SCLKDIR | SSCR1_SFRMDIR; break; case SND_SOC_DAIFMT_CBM_CFS: sscr1 |= SSCR1_SCLKDIR; break; case SND_SOC_DAIFMT_CBS_CFS: break; default: return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: sspsp |= SSPSP_SFRMP; break; case SND_SOC_DAIFMT_NB_IF: break; case SND_SOC_DAIFMT_IB_IF: sspsp |= SSPSP_SCMODE(2); break; case SND_SOC_DAIFMT_IB_NF: sspsp |= SSPSP_SCMODE(2) | SSPSP_SFRMP; break; default: return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: sscr0 |= SSCR0_PSP; sscr1 |= SSCR1_RWOT | SSCR1_TRAIL; /* See hw_params() */ break; case SND_SOC_DAIFMT_DSP_A: sspsp |= SSPSP_FSRT; case SND_SOC_DAIFMT_DSP_B: sscr0 |= SSCR0_MOD | SSCR0_PSP; sscr1 |= SSCR1_TRAIL | SSCR1_RWOT; break; default: return -EINVAL; } ssp_write_reg(ssp, SSCR0, sscr0); ssp_write_reg(ssp, SSCR1, sscr1); ssp_write_reg(ssp, SSPSP, sspsp); dump_registers(ssp); /* Since we are configuring the timings for the format by hand * we have to defer some things until hw_params() where we * know parameters like the sample size. */ priv->dai_fmt = fmt; return 0; } /* * Set the SSP audio DMA parameters and sample size. * Can be called multiple times by oss emulation. */ static int pxa_ssp_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_pcm_runtime *rtd = substream->private_data; struct snd_soc_dai *cpu_dai = rtd->dai->cpu_dai; struct ssp_priv *priv = cpu_dai->private_data; struct ssp_device *ssp = priv->dev.ssp; int chn = params_channels(params); u32 sscr0; u32 sspsp; int width = snd_pcm_format_physical_width(params_format(params)); int ttsa = ssp_read_reg(ssp, SSTSA) & 0xf; struct pxa2xx_pcm_dma_params *dma_data; dma_data = snd_soc_dai_get_dma_data(dai, substream); /* generate correct DMA params */ kfree(dma_data); /* Network mode with one active slot (ttsa == 1) can be used * to force 16-bit frame width on the wire (for S16_LE), even * with two channels. Use 16-bit DMA transfers for this case. */ dma_data = ssp_get_dma_params(ssp, ((chn == 2) && (ttsa != 1)) || (width == 32), substream->stream == SNDRV_PCM_STREAM_PLAYBACK); snd_soc_dai_set_dma_data(dai, substream, dma_data); /* we can only change the settings if the port is not in use */ if (ssp_read_reg(ssp, SSCR0) & SSCR0_SSE) return 0; /* clear selected SSP bits */ sscr0 = ssp_read_reg(ssp, SSCR0) & ~(SSCR0_DSS | SSCR0_EDSS); ssp_write_reg(ssp, SSCR0, sscr0); /* bit size */ sscr0 = ssp_read_reg(ssp, SSCR0); switch (params_format(params)) { case SNDRV_PCM_FORMAT_S16_LE: #ifdef CONFIG_PXA3xx if (cpu_is_pxa3xx()) sscr0 |= SSCR0_FPCKE; #endif sscr0 |= SSCR0_DataSize(16); break; case SNDRV_PCM_FORMAT_S24_LE: sscr0 |= (SSCR0_EDSS | SSCR0_DataSize(8)); break; case SNDRV_PCM_FORMAT_S32_LE: sscr0 |= (SSCR0_EDSS | SSCR0_DataSize(16)); break; } ssp_write_reg(ssp, SSCR0, sscr0); switch (priv->dai_fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: sspsp = ssp_read_reg(ssp, SSPSP); if ((ssp_get_scr(ssp) == 4) && (width == 16)) { /* This is a special case where the bitclk is 64fs * and we're not dealing with 2*32 bits of audio * samples. * * The SSP values used for that are all found out by * trying and failing a lot; some of the registers * needed for that mode are only available on PXA3xx. */ #ifdef CONFIG_PXA3xx if (!cpu_is_pxa3xx()) return -EINVAL; sspsp |= SSPSP_SFRMWDTH(width * 2); sspsp |= SSPSP_SFRMDLY(width * 4); sspsp |= SSPSP_EDMYSTOP(3); sspsp |= SSPSP_DMYSTOP(3); sspsp |= SSPSP_DMYSTRT(1); #else return -EINVAL; #endif } else { /* The frame width is the width the LRCLK is * asserted for; the delay is expressed in * half cycle units. We need the extra cycle * because the data starts clocking out one BCLK * after LRCLK changes polarity. */ sspsp |= SSPSP_SFRMWDTH(width + 1); sspsp |= SSPSP_SFRMDLY((width + 1) * 2); sspsp |= SSPSP_DMYSTRT(1); } ssp_write_reg(ssp, SSPSP, sspsp); break; default: break; } /* When we use a network mode, we always require TDM slots * - complain loudly and fail if they've not been set up yet. */ if ((sscr0 & SSCR0_MOD) && !ttsa) { dev_err(&ssp->pdev->dev, "No TDM timeslot configured\n"); return -EINVAL; } dump_registers(ssp); return 0; } static int pxa_ssp_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *dai) { struct snd_soc_pcm_runtime *rtd = substream->private_data; struct snd_soc_dai *cpu_dai = rtd->dai->cpu_dai; int ret = 0; struct ssp_priv *priv = cpu_dai->private_data; struct ssp_device *ssp = priv->dev.ssp; int val; switch (cmd) { case SNDRV_PCM_TRIGGER_RESUME: ssp_enable(&priv->dev); break; case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: val = ssp_read_reg(ssp, SSCR1); if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) val |= SSCR1_TSRE; else val |= SSCR1_RSRE; ssp_write_reg(ssp, SSCR1, val); val = ssp_read_reg(ssp, SSSR); ssp_write_reg(ssp, SSSR, val); break; case SNDRV_PCM_TRIGGER_START: val = ssp_read_reg(ssp, SSCR1); if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) val |= SSCR1_TSRE; else val |= SSCR1_RSRE; ssp_write_reg(ssp, SSCR1, val); ssp_enable(&priv->dev); break; case SNDRV_PCM_TRIGGER_STOP: val = ssp_read_reg(ssp, SSCR1); if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) val &= ~SSCR1_TSRE; else val &= ~SSCR1_RSRE; ssp_write_reg(ssp, SSCR1, val); break; case SNDRV_PCM_TRIGGER_SUSPEND: ssp_disable(&priv->dev); break; case SNDRV_PCM_TRIGGER_PAUSE_PUSH: val = ssp_read_reg(ssp, SSCR1); if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) val &= ~SSCR1_TSRE; else val &= ~SSCR1_RSRE; ssp_write_reg(ssp, SSCR1, val); break; default: ret = -EINVAL; } dump_registers(ssp); return ret; } static int pxa_ssp_probe(struct platform_device *pdev, struct snd_soc_dai *dai) { struct ssp_priv *priv; int ret; priv = kzalloc(sizeof(struct ssp_priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->dev.ssp = ssp_request(dai->id + 1, "SoC audio"); if (priv->dev.ssp == NULL) { ret = -ENODEV; goto err_priv; } priv->dai_fmt = (unsigned int) -1; dai->private_data = priv; return 0; err_priv: kfree(priv); return ret; } static void pxa_ssp_remove(struct platform_device *pdev, struct snd_soc_dai *dai) { struct ssp_priv *priv = dai->private_data; ssp_free(priv->dev.ssp); } #define PXA_SSP_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_11025 |\ SNDRV_PCM_RATE_16000 | SNDRV_PCM_RATE_22050 | \ SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000 | \ SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000) #define PXA_SSP_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\ SNDRV_PCM_FMTBIT_S24_LE | \ SNDRV_PCM_FMTBIT_S32_LE) static struct snd_soc_dai_ops pxa_ssp_dai_ops = { .startup = pxa_ssp_startup, .shutdown = pxa_ssp_shutdown, .trigger = pxa_ssp_trigger, .hw_params = pxa_ssp_hw_params, .set_sysclk = pxa_ssp_set_dai_sysclk, .set_clkdiv = pxa_ssp_set_dai_clkdiv, .set_pll = pxa_ssp_set_dai_pll, .set_fmt = pxa_ssp_set_dai_fmt, .set_tdm_slot = pxa_ssp_set_dai_tdm_slot, .set_tristate = pxa_ssp_set_dai_tristate, }; struct snd_soc_dai pxa_ssp_dai[] = { { .name = "pxa2xx-ssp1", .id = 0, .probe = pxa_ssp_probe, .remove = pxa_ssp_remove, .suspend = pxa_ssp_suspend, .resume = pxa_ssp_resume, .playback = { .channels_min = 1, .channels_max = 8, .rates = PXA_SSP_RATES, .formats = PXA_SSP_FORMATS, }, .capture = { .channels_min = 1, .channels_max = 8, .rates = PXA_SSP_RATES, .formats = PXA_SSP_FORMATS, }, .ops = &pxa_ssp_dai_ops, }, { .name = "pxa2xx-ssp2", .id = 1, .probe = pxa_ssp_probe, .remove = pxa_ssp_remove, .suspend = pxa_ssp_suspend, .resume = pxa_ssp_resume, .playback = { .channels_min = 1, .channels_max = 8, .rates = PXA_SSP_RATES, .formats = PXA_SSP_FORMATS, }, .capture = { .channels_min = 1, .channels_max = 8, .rates = PXA_SSP_RATES, .formats = PXA_SSP_FORMATS, }, .ops = &pxa_ssp_dai_ops, }, { .name = "pxa2xx-ssp3", .id = 2, .probe = pxa_ssp_probe, .remove = pxa_ssp_remove, .suspend = pxa_ssp_suspend, .resume = pxa_ssp_resume, .playback = { .channels_min = 1, .channels_max = 8, .rates = PXA_SSP_RATES, .formats = PXA_SSP_FORMATS, }, .capture = { .channels_min = 1, .channels_max = 8, .rates = PXA_SSP_RATES, .formats = PXA_SSP_FORMATS, }, .ops = &pxa_ssp_dai_ops, }, { .name = "pxa2xx-ssp4", .id = 3, .probe = pxa_ssp_probe, .remove = pxa_ssp_remove, .suspend = pxa_ssp_suspend, .resume = pxa_ssp_resume, .playback = { .channels_min = 1, .channels_max = 8, .rates = PXA_SSP_RATES, .formats = PXA_SSP_FORMATS, }, .capture = { .channels_min = 1, .channels_max = 8, .rates = PXA_SSP_RATES, .formats = PXA_SSP_FORMATS, }, .ops = &pxa_ssp_dai_ops, }, }; EXPORT_SYMBOL_GPL(pxa_ssp_dai); static int __init pxa_ssp_init(void) { return snd_soc_register_dais(pxa_ssp_dai, ARRAY_SIZE(pxa_ssp_dai)); } module_init(pxa_ssp_init); static void __exit pxa_ssp_exit(void) { snd_soc_unregister_dais(pxa_ssp_dai, ARRAY_SIZE(pxa_ssp_dai)); } module_exit(pxa_ssp_exit); /* Module information */ MODULE_AUTHOR("Mark Brown "); MODULE_DESCRIPTION("PXA SSP/PCM SoC Interface"); MODULE_LICENSE("GPL");