/* md.c : Multiple Devices driver for Linux Copyright (C) 1998, 1999, 2000 Ingo Molnar completely rewritten, based on the MD driver code from Marc Zyngier Changes: - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar - RAID-6 extensions by H. Peter Anvin - boot support for linear and striped mode by Harald Hoyer - kerneld support by Boris Tobotras - kmod support by: Cyrus Durgin - RAID0 bugfixes: Mark Anthony Lisher - Devfs support by Richard Gooch - lots of fixes and improvements to the RAID1/RAID5 and generic RAID code (such as request based resynchronization): Neil Brown . This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. You should have received a copy of the GNU General Public License (for example /usr/src/linux/COPYING); if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include /* for invalidate_bdev */ #include #include #ifdef CONFIG_KMOD #include #endif #include #define MAJOR_NR MD_MAJOR #define MD_DRIVER /* 63 partitions with the alternate major number (mdp) */ #define MdpMinorShift 6 #define DEBUG 0 #define dprintk(x...) ((void)(DEBUG && printk(x))) #ifndef MODULE static void autostart_arrays (int part); #endif static mdk_personality_t *pers[MAX_PERSONALITY]; static DEFINE_SPINLOCK(pers_lock); /* * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' * is 1000 KB/sec, so the extra system load does not show up that much. * Increase it if you want to have more _guaranteed_ speed. Note that * the RAID driver will use the maximum available bandwith if the IO * subsystem is idle. There is also an 'absolute maximum' reconstruction * speed limit - in case reconstruction slows down your system despite * idle IO detection. * * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. */ static int sysctl_speed_limit_min = 1000; static int sysctl_speed_limit_max = 200000; static struct ctl_table_header *raid_table_header; static ctl_table raid_table[] = { { .ctl_name = DEV_RAID_SPEED_LIMIT_MIN, .procname = "speed_limit_min", .data = &sysctl_speed_limit_min, .maxlen = sizeof(int), .mode = 0644, .proc_handler = &proc_dointvec, }, { .ctl_name = DEV_RAID_SPEED_LIMIT_MAX, .procname = "speed_limit_max", .data = &sysctl_speed_limit_max, .maxlen = sizeof(int), .mode = 0644, .proc_handler = &proc_dointvec, }, { .ctl_name = 0 } }; static ctl_table raid_dir_table[] = { { .ctl_name = DEV_RAID, .procname = "raid", .maxlen = 0, .mode = 0555, .child = raid_table, }, { .ctl_name = 0 } }; static ctl_table raid_root_table[] = { { .ctl_name = CTL_DEV, .procname = "dev", .maxlen = 0, .mode = 0555, .child = raid_dir_table, }, { .ctl_name = 0 } }; static struct block_device_operations md_fops; /* * Enables to iterate over all existing md arrays * all_mddevs_lock protects this list. */ static LIST_HEAD(all_mddevs); static DEFINE_SPINLOCK(all_mddevs_lock); /* * iterates through all used mddevs in the system. * We take care to grab the all_mddevs_lock whenever navigating * the list, and to always hold a refcount when unlocked. * Any code which breaks out of this loop while own * a reference to the current mddev and must mddev_put it. */ #define ITERATE_MDDEV(mddev,tmp) \ \ for (({ spin_lock(&all_mddevs_lock); \ tmp = all_mddevs.next; \ mddev = NULL;}); \ ({ if (tmp != &all_mddevs) \ mddev_get(list_entry(tmp, mddev_t, all_mddevs));\ spin_unlock(&all_mddevs_lock); \ if (mddev) mddev_put(mddev); \ mddev = list_entry(tmp, mddev_t, all_mddevs); \ tmp != &all_mddevs;}); \ ({ spin_lock(&all_mddevs_lock); \ tmp = tmp->next;}) \ ) static int md_fail_request (request_queue_t *q, struct bio *bio) { bio_io_error(bio, bio->bi_size); return 0; } static inline mddev_t *mddev_get(mddev_t *mddev) { atomic_inc(&mddev->active); return mddev; } static void mddev_put(mddev_t *mddev) { if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) return; if (!mddev->raid_disks && list_empty(&mddev->disks)) { list_del(&mddev->all_mddevs); blk_put_queue(mddev->queue); kfree(mddev); } spin_unlock(&all_mddevs_lock); } static mddev_t * mddev_find(dev_t unit) { mddev_t *mddev, *new = NULL; retry: spin_lock(&all_mddevs_lock); list_for_each_entry(mddev, &all_mddevs, all_mddevs) if (mddev->unit == unit) { mddev_get(mddev); spin_unlock(&all_mddevs_lock); if (new) kfree(new); return mddev; } if (new) { list_add(&new->all_mddevs, &all_mddevs); spin_unlock(&all_mddevs_lock); return new; } spin_unlock(&all_mddevs_lock); new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL); if (!new) return NULL; memset(new, 0, sizeof(*new)); new->unit = unit; if (MAJOR(unit) == MD_MAJOR) new->md_minor = MINOR(unit); else new->md_minor = MINOR(unit) >> MdpMinorShift; init_MUTEX(&new->reconfig_sem); INIT_LIST_HEAD(&new->disks); INIT_LIST_HEAD(&new->all_mddevs); init_timer(&new->safemode_timer); atomic_set(&new->active, 1); new->queue = blk_alloc_queue(GFP_KERNEL); if (!new->queue) { kfree(new); return NULL; } blk_queue_make_request(new->queue, md_fail_request); goto retry; } static inline int mddev_lock(mddev_t * mddev) { return down_interruptible(&mddev->reconfig_sem); } static inline void mddev_lock_uninterruptible(mddev_t * mddev) { down(&mddev->reconfig_sem); } static inline int mddev_trylock(mddev_t * mddev) { return down_trylock(&mddev->reconfig_sem); } static inline void mddev_unlock(mddev_t * mddev) { up(&mddev->reconfig_sem); if (mddev->thread) md_wakeup_thread(mddev->thread); } mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr) { mdk_rdev_t * rdev; struct list_head *tmp; ITERATE_RDEV(mddev,rdev,tmp) { if (rdev->desc_nr == nr) return rdev; } return NULL; } static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev) { struct list_head *tmp; mdk_rdev_t *rdev; ITERATE_RDEV(mddev,rdev,tmp) { if (rdev->bdev->bd_dev == dev) return rdev; } return NULL; } inline static sector_t calc_dev_sboffset(struct block_device *bdev) { sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; return MD_NEW_SIZE_BLOCKS(size); } static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size) { sector_t size; size = rdev->sb_offset; if (chunk_size) size &= ~((sector_t)chunk_size/1024 - 1); return size; } static int alloc_disk_sb(mdk_rdev_t * rdev) { if (rdev->sb_page) MD_BUG(); rdev->sb_page = alloc_page(GFP_KERNEL); if (!rdev->sb_page) { printk(KERN_ALERT "md: out of memory.\n"); return -EINVAL; } return 0; } static void free_disk_sb(mdk_rdev_t * rdev) { if (rdev->sb_page) { page_cache_release(rdev->sb_page); rdev->sb_loaded = 0; rdev->sb_page = NULL; rdev->sb_offset = 0; rdev->size = 0; } } static int bi_complete(struct bio *bio, unsigned int bytes_done, int error) { if (bio->bi_size) return 1; complete((struct completion*)bio->bi_private); return 0; } static int sync_page_io(struct block_device *bdev, sector_t sector, int size, struct page *page, int rw) { struct bio *bio = bio_alloc(GFP_NOIO, 1); struct completion event; int ret; rw |= (1 << BIO_RW_SYNC); bio->bi_bdev = bdev; bio->bi_sector = sector; bio_add_page(bio, page, size, 0); init_completion(&event); bio->bi_private = &event; bio->bi_end_io = bi_complete; submit_bio(rw, bio); wait_for_completion(&event); ret = test_bit(BIO_UPTODATE, &bio->bi_flags); bio_put(bio); return ret; } static int read_disk_sb(mdk_rdev_t * rdev) { char b[BDEVNAME_SIZE]; if (!rdev->sb_page) { MD_BUG(); return -EINVAL; } if (rdev->sb_loaded) return 0; if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, MD_SB_BYTES, rdev->sb_page, READ)) goto fail; rdev->sb_loaded = 1; return 0; fail: printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", bdevname(rdev->bdev,b)); return -EINVAL; } static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) { if ( (sb1->set_uuid0 == sb2->set_uuid0) && (sb1->set_uuid1 == sb2->set_uuid1) && (sb1->set_uuid2 == sb2->set_uuid2) && (sb1->set_uuid3 == sb2->set_uuid3)) return 1; return 0; } static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) { int ret; mdp_super_t *tmp1, *tmp2; tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); if (!tmp1 || !tmp2) { ret = 0; printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n"); goto abort; } *tmp1 = *sb1; *tmp2 = *sb2; /* * nr_disks is not constant */ tmp1->nr_disks = 0; tmp2->nr_disks = 0; if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4)) ret = 0; else ret = 1; abort: if (tmp1) kfree(tmp1); if (tmp2) kfree(tmp2); return ret; } static unsigned int calc_sb_csum(mdp_super_t * sb) { unsigned int disk_csum, csum; disk_csum = sb->sb_csum; sb->sb_csum = 0; csum = csum_partial((void *)sb, MD_SB_BYTES, 0); sb->sb_csum = disk_csum; return csum; } /* * Handle superblock details. * We want to be able to handle multiple superblock formats * so we have a common interface to them all, and an array of * different handlers. * We rely on user-space to write the initial superblock, and support * reading and updating of superblocks. * Interface methods are: * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version) * loads and validates a superblock on dev. * if refdev != NULL, compare superblocks on both devices * Return: * 0 - dev has a superblock that is compatible with refdev * 1 - dev has a superblock that is compatible and newer than refdev * so dev should be used as the refdev in future * -EINVAL superblock incompatible or invalid * -othererror e.g. -EIO * * int validate_super(mddev_t *mddev, mdk_rdev_t *dev) * Verify that dev is acceptable into mddev. * The first time, mddev->raid_disks will be 0, and data from * dev should be merged in. Subsequent calls check that dev * is new enough. Return 0 or -EINVAL * * void sync_super(mddev_t *mddev, mdk_rdev_t *dev) * Update the superblock for rdev with data in mddev * This does not write to disc. * */ struct super_type { char *name; struct module *owner; int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version); int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev); void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev); }; /* * load_super for 0.90.0 */ static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) { char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; mdp_super_t *sb; int ret; sector_t sb_offset; /* * Calculate the position of the superblock, * it's at the end of the disk. * * It also happens to be a multiple of 4Kb. */ sb_offset = calc_dev_sboffset(rdev->bdev); rdev->sb_offset = sb_offset; ret = read_disk_sb(rdev); if (ret) return ret; ret = -EINVAL; bdevname(rdev->bdev, b); sb = (mdp_super_t*)page_address(rdev->sb_page); if (sb->md_magic != MD_SB_MAGIC) { printk(KERN_ERR "md: invalid raid superblock magic on %s\n", b); goto abort; } if (sb->major_version != 0 || sb->minor_version != 90) { printk(KERN_WARNING "Bad version number %d.%d on %s\n", sb->major_version, sb->minor_version, b); goto abort; } if (sb->raid_disks <= 0) goto abort; if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) { printk(KERN_WARNING "md: invalid superblock checksum on %s\n", b); goto abort; } rdev->preferred_minor = sb->md_minor; rdev->data_offset = 0; if (sb->level == LEVEL_MULTIPATH) rdev->desc_nr = -1; else rdev->desc_nr = sb->this_disk.number; if (refdev == 0) ret = 1; else { __u64 ev1, ev2; mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page); if (!uuid_equal(refsb, sb)) { printk(KERN_WARNING "md: %s has different UUID to %s\n", b, bdevname(refdev->bdev,b2)); goto abort; } if (!sb_equal(refsb, sb)) { printk(KERN_WARNING "md: %s has same UUID" " but different superblock to %s\n", b, bdevname(refdev->bdev, b2)); goto abort; } ev1 = md_event(sb); ev2 = md_event(refsb); if (ev1 > ev2) ret = 1; else ret = 0; } rdev->size = calc_dev_size(rdev, sb->chunk_size); abort: return ret; } /* * validate_super for 0.90.0 */ static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev) { mdp_disk_t *desc; mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page); if (mddev->raid_disks == 0) { mddev->major_version = 0; mddev->minor_version = sb->minor_version; mddev->patch_version = sb->patch_version; mddev->persistent = ! sb->not_persistent; mddev->chunk_size = sb->chunk_size; mddev->ctime = sb->ctime; mddev->utime = sb->utime; mddev->level = sb->level; mddev->layout = sb->layout; mddev->raid_disks = sb->raid_disks; mddev->size = sb->size; mddev->events = md_event(sb); if (sb->state & (1<recovery_cp = MaxSector; else { if (sb->events_hi == sb->cp_events_hi && sb->events_lo == sb->cp_events_lo) { mddev->recovery_cp = sb->recovery_cp; } else mddev->recovery_cp = 0; } memcpy(mddev->uuid+0, &sb->set_uuid0, 4); memcpy(mddev->uuid+4, &sb->set_uuid1, 4); memcpy(mddev->uuid+8, &sb->set_uuid2, 4); memcpy(mddev->uuid+12,&sb->set_uuid3, 4); mddev->max_disks = MD_SB_DISKS; } else { __u64 ev1; ev1 = md_event(sb); ++ev1; if (ev1 < mddev->events) return -EINVAL; } if (mddev->level != LEVEL_MULTIPATH) { rdev->raid_disk = -1; rdev->in_sync = rdev->faulty = 0; desc = sb->disks + rdev->desc_nr; if (desc->state & (1<faulty = 1; else if (desc->state & (1<raid_disk < mddev->raid_disks) { rdev->in_sync = 1; rdev->raid_disk = desc->raid_disk; } } return 0; } /* * sync_super for 0.90.0 */ static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev) { mdp_super_t *sb; struct list_head *tmp; mdk_rdev_t *rdev2; int next_spare = mddev->raid_disks; /* make rdev->sb match mddev data.. * * 1/ zero out disks * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); * 3/ any empty disks < next_spare become removed * * disks[0] gets initialised to REMOVED because * we cannot be sure from other fields if it has * been initialised or not. */ int i; int active=0, working=0,failed=0,spare=0,nr_disks=0; sb = (mdp_super_t*)page_address(rdev->sb_page); memset(sb, 0, sizeof(*sb)); sb->md_magic = MD_SB_MAGIC; sb->major_version = mddev->major_version; sb->minor_version = mddev->minor_version; sb->patch_version = mddev->patch_version; sb->gvalid_words = 0; /* ignored */ memcpy(&sb->set_uuid0, mddev->uuid+0, 4); memcpy(&sb->set_uuid1, mddev->uuid+4, 4); memcpy(&sb->set_uuid2, mddev->uuid+8, 4); memcpy(&sb->set_uuid3, mddev->uuid+12,4); sb->ctime = mddev->ctime; sb->level = mddev->level; sb->size = mddev->size; sb->raid_disks = mddev->raid_disks; sb->md_minor = mddev->md_minor; sb->not_persistent = !mddev->persistent; sb->utime = mddev->utime; sb->state = 0; sb->events_hi = (mddev->events>>32); sb->events_lo = (u32)mddev->events; if (mddev->in_sync) { sb->recovery_cp = mddev->recovery_cp; sb->cp_events_hi = (mddev->events>>32); sb->cp_events_lo = (u32)mddev->events; if (mddev->recovery_cp == MaxSector) sb->state = (1<< MD_SB_CLEAN); } else sb->recovery_cp = 0; sb->layout = mddev->layout; sb->chunk_size = mddev->chunk_size; sb->disks[0].state = (1<raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty) rdev2->desc_nr = rdev2->raid_disk; else rdev2->desc_nr = next_spare++; d = &sb->disks[rdev2->desc_nr]; nr_disks++; d->number = rdev2->desc_nr; d->major = MAJOR(rdev2->bdev->bd_dev); d->minor = MINOR(rdev2->bdev->bd_dev); if (rdev2->raid_disk >= 0 && rdev->in_sync && !rdev2->faulty) d->raid_disk = rdev2->raid_disk; else d->raid_disk = rdev2->desc_nr; /* compatibility */ if (rdev2->faulty) { d->state = (1<in_sync) { d->state = (1<state |= (1<state = 0; spare++; working++; } } /* now set the "removed" and "faulty" bits on any missing devices */ for (i=0 ; i < mddev->raid_disks ; i++) { mdp_disk_t *d = &sb->disks[i]; if (d->state == 0 && d->number == 0) { d->number = i; d->raid_disk = i; d->state = (1<state |= (1<nr_disks = nr_disks; sb->active_disks = active; sb->working_disks = working; sb->failed_disks = failed; sb->spare_disks = spare; sb->this_disk = sb->disks[rdev->desc_nr]; sb->sb_csum = calc_sb_csum(sb); } /* * version 1 superblock */ static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb) { unsigned int disk_csum, csum; unsigned long long newcsum; int size = 256 + le32_to_cpu(sb->max_dev)*2; unsigned int *isuper = (unsigned int*)sb; int i; disk_csum = sb->sb_csum; sb->sb_csum = 0; newcsum = 0; for (i=0; size>=4; size -= 4 ) newcsum += le32_to_cpu(*isuper++); if (size == 2) newcsum += le16_to_cpu(*(unsigned short*) isuper); csum = (newcsum & 0xffffffff) + (newcsum >> 32); sb->sb_csum = disk_csum; return cpu_to_le32(csum); } static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) { struct mdp_superblock_1 *sb; int ret; sector_t sb_offset; char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; /* * Calculate the position of the superblock. * It is always aligned to a 4K boundary and * depeding on minor_version, it can be: * 0: At least 8K, but less than 12K, from end of device * 1: At start of device * 2: 4K from start of device. */ switch(minor_version) { case 0: sb_offset = rdev->bdev->bd_inode->i_size >> 9; sb_offset -= 8*2; sb_offset &= ~(4*2-1); /* convert from sectors to K */ sb_offset /= 2; break; case 1: sb_offset = 0; break; case 2: sb_offset = 4; break; default: return -EINVAL; } rdev->sb_offset = sb_offset; ret = read_disk_sb(rdev); if (ret) return ret; sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || sb->major_version != cpu_to_le32(1) || le32_to_cpu(sb->max_dev) > (4096-256)/2 || le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) || sb->feature_map != 0) return -EINVAL; if (calc_sb_1_csum(sb) != sb->sb_csum) { printk("md: invalid superblock checksum on %s\n", bdevname(rdev->bdev,b)); return -EINVAL; } if (le64_to_cpu(sb->data_size) < 10) { printk("md: data_size too small on %s\n", bdevname(rdev->bdev,b)); return -EINVAL; } rdev->preferred_minor = 0xffff; rdev->data_offset = le64_to_cpu(sb->data_offset); if (refdev == 0) return 1; else { __u64 ev1, ev2; struct mdp_superblock_1 *refsb = (struct mdp_superblock_1*)page_address(refdev->sb_page); if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || sb->level != refsb->level || sb->layout != refsb->layout || sb->chunksize != refsb->chunksize) { printk(KERN_WARNING "md: %s has strangely different" " superblock to %s\n", bdevname(rdev->bdev,b), bdevname(refdev->bdev,b2)); return -EINVAL; } ev1 = le64_to_cpu(sb->events); ev2 = le64_to_cpu(refsb->events); if (ev1 > ev2) return 1; } if (minor_version) rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2; else rdev->size = rdev->sb_offset; if (rdev->size < le64_to_cpu(sb->data_size)/2) return -EINVAL; rdev->size = le64_to_cpu(sb->data_size)/2; if (le32_to_cpu(sb->chunksize)) rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1); return 0; } static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev) { struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); if (mddev->raid_disks == 0) { mddev->major_version = 1; mddev->patch_version = 0; mddev->persistent = 1; mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9; mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); mddev->level = le32_to_cpu(sb->level); mddev->layout = le32_to_cpu(sb->layout); mddev->raid_disks = le32_to_cpu(sb->raid_disks); mddev->size = le64_to_cpu(sb->size)/2; mddev->events = le64_to_cpu(sb->events); mddev->recovery_cp = le64_to_cpu(sb->resync_offset); memcpy(mddev->uuid, sb->set_uuid, 16); mddev->max_disks = (4096-256)/2; } else { __u64 ev1; ev1 = le64_to_cpu(sb->events); ++ev1; if (ev1 < mddev->events) return -EINVAL; } if (mddev->level != LEVEL_MULTIPATH) { int role; rdev->desc_nr = le32_to_cpu(sb->dev_number); role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); switch(role) { case 0xffff: /* spare */ rdev->in_sync = 0; rdev->faulty = 0; rdev->raid_disk = -1; break; case 0xfffe: /* faulty */ rdev->in_sync = 0; rdev->faulty = 1; rdev->raid_disk = -1; break; default: rdev->in_sync = 1; rdev->faulty = 0; rdev->raid_disk = role; break; } } return 0; } static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev) { struct mdp_superblock_1 *sb; struct list_head *tmp; mdk_rdev_t *rdev2; int max_dev, i; /* make rdev->sb match mddev and rdev data. */ sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); sb->feature_map = 0; sb->pad0 = 0; memset(sb->pad1, 0, sizeof(sb->pad1)); memset(sb->pad2, 0, sizeof(sb->pad2)); memset(sb->pad3, 0, sizeof(sb->pad3)); sb->utime = cpu_to_le64((__u64)mddev->utime); sb->events = cpu_to_le64(mddev->events); if (mddev->in_sync) sb->resync_offset = cpu_to_le64(mddev->recovery_cp); else sb->resync_offset = cpu_to_le64(0); max_dev = 0; ITERATE_RDEV(mddev,rdev2,tmp) if (rdev2->desc_nr+1 > max_dev) max_dev = rdev2->desc_nr+1; sb->max_dev = cpu_to_le32(max_dev); for (i=0; idev_roles[i] = cpu_to_le16(0xfffe); ITERATE_RDEV(mddev,rdev2,tmp) { i = rdev2->desc_nr; if (rdev2->faulty) sb->dev_roles[i] = cpu_to_le16(0xfffe); else if (rdev2->in_sync) sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); else sb->dev_roles[i] = cpu_to_le16(0xffff); } sb->recovery_offset = cpu_to_le64(0); /* not supported yet */ sb->sb_csum = calc_sb_1_csum(sb); } static struct super_type super_types[] = { [0] = { .name = "0.90.0", .owner = THIS_MODULE, .load_super = super_90_load, .validate_super = super_90_validate, .sync_super = super_90_sync, }, [1] = { .name = "md-1", .owner = THIS_MODULE, .load_super = super_1_load, .validate_super = super_1_validate, .sync_super = super_1_sync, }, }; static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev) { struct list_head *tmp; mdk_rdev_t *rdev; ITERATE_RDEV(mddev,rdev,tmp) if (rdev->bdev->bd_contains == dev->bdev->bd_contains) return rdev; return NULL; } static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2) { struct list_head *tmp; mdk_rdev_t *rdev; ITERATE_RDEV(mddev1,rdev,tmp) if (match_dev_unit(mddev2, rdev)) return 1; return 0; } static LIST_HEAD(pending_raid_disks); static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev) { mdk_rdev_t *same_pdev; char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; if (rdev->mddev) { MD_BUG(); return -EINVAL; } same_pdev = match_dev_unit(mddev, rdev); if (same_pdev) printk(KERN_WARNING "%s: WARNING: %s appears to be on the same physical" " disk as %s. True\n protection against single-disk" " failure might be compromised.\n", mdname(mddev), bdevname(rdev->bdev,b), bdevname(same_pdev->bdev,b2)); /* Verify rdev->desc_nr is unique. * If it is -1, assign a free number, else * check number is not in use */ if (rdev->desc_nr < 0) { int choice = 0; if (mddev->pers) choice = mddev->raid_disks; while (find_rdev_nr(mddev, choice)) choice++; rdev->desc_nr = choice; } else { if (find_rdev_nr(mddev, rdev->desc_nr)) return -EBUSY; } list_add(&rdev->same_set, &mddev->disks); rdev->mddev = mddev; printk(KERN_INFO "md: bind<%s>\n", bdevname(rdev->bdev,b)); return 0; } static void unbind_rdev_from_array(mdk_rdev_t * rdev) { char b[BDEVNAME_SIZE]; if (!rdev->mddev) { MD_BUG(); return; } list_del_init(&rdev->same_set); printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); rdev->mddev = NULL; } /* * prevent the device from being mounted, repartitioned or * otherwise reused by a RAID array (or any other kernel * subsystem), by bd_claiming the device. */ static int lock_rdev(mdk_rdev_t *rdev, dev_t dev) { int err = 0; struct block_device *bdev; char b[BDEVNAME_SIZE]; bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE); if (IS_ERR(bdev)) { printk(KERN_ERR "md: could not open %s.\n", __bdevname(dev, b)); return PTR_ERR(bdev); } err = bd_claim(bdev, rdev); if (err) { printk(KERN_ERR "md: could not bd_claim %s.\n", bdevname(bdev, b)); blkdev_put(bdev); return err; } rdev->bdev = bdev; return err; } static void unlock_rdev(mdk_rdev_t *rdev) { struct block_device *bdev = rdev->bdev; rdev->bdev = NULL; if (!bdev) MD_BUG(); bd_release(bdev); blkdev_put(bdev); } void md_autodetect_dev(dev_t dev); static void export_rdev(mdk_rdev_t * rdev) { char b[BDEVNAME_SIZE]; printk(KERN_INFO "md: export_rdev(%s)\n", bdevname(rdev->bdev,b)); if (rdev->mddev) MD_BUG(); free_disk_sb(rdev); list_del_init(&rdev->same_set); #ifndef MODULE md_autodetect_dev(rdev->bdev->bd_dev); #endif unlock_rdev(rdev); kfree(rdev); } static void kick_rdev_from_array(mdk_rdev_t * rdev) { unbind_rdev_from_array(rdev); export_rdev(rdev); } static void export_array(mddev_t *mddev) { struct list_head *tmp; mdk_rdev_t *rdev; ITERATE_RDEV(mddev,rdev,tmp) { if (!rdev->mddev) { MD_BUG(); continue; } kick_rdev_from_array(rdev); } if (!list_empty(&mddev->disks)) MD_BUG(); mddev->raid_disks = 0; mddev->major_version = 0; } static void print_desc(mdp_disk_t *desc) { printk(" DISK\n", desc->number, desc->major,desc->minor,desc->raid_disk,desc->state); } static void print_sb(mdp_super_t *sb) { int i; printk(KERN_INFO "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n", sb->major_version, sb->minor_version, sb->patch_version, sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3, sb->ctime); printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n", sb->level, sb->size, sb->nr_disks, sb->raid_disks, sb->md_minor, sb->layout, sb->chunk_size); printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d" " FD:%d SD:%d CSUM:%08x E:%08lx\n", sb->utime, sb->state, sb->active_disks, sb->working_disks, sb->failed_disks, sb->spare_disks, sb->sb_csum, (unsigned long)sb->events_lo); printk(KERN_INFO); for (i = 0; i < MD_SB_DISKS; i++) { mdp_disk_t *desc; desc = sb->disks + i; if (desc->number || desc->major || desc->minor || desc->raid_disk || (desc->state && (desc->state != 4))) { printk(" D %2d: ", i); print_desc(desc); } } printk(KERN_INFO "md: THIS: "); print_desc(&sb->this_disk); } static void print_rdev(mdk_rdev_t *rdev) { char b[BDEVNAME_SIZE]; printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n", bdevname(rdev->bdev,b), (unsigned long long)rdev->size, rdev->faulty, rdev->in_sync, rdev->desc_nr); if (rdev->sb_loaded) { printk(KERN_INFO "md: rdev superblock:\n"); print_sb((mdp_super_t*)page_address(rdev->sb_page)); } else printk(KERN_INFO "md: no rdev superblock!\n"); } void md_print_devices(void) { struct list_head *tmp, *tmp2; mdk_rdev_t *rdev; mddev_t *mddev; char b[BDEVNAME_SIZE]; printk("\n"); printk("md: **********************************\n"); printk("md: * *\n"); printk("md: **********************************\n"); ITERATE_MDDEV(mddev,tmp) { printk("%s: ", mdname(mddev)); ITERATE_RDEV(mddev,rdev,tmp2) printk("<%s>", bdevname(rdev->bdev,b)); printk("\n"); ITERATE_RDEV(mddev,rdev,tmp2) print_rdev(rdev); } printk("md: **********************************\n"); printk("\n"); } static int write_disk_sb(mdk_rdev_t * rdev) { char b[BDEVNAME_SIZE]; if (!rdev->sb_loaded) { MD_BUG(); return 1; } if (rdev->faulty) { MD_BUG(); return 1; } dprintk(KERN_INFO "(write) %s's sb offset: %llu\n", bdevname(rdev->bdev,b), (unsigned long long)rdev->sb_offset); if (sync_page_io(rdev->bdev, rdev->sb_offset<<1, MD_SB_BYTES, rdev->sb_page, WRITE)) return 0; printk("md: write_disk_sb failed for device %s\n", bdevname(rdev->bdev,b)); return 1; } static void sync_sbs(mddev_t * mddev) { mdk_rdev_t *rdev; struct list_head *tmp; ITERATE_RDEV(mddev,rdev,tmp) { super_types[mddev->major_version]. sync_super(mddev, rdev); rdev->sb_loaded = 1; } } static void md_update_sb(mddev_t * mddev) { int err, count = 100; struct list_head *tmp; mdk_rdev_t *rdev; mddev->sb_dirty = 0; repeat: mddev->utime = get_seconds(); mddev->events ++; if (!mddev->events) { /* * oops, this 64-bit counter should never wrap. * Either we are in around ~1 trillion A.C., assuming * 1 reboot per second, or we have a bug: */ MD_BUG(); mddev->events --; } sync_sbs(mddev); /* * do not write anything to disk if using * nonpersistent superblocks */ if (!mddev->persistent) return; dprintk(KERN_INFO "md: updating %s RAID superblock on device (in sync %d)\n", mdname(mddev),mddev->in_sync); err = 0; ITERATE_RDEV(mddev,rdev,tmp) { char b[BDEVNAME_SIZE]; dprintk(KERN_INFO "md: "); if (rdev->faulty) dprintk("(skipping faulty "); dprintk("%s ", bdevname(rdev->bdev,b)); if (!rdev->faulty) { err += write_disk_sb(rdev); } else dprintk(")\n"); if (!err && mddev->level == LEVEL_MULTIPATH) /* only need to write one superblock... */ break; } if (err) { if (--count) { printk(KERN_ERR "md: errors occurred during superblock" " update, repeating\n"); goto repeat; } printk(KERN_ERR \ "md: excessive errors occurred during superblock update, exiting\n"); } } /* * Import a device. If 'super_format' >= 0, then sanity check the superblock * * mark the device faulty if: * * - the device is nonexistent (zero size) * - the device has no valid superblock * * a faulty rdev _never_ has rdev->sb set. */ static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor) { char b[BDEVNAME_SIZE]; int err; mdk_rdev_t *rdev; sector_t size; rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL); if (!rdev) { printk(KERN_ERR "md: could not alloc mem for new device!\n"); return ERR_PTR(-ENOMEM); } memset(rdev, 0, sizeof(*rdev)); if ((err = alloc_disk_sb(rdev))) goto abort_free; err = lock_rdev(rdev, newdev); if (err) goto abort_free; rdev->desc_nr = -1; rdev->faulty = 0; rdev->in_sync = 0; rdev->data_offset = 0; atomic_set(&rdev->nr_pending, 0); size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; if (!size) { printk(KERN_WARNING "md: %s has zero or unknown size, marking faulty!\n", bdevname(rdev->bdev,b)); err = -EINVAL; goto abort_free; } if (super_format >= 0) { err = super_types[super_format]. load_super(rdev, NULL, super_minor); if (err == -EINVAL) { printk(KERN_WARNING "md: %s has invalid sb, not importing!\n", bdevname(rdev->bdev,b)); goto abort_free; } if (err < 0) { printk(KERN_WARNING "md: could not read %s's sb, not importing!\n", bdevname(rdev->bdev,b)); goto abort_free; } } INIT_LIST_HEAD(&rdev->same_set); return rdev; abort_free: if (rdev->sb_page) { if (rdev->bdev) unlock_rdev(rdev); free_disk_sb(rdev); } kfree(rdev); return ERR_PTR(err); } /* * Check a full RAID array for plausibility */ static void analyze_sbs(mddev_t * mddev) { int i; struct list_head *tmp; mdk_rdev_t *rdev, *freshest; char b[BDEVNAME_SIZE]; freshest = NULL; ITERATE_RDEV(mddev,rdev,tmp) switch (super_types[mddev->major_version]. load_super(rdev, freshest, mddev->minor_version)) { case 1: freshest = rdev; break; case 0: break; default: printk( KERN_ERR \ "md: fatal superblock inconsistency in %s" " -- removing from array\n", bdevname(rdev->bdev,b)); kick_rdev_from_array(rdev); } super_types[mddev->major_version]. validate_super(mddev, freshest); i = 0; ITERATE_RDEV(mddev,rdev,tmp) { if (rdev != freshest) if (super_types[mddev->major_version]. validate_super(mddev, rdev)) { printk(KERN_WARNING "md: kicking non-fresh %s" " from array!\n", bdevname(rdev->bdev,b)); kick_rdev_from_array(rdev); continue; } if (mddev->level == LEVEL_MULTIPATH) { rdev->desc_nr = i++; rdev->raid_disk = rdev->desc_nr; rdev->in_sync = 1; } } if (mddev->recovery_cp != MaxSector && mddev->level >= 1) printk(KERN_ERR "md: %s: raid array is not clean" " -- starting background reconstruction\n", mdname(mddev)); } int mdp_major = 0; static struct kobject *md_probe(dev_t dev, int *part, void *data) { static DECLARE_MUTEX(disks_sem); mddev_t *mddev = mddev_find(dev); struct gendisk *disk; int partitioned = (MAJOR(dev) != MD_MAJOR); int shift = partitioned ? MdpMinorShift : 0; int unit = MINOR(dev) >> shift; if (!mddev) return NULL; down(&disks_sem); if (mddev->gendisk) { up(&disks_sem); mddev_put(mddev); return NULL; } disk = alloc_disk(1 << shift); if (!disk) { up(&disks_sem); mddev_put(mddev); return NULL; } disk->major = MAJOR(dev); disk->first_minor = unit << shift; if (partitioned) { sprintf(disk->disk_name, "md_d%d", unit); sprintf(disk->devfs_name, "md/d%d", unit); } else { sprintf(disk->disk_name, "md%d", unit); sprintf(disk->devfs_name, "md/%d", unit); } disk->fops = &md_fops; disk->private_data = mddev; disk->queue = mddev->queue; add_disk(disk); mddev->gendisk = disk; up(&disks_sem); return NULL; } void md_wakeup_thread(mdk_thread_t *thread); static void md_safemode_timeout(unsigned long data) { mddev_t *mddev = (mddev_t *) data; mddev->safemode = 1; md_wakeup_thread(mddev->thread); } static int do_md_run(mddev_t * mddev) { int pnum, err; int chunk_size; struct list_head *tmp; mdk_rdev_t *rdev; struct gendisk *disk; char b[BDEVNAME_SIZE]; if (list_empty(&mddev->disks)) /* cannot run an array with no devices.. */ return -EINVAL; if (mddev->pers) return -EBUSY; /* * Analyze all RAID superblock(s) */ if (!mddev->raid_disks) analyze_sbs(mddev); chunk_size = mddev->chunk_size; pnum = level_to_pers(mddev->level); if ((pnum != MULTIPATH) && (pnum != RAID1)) { if (!chunk_size) { /* * 'default chunksize' in the old md code used to * be PAGE_SIZE, baaad. * we abort here to be on the safe side. We don't * want to continue the bad practice. */ printk(KERN_ERR "no chunksize specified, see 'man raidtab'\n"); return -EINVAL; } if (chunk_size > MAX_CHUNK_SIZE) { printk(KERN_ERR "too big chunk_size: %d > %d\n", chunk_size, MAX_CHUNK_SIZE); return -EINVAL; } /* * chunk-size has to be a power of 2 and multiples of PAGE_SIZE */ if ( (1 << ffz(~chunk_size)) != chunk_size) { printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size); return -EINVAL; } if (chunk_size < PAGE_SIZE) { printk(KERN_ERR "too small chunk_size: %d < %ld\n", chunk_size, PAGE_SIZE); return -EINVAL; } /* devices must have minimum size of one chunk */ ITERATE_RDEV(mddev,rdev,tmp) { if (rdev->faulty) continue; if (rdev->size < chunk_size / 1024) { printk(KERN_WARNING "md: Dev %s smaller than chunk_size:" " %lluk < %dk\n", bdevname(rdev->bdev,b), (unsigned long long)rdev->size, chunk_size / 1024); return -EINVAL; } } } #ifdef CONFIG_KMOD if (!pers[pnum]) { request_module("md-personality-%d", pnum); } #endif /* * Drop all container device buffers, from now on * the only valid external interface is through the md * device. * Also find largest hardsector size */ ITERATE_RDEV(mddev,rdev,tmp) { if (rdev->faulty) continue; sync_blockdev(rdev->bdev); invalidate_bdev(rdev->bdev, 0); } md_probe(mddev->unit, NULL, NULL); disk = mddev->gendisk; if (!disk) return -ENOMEM; spin_lock(&pers_lock); if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) { spin_unlock(&pers_lock); printk(KERN_WARNING "md: personality %d is not loaded!\n", pnum); return -EINVAL; } mddev->pers = pers[pnum]; spin_unlock(&pers_lock); mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */ err = mddev->pers->run(mddev); if (err) { printk(KERN_ERR "md: pers->run() failed ...\n"); module_put(mddev->pers->owner); mddev->pers = NULL; return -EINVAL; } atomic_set(&mddev->writes_pending,0); mddev->safemode = 0; mddev->safemode_timer.function = md_safemode_timeout; mddev->safemode_timer.data = (unsigned long) mddev; mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */ mddev->in_sync = 1; set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); if (mddev->sb_dirty) md_update_sb(mddev); set_capacity(disk, mddev->array_size<<1); /* If we call blk_queue_make_request here, it will * re-initialise max_sectors etc which may have been * refined inside -> run. So just set the bits we need to set. * Most initialisation happended when we called * blk_queue_make_request(..., md_fail_request) * earlier. */ mddev->queue->queuedata = mddev; mddev->queue->make_request_fn = mddev->pers->make_request; mddev->changed = 1; return 0; } static int restart_array(mddev_t *mddev) { struct gendisk *disk = mddev->gendisk; int err; /* * Complain if it has no devices */ err = -ENXIO; if (list_empty(&mddev->disks)) goto out; if (mddev->pers) { err = -EBUSY; if (!mddev->ro) goto out; mddev->safemode = 0; mddev->ro = 0; set_disk_ro(disk, 0); printk(KERN_INFO "md: %s switched to read-write mode.\n", mdname(mddev)); /* * Kick recovery or resync if necessary */ set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); md_wakeup_thread(mddev->thread); err = 0; } else { printk(KERN_ERR "md: %s has no personality assigned.\n", mdname(mddev)); err = -EINVAL; } out: return err; } static int do_md_stop(mddev_t * mddev, int ro) { int err = 0; struct gendisk *disk = mddev->gendisk; if (mddev->pers) { if (atomic_read(&mddev->active)>2) { printk("md: %s still in use.\n",mdname(mddev)); return -EBUSY; } if (mddev->sync_thread) { set_bit(MD_RECOVERY_INTR, &mddev->recovery); md_unregister_thread(mddev->sync_thread); mddev->sync_thread = NULL; } del_timer_sync(&mddev->safemode_timer); invalidate_partition(disk, 0); if (ro) { err = -ENXIO; if (mddev->ro) goto out; mddev->ro = 1; } else { if (mddev->ro) set_disk_ro(disk, 0); blk_queue_make_request(mddev->queue, md_fail_request); mddev->pers->stop(mddev); module_put(mddev->pers->owner); mddev->pers = NULL; if (mddev->ro) mddev->ro = 0; } if (!mddev->in_sync) { /* mark array as shutdown cleanly */ mddev->in_sync = 1; md_update_sb(mddev); } if (ro) set_disk_ro(disk, 1); } /* * Free resources if final stop */ if (!ro) { struct gendisk *disk; printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); export_array(mddev); mddev->array_size = 0; disk = mddev->gendisk; if (disk) set_capacity(disk, 0); mddev->changed = 1; } else printk(KERN_INFO "md: %s switched to read-only mode.\n", mdname(mddev)); err = 0; out: return err; } static void autorun_array(mddev_t *mddev) { mdk_rdev_t *rdev; struct list_head *tmp; int err; if (list_empty(&mddev->disks)) return; printk(KERN_INFO "md: running: "); ITERATE_RDEV(mddev,rdev,tmp) { char b[BDEVNAME_SIZE]; printk("<%s>", bdevname(rdev->bdev,b)); } printk("\n"); err = do_md_run (mddev); if (err) { printk(KERN_WARNING "md: do_md_run() returned %d\n", err); do_md_stop (mddev, 0); } } /* * lets try to run arrays based on all disks that have arrived * until now. (those are in pending_raid_disks) * * the method: pick the first pending disk, collect all disks with * the same UUID, remove all from the pending list and put them into * the 'same_array' list. Then order this list based on superblock * update time (freshest comes first), kick out 'old' disks and * compare superblocks. If everything's fine then run it. * * If "unit" is allocated, then bump its reference count */ static void autorun_devices(int part) { struct list_head candidates; struct list_head *tmp; mdk_rdev_t *rdev0, *rdev; mddev_t *mddev; char b[BDEVNAME_SIZE]; printk(KERN_INFO "md: autorun ...\n"); while (!list_empty(&pending_raid_disks)) { dev_t dev; rdev0 = list_entry(pending_raid_disks.next, mdk_rdev_t, same_set); printk(KERN_INFO "md: considering %s ...\n", bdevname(rdev0->bdev,b)); INIT_LIST_HEAD(&candidates); ITERATE_RDEV_PENDING(rdev,tmp) if (super_90_load(rdev, rdev0, 0) >= 0) { printk(KERN_INFO "md: adding %s ...\n", bdevname(rdev->bdev,b)); list_move(&rdev->same_set, &candidates); } /* * now we have a set of devices, with all of them having * mostly sane superblocks. It's time to allocate the * mddev. */ if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) { printk(KERN_INFO "md: unit number in %s is bad: %d\n", bdevname(rdev0->bdev, b), rdev0->preferred_minor); break; } if (part) dev = MKDEV(mdp_major, rdev0->preferred_minor << MdpMinorShift); else dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); md_probe(dev, NULL, NULL); mddev = mddev_find(dev); if (!mddev) { printk(KERN_ERR "md: cannot allocate memory for md drive.\n"); break; } if (mddev_lock(mddev)) printk(KERN_WARNING "md: %s locked, cannot run\n", mdname(mddev)); else if (mddev->raid_disks || mddev->major_version || !list_empty(&mddev->disks)) { printk(KERN_WARNING "md: %s already running, cannot run %s\n", mdname(mddev), bdevname(rdev0->bdev,b)); mddev_unlock(mddev); } else { printk(KERN_INFO "md: created %s\n", mdname(mddev)); ITERATE_RDEV_GENERIC(candidates,rdev,tmp) { list_del_init(&rdev->same_set); if (bind_rdev_to_array(rdev, mddev)) export_rdev(rdev); } autorun_array(mddev); mddev_unlock(mddev); } /* on success, candidates will be empty, on error * it won't... */ ITERATE_RDEV_GENERIC(candidates,rdev,tmp) export_rdev(rdev); mddev_put(mddev); } printk(KERN_INFO "md: ... autorun DONE.\n"); } /* * import RAID devices based on one partition * if possible, the array gets run as well. */ static int autostart_array(dev_t startdev) { char b[BDEVNAME_SIZE]; int err = -EINVAL, i; mdp_super_t *sb = NULL; mdk_rdev_t *start_rdev = NULL, *rdev; start_rdev = md_import_device(startdev, 0, 0); if (IS_ERR(start_rdev)) return err; /* NOTE: this can only work for 0.90.0 superblocks */ sb = (mdp_super_t*)page_address(start_rdev->sb_page); if (sb->major_version != 0 || sb->minor_version != 90 ) { printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n"); export_rdev(start_rdev); return err; } if (start_rdev->faulty) { printk(KERN_WARNING "md: can not autostart based on faulty %s!\n", bdevname(start_rdev->bdev,b)); export_rdev(start_rdev); return err; } list_add(&start_rdev->same_set, &pending_raid_disks); for (i = 0; i < MD_SB_DISKS; i++) { mdp_disk_t *desc = sb->disks + i; dev_t dev = MKDEV(desc->major, desc->minor); if (!dev) continue; if (dev == startdev) continue; if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor) continue; rdev = md_import_device(dev, 0, 0); if (IS_ERR(rdev)) continue; list_add(&rdev->same_set, &pending_raid_disks); } /* * possibly return codes */ autorun_devices(0); return 0; } static int get_version(void __user * arg) { mdu_version_t ver; ver.major = MD_MAJOR_VERSION; ver.minor = MD_MINOR_VERSION; ver.patchlevel = MD_PATCHLEVEL_VERSION; if (copy_to_user(arg, &ver, sizeof(ver))) return -EFAULT; return 0; } static int get_array_info(mddev_t * mddev, void __user * arg) { mdu_array_info_t info; int nr,working,active,failed,spare; mdk_rdev_t *rdev; struct list_head *tmp; nr=working=active=failed=spare=0; ITERATE_RDEV(mddev,rdev,tmp) { nr++; if (rdev->faulty) failed++; else { working++; if (rdev->in_sync) active++; else spare++; } } info.major_version = mddev->major_version; info.minor_version = mddev->minor_version; info.patch_version = MD_PATCHLEVEL_VERSION; info.ctime = mddev->ctime; info.level = mddev->level; info.size = mddev->size; info.nr_disks = nr; info.raid_disks = mddev->raid_disks; info.md_minor = mddev->md_minor; info.not_persistent= !mddev->persistent; info.utime = mddev->utime; info.state = 0; if (mddev->in_sync) info.state = (1<layout; info.chunk_size = mddev->chunk_size; if (copy_to_user(arg, &info, sizeof(info))) return -EFAULT; return 0; } static int get_disk_info(mddev_t * mddev, void __user * arg) { mdu_disk_info_t info; unsigned int nr; mdk_rdev_t *rdev; if (copy_from_user(&info, arg, sizeof(info))) return -EFAULT; nr = info.number; rdev = find_rdev_nr(mddev, nr); if (rdev) { info.major = MAJOR(rdev->bdev->bd_dev); info.minor = MINOR(rdev->bdev->bd_dev); info.raid_disk = rdev->raid_disk; info.state = 0; if (rdev->faulty) info.state |= (1<in_sync) { info.state |= (1<major,info->minor); if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) return -EOVERFLOW; if (!mddev->raid_disks) { int err; /* expecting a device which has a superblock */ rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); if (IS_ERR(rdev)) { printk(KERN_WARNING "md: md_import_device returned %ld\n", PTR_ERR(rdev)); return PTR_ERR(rdev); } if (!list_empty(&mddev->disks)) { mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, mdk_rdev_t, same_set); int err = super_types[mddev->major_version] .load_super(rdev, rdev0, mddev->minor_version); if (err < 0) { printk(KERN_WARNING "md: %s has different UUID to %s\n", bdevname(rdev->bdev,b), bdevname(rdev0->bdev,b2)); export_rdev(rdev); return -EINVAL; } } err = bind_rdev_to_array(rdev, mddev); if (err) export_rdev(rdev); return err; } /* * add_new_disk can be used once the array is assembled * to add "hot spares". They must already have a superblock * written */ if (mddev->pers) { int err; if (!mddev->pers->hot_add_disk) { printk(KERN_WARNING "%s: personality does not support diskops!\n", mdname(mddev)); return -EINVAL; } rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); if (IS_ERR(rdev)) { printk(KERN_WARNING "md: md_import_device returned %ld\n", PTR_ERR(rdev)); return PTR_ERR(rdev); } rdev->in_sync = 0; /* just to be sure */ rdev->raid_disk = -1; err = bind_rdev_to_array(rdev, mddev); if (err) export_rdev(rdev); set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); if (mddev->thread) md_wakeup_thread(mddev->thread); return err; } /* otherwise, add_new_disk is only allowed * for major_version==0 superblocks */ if (mddev->major_version != 0) { printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", mdname(mddev)); return -EINVAL; } if (!(info->state & (1<desc_nr = info->number; if (info->raid_disk < mddev->raid_disks) rdev->raid_disk = info->raid_disk; else rdev->raid_disk = -1; rdev->faulty = 0; if (rdev->raid_disk < mddev->raid_disks) rdev->in_sync = (info->state & (1<in_sync = 0; err = bind_rdev_to_array(rdev, mddev); if (err) { export_rdev(rdev); return err; } if (!mddev->persistent) { printk(KERN_INFO "md: nonpersistent superblock ...\n"); rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; } else rdev->sb_offset = calc_dev_sboffset(rdev->bdev); rdev->size = calc_dev_size(rdev, mddev->chunk_size); if (!mddev->size || (mddev->size > rdev->size)) mddev->size = rdev->size; } return 0; } static int hot_remove_disk(mddev_t * mddev, dev_t dev) { char b[BDEVNAME_SIZE]; mdk_rdev_t *rdev; if (!mddev->pers) return -ENODEV; rdev = find_rdev(mddev, dev); if (!rdev) return -ENXIO; if (rdev->raid_disk >= 0) goto busy; kick_rdev_from_array(rdev); md_update_sb(mddev); return 0; busy: printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n", bdevname(rdev->bdev,b), mdname(mddev)); return -EBUSY; } static int hot_add_disk(mddev_t * mddev, dev_t dev) { char b[BDEVNAME_SIZE]; int err; unsigned int size; mdk_rdev_t *rdev; if (!mddev->pers) return -ENODEV; if (mddev->major_version != 0) { printk(KERN_WARNING "%s: HOT_ADD may only be used with" " version-0 superblocks.\n", mdname(mddev)); return -EINVAL; } if (!mddev->pers->hot_add_disk) { printk(KERN_WARNING "%s: personality does not support diskops!\n", mdname(mddev)); return -EINVAL; } rdev = md_import_device (dev, -1, 0); if (IS_ERR(rdev)) { printk(KERN_WARNING "md: error, md_import_device() returned %ld\n", PTR_ERR(rdev)); return -EINVAL; } if (mddev->persistent) rdev->sb_offset = calc_dev_sboffset(rdev->bdev); else rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; size = calc_dev_size(rdev, mddev->chunk_size); rdev->size = size; if (size < mddev->size) { printk(KERN_WARNING "%s: disk size %llu blocks < array size %llu\n", mdname(mddev), (unsigned long long)size, (unsigned long long)mddev->size); err = -ENOSPC; goto abort_export; } if (rdev->faulty) { printk(KERN_WARNING "md: can not hot-add faulty %s disk to %s!\n", bdevname(rdev->bdev,b), mdname(mddev)); err = -EINVAL; goto abort_export; } rdev->in_sync = 0; rdev->desc_nr = -1; bind_rdev_to_array(rdev, mddev); /* * The rest should better be atomic, we can have disk failures * noticed in interrupt contexts ... */ if (rdev->desc_nr == mddev->max_disks) { printk(KERN_WARNING "%s: can not hot-add to full array!\n", mdname(mddev)); err = -EBUSY; goto abort_unbind_export; } rdev->raid_disk = -1; md_update_sb(mddev); /* * Kick recovery, maybe this spare has to be added to the * array immediately. */ set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); md_wakeup_thread(mddev->thread); return 0; abort_unbind_export: unbind_rdev_from_array(rdev); abort_export: export_rdev(rdev); return err; } /* * set_array_info is used two different ways * The original usage is when creating a new array. * In this usage, raid_disks is > 0 and it together with * level, size, not_persistent,layout,chunksize determine the * shape of the array. * This will always create an array with a type-0.90.0 superblock. * The newer usage is when assembling an array. * In this case raid_disks will be 0, and the major_version field is * use to determine which style super-blocks are to be found on the devices. * The minor and patch _version numbers are also kept incase the * super_block handler wishes to interpret them. */ static int set_array_info(mddev_t * mddev, mdu_array_info_t *info) { if (info->raid_disks == 0) { /* just setting version number for superblock loading */ if (info->major_version < 0 || info->major_version >= sizeof(super_types)/sizeof(super_types[0]) || super_types[info->major_version].name == NULL) { /* maybe try to auto-load a module? */ printk(KERN_INFO "md: superblock version %d not known\n", info->major_version); return -EINVAL; } mddev->major_version = info->major_version; mddev->minor_version = info->minor_version; mddev->patch_version = info->patch_version; return 0; } mddev->major_version = MD_MAJOR_VERSION; mddev->minor_version = MD_MINOR_VERSION; mddev->patch_version = MD_PATCHLEVEL_VERSION; mddev->ctime = get_seconds(); mddev->level = info->level; mddev->size = info->size; mddev->raid_disks = info->raid_disks; /* don't set md_minor, it is determined by which /dev/md* was * openned */ if (info->state & (1<recovery_cp = MaxSector; else mddev->recovery_cp = 0; mddev->persistent = ! info->not_persistent; mddev->layout = info->layout; mddev->chunk_size = info->chunk_size; mddev->max_disks = MD_SB_DISKS; mddev->sb_dirty = 1; /* * Generate a 128 bit UUID */ get_random_bytes(mddev->uuid, 16); return 0; } /* * update_array_info is used to change the configuration of an * on-line array. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size * fields in the info are checked against the array. * Any differences that cannot be handled will cause an error. * Normally, only one change can be managed at a time. */ static int update_array_info(mddev_t *mddev, mdu_array_info_t *info) { int rv = 0; int cnt = 0; if (mddev->major_version != info->major_version || mddev->minor_version != info->minor_version || /* mddev->patch_version != info->patch_version || */ mddev->ctime != info->ctime || mddev->level != info->level || /* mddev->layout != info->layout || */ !mddev->persistent != info->not_persistent|| mddev->chunk_size != info->chunk_size ) return -EINVAL; /* Check there is only one change */ if (mddev->size != info->size) cnt++; if (mddev->raid_disks != info->raid_disks) cnt++; if (mddev->layout != info->layout) cnt++; if (cnt == 0) return 0; if (cnt > 1) return -EINVAL; if (mddev->layout != info->layout) { /* Change layout * we don't need to do anything at the md level, the * personality will take care of it all. */ if (mddev->pers->reconfig == NULL) return -EINVAL; else return mddev->pers->reconfig(mddev, info->layout, -1); } if (mddev->size != info->size) { mdk_rdev_t * rdev; struct list_head *tmp; if (mddev->pers->resize == NULL) return -EINVAL; /* The "size" is the amount of each device that is used. * This can only make sense for arrays with redundancy. * linear and raid0 always use whatever space is available * We can only consider changing the size if no resync * or reconstruction is happening, and if the new size * is acceptable. It must fit before the sb_offset or, * if that is sync_thread) return -EBUSY; ITERATE_RDEV(mddev,rdev,tmp) { sector_t avail; int fit = (info->size == 0); if (rdev->sb_offset > rdev->data_offset) avail = (rdev->sb_offset*2) - rdev->data_offset; else avail = get_capacity(rdev->bdev->bd_disk) - rdev->data_offset; if (fit && (info->size == 0 || info->size > avail/2)) info->size = avail/2; if (avail < ((sector_t)info->size << 1)) return -ENOSPC; } rv = mddev->pers->resize(mddev, (sector_t)info->size *2); if (!rv) { struct block_device *bdev; bdev = bdget_disk(mddev->gendisk, 0); if (bdev) { down(&bdev->bd_inode->i_sem); i_size_write(bdev->bd_inode, mddev->array_size << 10); up(&bdev->bd_inode->i_sem); bdput(bdev); } } } if (mddev->raid_disks != info->raid_disks) { /* change the number of raid disks */ if (mddev->pers->reshape == NULL) return -EINVAL; if (info->raid_disks <= 0 || info->raid_disks >= mddev->max_disks) return -EINVAL; if (mddev->sync_thread) return -EBUSY; rv = mddev->pers->reshape(mddev, info->raid_disks); if (!rv) { struct block_device *bdev; bdev = bdget_disk(mddev->gendisk, 0); if (bdev) { down(&bdev->bd_inode->i_sem); i_size_write(bdev->bd_inode, mddev->array_size << 10); up(&bdev->bd_inode->i_sem); bdput(bdev); } } } md_update_sb(mddev); return rv; } static int set_disk_faulty(mddev_t *mddev, dev_t dev) { mdk_rdev_t *rdev; if (mddev->pers == NULL) return -ENODEV; rdev = find_rdev(mddev, dev); if (!rdev) return -ENODEV; md_error(mddev, rdev); return 0; } static int md_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { int err = 0; void __user *argp = (void __user *)arg; struct hd_geometry __user *loc = argp; mddev_t *mddev = NULL; if (!capable(CAP_SYS_ADMIN)) return -EACCES; /* * Commands dealing with the RAID driver but not any * particular array: */ switch (cmd) { case RAID_VERSION: err = get_version(argp); goto done; case PRINT_RAID_DEBUG: err = 0; md_print_devices(); goto done; #ifndef MODULE case RAID_AUTORUN: err = 0; autostart_arrays(arg); goto done; #endif default:; } /* * Commands creating/starting a new array: */ mddev = inode->i_bdev->bd_disk->private_data; if (!mddev) { BUG(); goto abort; } if (cmd == START_ARRAY) { /* START_ARRAY doesn't need to lock the array as autostart_array * does the locking, and it could even be a different array */ static int cnt = 3; if (cnt > 0 ) { printk(KERN_WARNING "md: %s(pid %d) used deprecated START_ARRAY ioctl. " "This will not be supported beyond 2.6\n", current->comm, current->pid); cnt--; } err = autostart_array(new_decode_dev(arg)); if (err) { printk(KERN_WARNING "md: autostart failed!\n"); goto abort; } goto done; } err = mddev_lock(mddev); if (err) { printk(KERN_INFO "md: ioctl lock interrupted, reason %d, cmd %d\n", err, cmd); goto abort; } switch (cmd) { case SET_ARRAY_INFO: { mdu_array_info_t info; if (!arg) memset(&info, 0, sizeof(info)); else if (copy_from_user(&info, argp, sizeof(info))) { err = -EFAULT; goto abort_unlock; } if (mddev->pers) { err = update_array_info(mddev, &info); if (err) { printk(KERN_WARNING "md: couldn't update" " array info. %d\n", err); goto abort_unlock; } goto done_unlock; } if (!list_empty(&mddev->disks)) { printk(KERN_WARNING "md: array %s already has disks!\n", mdname(mddev)); err = -EBUSY; goto abort_unlock; } if (mddev->raid_disks) { printk(KERN_WARNING "md: array %s already initialised!\n", mdname(mddev)); err = -EBUSY; goto abort_unlock; } err = set_array_info(mddev, &info); if (err) { printk(KERN_WARNING "md: couldn't set" " array info. %d\n", err); goto abort_unlock; } } goto done_unlock; default:; } /* * Commands querying/configuring an existing array: */ /* if we are initialised yet, only ADD_NEW_DISK or STOP_ARRAY is allowed */ if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY && cmd != RUN_ARRAY) { err = -ENODEV; goto abort_unlock; } /* * Commands even a read-only array can execute: */ switch (cmd) { case GET_ARRAY_INFO: err = get_array_info(mddev, argp); goto done_unlock; case GET_DISK_INFO: err = get_disk_info(mddev, argp); goto done_unlock; case RESTART_ARRAY_RW: err = restart_array(mddev); goto done_unlock; case STOP_ARRAY: err = do_md_stop (mddev, 0); goto done_unlock; case STOP_ARRAY_RO: err = do_md_stop (mddev, 1); goto done_unlock; /* * We have a problem here : there is no easy way to give a CHS * virtual geometry. We currently pretend that we have a 2 heads * 4 sectors (with a BIG number of cylinders...). This drives * dosfs just mad... ;-) */ case HDIO_GETGEO: if (!loc) { err = -EINVAL; goto abort_unlock; } err = put_user (2, (char __user *) &loc->heads); if (err) goto abort_unlock; err = put_user (4, (char __user *) &loc->sectors); if (err) goto abort_unlock; err = put_user(get_capacity(mddev->gendisk)/8, (short __user *) &loc->cylinders); if (err) goto abort_unlock; err = put_user (get_start_sect(inode->i_bdev), (long __user *) &loc->start); goto done_unlock; } /* * The remaining ioctls are changing the state of the * superblock, so we do not allow read-only arrays * here: */ if (mddev->ro) { err = -EROFS; goto abort_unlock; } switch (cmd) { case ADD_NEW_DISK: { mdu_disk_info_t info; if (copy_from_user(&info, argp, sizeof(info))) err = -EFAULT; else err = add_new_disk(mddev, &info); goto done_unlock; } case HOT_REMOVE_DISK: err = hot_remove_disk(mddev, new_decode_dev(arg)); goto done_unlock; case HOT_ADD_DISK: err = hot_add_disk(mddev, new_decode_dev(arg)); goto done_unlock; case SET_DISK_FAULTY: err = set_disk_faulty(mddev, new_decode_dev(arg)); goto done_unlock; case RUN_ARRAY: err = do_md_run (mddev); goto done_unlock; default: if (_IOC_TYPE(cmd) == MD_MAJOR) printk(KERN_WARNING "md: %s(pid %d) used" " obsolete MD ioctl, upgrade your" " software to use new ictls.\n", current->comm, current->pid); err = -EINVAL; goto abort_unlock; } done_unlock: abort_unlock: mddev_unlock(mddev); return err; done: if (err) MD_BUG(); abort: return err; } static int md_open(struct inode *inode, struct file *file) { /* * Succeed if we can lock the mddev, which confirms that * it isn't being stopped right now. */ mddev_t *mddev = inode->i_bdev->bd_disk->private_data; int err; if ((err = mddev_lock(mddev))) goto out; err = 0; mddev_get(mddev); mddev_unlock(mddev); check_disk_change(inode->i_bdev); out: return err; } static int md_release(struct inode *inode, struct file * file) { mddev_t *mddev = inode->i_bdev->bd_disk->private_data; if (!mddev) BUG(); mddev_put(mddev); return 0; } static int md_media_changed(struct gendisk *disk) { mddev_t *mddev = disk->private_data; return mddev->changed; } static int md_revalidate(struct gendisk *disk) { mddev_t *mddev = disk->private_data; mddev->changed = 0; return 0; } static struct block_device_operations md_fops = { .owner = THIS_MODULE, .open = md_open, .release = md_release, .ioctl = md_ioctl, .media_changed = md_media_changed, .revalidate_disk= md_revalidate, }; static int md_thread(void * arg) { mdk_thread_t *thread = arg; lock_kernel(); /* * Detach thread */ daemonize(thread->name, mdname(thread->mddev)); current->exit_signal = SIGCHLD; allow_signal(SIGKILL); thread->tsk = current; /* * md_thread is a 'system-thread', it's priority should be very * high. We avoid resource deadlocks individually in each * raid personality. (RAID5 does preallocation) We also use RR and * the very same RT priority as kswapd, thus we will never get * into a priority inversion deadlock. * * we definitely have to have equal or higher priority than * bdflush, otherwise bdflush will deadlock if there are too * many dirty RAID5 blocks. */ unlock_kernel(); complete(thread->event); while (thread->run) { void (*run)(mddev_t *); wait_event_interruptible(thread->wqueue, test_bit(THREAD_WAKEUP, &thread->flags)); if (current->flags & PF_FREEZE) refrigerator(PF_FREEZE); clear_bit(THREAD_WAKEUP, &thread->flags); run = thread->run; if (run) run(thread->mddev); if (signal_pending(current)) flush_signals(current); } complete(thread->event); return 0; } void md_wakeup_thread(mdk_thread_t *thread) { if (thread) { dprintk("md: waking up MD thread %s.\n", thread->tsk->comm); set_bit(THREAD_WAKEUP, &thread->flags); wake_up(&thread->wqueue); } } mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev, const char *name) { mdk_thread_t *thread; int ret; struct completion event; thread = (mdk_thread_t *) kmalloc (sizeof(mdk_thread_t), GFP_KERNEL); if (!thread) return NULL; memset(thread, 0, sizeof(mdk_thread_t)); init_waitqueue_head(&thread->wqueue); init_completion(&event); thread->event = &event; thread->run = run; thread->mddev = mddev; thread->name = name; ret = kernel_thread(md_thread, thread, 0); if (ret < 0) { kfree(thread); return NULL; } wait_for_completion(&event); return thread; } void md_unregister_thread(mdk_thread_t *thread) { struct completion event; init_completion(&event); thread->event = &event; /* As soon as ->run is set to NULL, the task could disappear, * so we need to hold tasklist_lock until we have sent the signal */ dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid); read_lock(&tasklist_lock); thread->run = NULL; send_sig(SIGKILL, thread->tsk, 1); read_unlock(&tasklist_lock); wait_for_completion(&event); kfree(thread); } void md_error(mddev_t *mddev, mdk_rdev_t *rdev) { if (!mddev) { MD_BUG(); return; } if (!rdev || rdev->faulty) return; dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n", mdname(mddev), MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev), __builtin_return_address(0),__builtin_return_address(1), __builtin_return_address(2),__builtin_return_address(3)); if (!mddev->pers->error_handler) return; mddev->pers->error_handler(mddev,rdev); set_bit(MD_RECOVERY_INTR, &mddev->recovery); set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); md_wakeup_thread(mddev->thread); } /* seq_file implementation /proc/mdstat */ static void status_unused(struct seq_file *seq) { int i = 0; mdk_rdev_t *rdev; struct list_head *tmp; seq_printf(seq, "unused devices: "); ITERATE_RDEV_PENDING(rdev,tmp) { char b[BDEVNAME_SIZE]; i++; seq_printf(seq, "%s ", bdevname(rdev->bdev,b)); } if (!i) seq_printf(seq, ""); seq_printf(seq, "\n"); } static void status_resync(struct seq_file *seq, mddev_t * mddev) { unsigned long max_blocks, resync, res, dt, db, rt; resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2; if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) max_blocks = mddev->resync_max_sectors >> 1; else max_blocks = mddev->size; /* * Should not happen. */ if (!max_blocks) { MD_BUG(); return; } res = (resync/1024)*1000/(max_blocks/1024 + 1); { int i, x = res/50, y = 20-x; seq_printf(seq, "["); for (i = 0; i < x; i++) seq_printf(seq, "="); seq_printf(seq, ">"); for (i = 0; i < y; i++) seq_printf(seq, "."); seq_printf(seq, "] "); } seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)", (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? "resync" : "recovery"), res/10, res % 10, resync, max_blocks); /* * We do not want to overflow, so the order of operands and * the * 100 / 100 trick are important. We do a +1 to be * safe against division by zero. We only estimate anyway. * * dt: time from mark until now * db: blocks written from mark until now * rt: remaining time */ dt = ((jiffies - mddev->resync_mark) / HZ); if (!dt) dt++; db = resync - (mddev->resync_mark_cnt/2); rt = (dt * ((max_blocks-resync) / (db/100+1)))/100; seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6); seq_printf(seq, " speed=%ldK/sec", db/dt); } static void *md_seq_start(struct seq_file *seq, loff_t *pos) { struct list_head *tmp; loff_t l = *pos; mddev_t *mddev; if (l >= 0x10000) return NULL; if (!l--) /* header */ return (void*)1; spin_lock(&all_mddevs_lock); list_for_each(tmp,&all_mddevs) if (!l--) { mddev = list_entry(tmp, mddev_t, all_mddevs); mddev_get(mddev); spin_unlock(&all_mddevs_lock); return mddev; } spin_unlock(&all_mddevs_lock); if (!l--) return (void*)2;/* tail */ return NULL; } static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct list_head *tmp; mddev_t *next_mddev, *mddev = v; ++*pos; if (v == (void*)2) return NULL; spin_lock(&all_mddevs_lock); if (v == (void*)1) tmp = all_mddevs.next; else tmp = mddev->all_mddevs.next; if (tmp != &all_mddevs) next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs)); else { next_mddev = (void*)2; *pos = 0x10000; } spin_unlock(&all_mddevs_lock); if (v != (void*)1) mddev_put(mddev); return next_mddev; } static void md_seq_stop(struct seq_file *seq, void *v) { mddev_t *mddev = v; if (mddev && v != (void*)1 && v != (void*)2) mddev_put(mddev); } static int md_seq_show(struct seq_file *seq, void *v) { mddev_t *mddev = v; sector_t size; struct list_head *tmp2; mdk_rdev_t *rdev; int i; if (v == (void*)1) { seq_printf(seq, "Personalities : "); spin_lock(&pers_lock); for (i = 0; i < MAX_PERSONALITY; i++) if (pers[i]) seq_printf(seq, "[%s] ", pers[i]->name); spin_unlock(&pers_lock); seq_printf(seq, "\n"); return 0; } if (v == (void*)2) { status_unused(seq); return 0; } if (mddev_lock(mddev)!=0) return -EINTR; if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { seq_printf(seq, "%s : %sactive", mdname(mddev), mddev->pers ? "" : "in"); if (mddev->pers) { if (mddev->ro) seq_printf(seq, " (read-only)"); seq_printf(seq, " %s", mddev->pers->name); } size = 0; ITERATE_RDEV(mddev,rdev,tmp2) { char b[BDEVNAME_SIZE]; seq_printf(seq, " %s[%d]", bdevname(rdev->bdev,b), rdev->desc_nr); if (rdev->faulty) { seq_printf(seq, "(F)"); continue; } size += rdev->size; } if (!list_empty(&mddev->disks)) { if (mddev->pers) seq_printf(seq, "\n %llu blocks", (unsigned long long)mddev->array_size); else seq_printf(seq, "\n %llu blocks", (unsigned long long)size); } if (mddev->pers) { mddev->pers->status (seq, mddev); seq_printf(seq, "\n "); if (mddev->curr_resync > 2) status_resync (seq, mddev); else if (mddev->curr_resync == 1 || mddev->curr_resync == 2) seq_printf(seq, " resync=DELAYED"); } seq_printf(seq, "\n"); } mddev_unlock(mddev); return 0; } static struct seq_operations md_seq_ops = { .start = md_seq_start, .next = md_seq_next, .stop = md_seq_stop, .show = md_seq_show, }; static int md_seq_open(struct inode *inode, struct file *file) { int error; error = seq_open(file, &md_seq_ops); return error; } static struct file_operations md_seq_fops = { .open = md_seq_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; int register_md_personality(int pnum, mdk_personality_t *p) { if (pnum >= MAX_PERSONALITY) { printk(KERN_ERR "md: tried to install personality %s as nr %d, but max is %lu\n", p->name, pnum, MAX_PERSONALITY-1); return -EINVAL; } spin_lock(&pers_lock); if (pers[pnum]) { spin_unlock(&pers_lock); return -EBUSY; } pers[pnum] = p; printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum); spin_unlock(&pers_lock); return 0; } int unregister_md_personality(int pnum) { if (pnum >= MAX_PERSONALITY) return -EINVAL; printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name); spin_lock(&pers_lock); pers[pnum] = NULL; spin_unlock(&pers_lock); return 0; } static int is_mddev_idle(mddev_t *mddev) { mdk_rdev_t * rdev; struct list_head *tmp; int idle; unsigned long curr_events; idle = 1; ITERATE_RDEV(mddev,rdev,tmp) { struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; curr_events = disk_stat_read(disk, read_sectors) + disk_stat_read(disk, write_sectors) - atomic_read(&disk->sync_io); /* Allow some slack between valud of curr_events and last_events, * as there are some uninteresting races. * Note: the following is an unsigned comparison. */ if ((curr_events - rdev->last_events + 32) > 64) { rdev->last_events = curr_events; idle = 0; } } return idle; } void md_done_sync(mddev_t *mddev, int blocks, int ok) { /* another "blocks" (512byte) blocks have been synced */ atomic_sub(blocks, &mddev->recovery_active); wake_up(&mddev->recovery_wait); if (!ok) { set_bit(MD_RECOVERY_ERR, &mddev->recovery); md_wakeup_thread(mddev->thread); // stop recovery, signal do_sync .... } } void md_write_start(mddev_t *mddev) { if (!atomic_read(&mddev->writes_pending)) { mddev_lock_uninterruptible(mddev); if (mddev->in_sync) { mddev->in_sync = 0; del_timer(&mddev->safemode_timer); md_update_sb(mddev); } atomic_inc(&mddev->writes_pending); mddev_unlock(mddev); } else atomic_inc(&mddev->writes_pending); } void md_write_end(mddev_t *mddev) { if (atomic_dec_and_test(&mddev->writes_pending)) { if (mddev->safemode == 2) md_wakeup_thread(mddev->thread); else mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); } } static DECLARE_WAIT_QUEUE_HEAD(resync_wait); #define SYNC_MARKS 10 #define SYNC_MARK_STEP (3*HZ) static void md_do_sync(mddev_t *mddev) { mddev_t *mddev2; unsigned int currspeed = 0, window; sector_t max_sectors,j; unsigned long mark[SYNC_MARKS]; sector_t mark_cnt[SYNC_MARKS]; int last_mark,m; struct list_head *tmp; sector_t last_check; /* just incase thread restarts... */ if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) return; /* we overload curr_resync somewhat here. * 0 == not engaged in resync at all * 2 == checking that there is no conflict with another sync * 1 == like 2, but have yielded to allow conflicting resync to * commense * other == active in resync - this many blocks * * Before starting a resync we must have set curr_resync to * 2, and then checked that every "conflicting" array has curr_resync * less than ours. When we find one that is the same or higher * we wait on resync_wait. To avoid deadlock, we reduce curr_resync * to 1 if we choose to yield (based arbitrarily on address of mddev structure). * This will mean we have to start checking from the beginning again. * */ do { mddev->curr_resync = 2; try_again: if (signal_pending(current)) { flush_signals(current); goto skip; } ITERATE_MDDEV(mddev2,tmp) { printk("."); if (mddev2 == mddev) continue; if (mddev2->curr_resync && match_mddev_units(mddev,mddev2)) { DEFINE_WAIT(wq); if (mddev < mddev2 && mddev->curr_resync == 2) { /* arbitrarily yield */ mddev->curr_resync = 1; wake_up(&resync_wait); } if (mddev > mddev2 && mddev->curr_resync == 1) /* no need to wait here, we can wait the next * time 'round when curr_resync == 2 */ continue; prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); if (!signal_pending(current) && mddev2->curr_resync >= mddev->curr_resync) { printk(KERN_INFO "md: delaying resync of %s" " until %s has finished resync (they" " share one or more physical units)\n", mdname(mddev), mdname(mddev2)); mddev_put(mddev2); schedule(); finish_wait(&resync_wait, &wq); goto try_again; } finish_wait(&resync_wait, &wq); } } } while (mddev->curr_resync < 2); if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) /* resync follows the size requested by the personality, * which default to physical size, but can be virtual size */ max_sectors = mddev->resync_max_sectors; else /* recovery follows the physical size of devices */ max_sectors = mddev->size << 1; printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev)); printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:" " %d KB/sec/disc.\n", sysctl_speed_limit_min); printk(KERN_INFO "md: using maximum available idle IO bandwith " "(but not more than %d KB/sec) for reconstruction.\n", sysctl_speed_limit_max); is_mddev_idle(mddev); /* this also initializes IO event counters */ if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) j = mddev->recovery_cp; else j = 0; for (m = 0; m < SYNC_MARKS; m++) { mark[m] = jiffies; mark_cnt[m] = j; } last_mark = 0; mddev->resync_mark = mark[last_mark]; mddev->resync_mark_cnt = mark_cnt[last_mark]; /* * Tune reconstruction: */ window = 32*(PAGE_SIZE/512); printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n", window/2,(unsigned long long) max_sectors/2); atomic_set(&mddev->recovery_active, 0); init_waitqueue_head(&mddev->recovery_wait); last_check = 0; if (j>2) { printk(KERN_INFO "md: resuming recovery of %s from checkpoint.\n", mdname(mddev)); mddev->curr_resync = j; } while (j < max_sectors) { int sectors; sectors = mddev->pers->sync_request(mddev, j, currspeed < sysctl_speed_limit_min); if (sectors < 0) { set_bit(MD_RECOVERY_ERR, &mddev->recovery); goto out; } atomic_add(sectors, &mddev->recovery_active); j += sectors; if (j>1) mddev->curr_resync = j; if (last_check + window > j || j == max_sectors) continue; last_check = j; if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) || test_bit(MD_RECOVERY_ERR, &mddev->recovery)) break; repeat: if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { /* step marks */ int next = (last_mark+1) % SYNC_MARKS; mddev->resync_mark = mark[next]; mddev->resync_mark_cnt = mark_cnt[next]; mark[next] = jiffies; mark_cnt[next] = j - atomic_read(&mddev->recovery_active); last_mark = next; } if (signal_pending(current)) { /* * got a signal, exit. */ printk(KERN_INFO "md: md_do_sync() got signal ... exiting\n"); flush_signals(current); set_bit(MD_RECOVERY_INTR, &mddev->recovery); goto out; } /* * this loop exits only if either when we are slower than * the 'hard' speed limit, or the system was IO-idle for * a jiffy. * the system might be non-idle CPU-wise, but we only care * about not overloading the IO subsystem. (things like an * e2fsck being done on the RAID array should execute fast) */ mddev->queue->unplug_fn(mddev->queue); cond_resched(); currspeed = ((unsigned long)(j-mddev->resync_mark_cnt))/2/((jiffies-mddev->resync_mark)/HZ +1) +1; if (currspeed > sysctl_speed_limit_min) { if ((currspeed > sysctl_speed_limit_max) || !is_mddev_idle(mddev)) { msleep_interruptible(250); goto repeat; } } } printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev)); /* * this also signals 'finished resyncing' to md_stop */ out: mddev->queue->unplug_fn(mddev->queue); wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); /* tell personality that we are finished */ mddev->pers->sync_request(mddev, max_sectors, 1); if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) && mddev->curr_resync > 2 && mddev->curr_resync >= mddev->recovery_cp) { if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { printk(KERN_INFO "md: checkpointing recovery of %s.\n", mdname(mddev)); mddev->recovery_cp = mddev->curr_resync; } else mddev->recovery_cp = MaxSector; } skip: mddev->curr_resync = 0; wake_up(&resync_wait); set_bit(MD_RECOVERY_DONE, &mddev->recovery); md_wakeup_thread(mddev->thread); } /* * This routine is regularly called by all per-raid-array threads to * deal with generic issues like resync and super-block update. * Raid personalities that don't have a thread (linear/raid0) do not * need this as they never do any recovery or update the superblock. * * It does not do any resync itself, but rather "forks" off other threads * to do that as needed. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in * "->recovery" and create a thread at ->sync_thread. * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR) * and wakeups up this thread which will reap the thread and finish up. * This thread also removes any faulty devices (with nr_pending == 0). * * The overall approach is: * 1/ if the superblock needs updating, update it. * 2/ If a recovery thread is running, don't do anything else. * 3/ If recovery has finished, clean up, possibly marking spares active. * 4/ If there are any faulty devices, remove them. * 5/ If array is degraded, try to add spares devices * 6/ If array has spares or is not in-sync, start a resync thread. */ void md_check_recovery(mddev_t *mddev) { mdk_rdev_t *rdev; struct list_head *rtmp; dprintk(KERN_INFO "md: recovery thread got woken up ...\n"); if (mddev->ro) return; if (signal_pending(current)) { if (mddev->pers->sync_request) { printk(KERN_INFO "md: %s in immediate safe mode\n", mdname(mddev)); mddev->safemode = 2; } flush_signals(current); } if ( ! ( mddev->sb_dirty || test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || test_bit(MD_RECOVERY_DONE, &mddev->recovery) || (mddev->safemode == 1) || (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) && !mddev->in_sync && mddev->recovery_cp == MaxSector) )) return; if (mddev_trylock(mddev)==0) { int spares =0; if (mddev->safemode && !atomic_read(&mddev->writes_pending) && !mddev->in_sync && mddev->recovery_cp == MaxSector) { mddev->in_sync = 1; mddev->sb_dirty = 1; } if (mddev->safemode == 1) mddev->safemode = 0; if (mddev->sb_dirty) md_update_sb(mddev); if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { /* resync/recovery still happening */ clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); goto unlock; } if (mddev->sync_thread) { /* resync has finished, collect result */ md_unregister_thread(mddev->sync_thread); mddev->sync_thread = NULL; if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) && !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { /* success...*/ /* activate any spares */ mddev->pers->spare_active(mddev); } md_update_sb(mddev); mddev->recovery = 0; /* flag recovery needed just to double check */ set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); goto unlock; } if (mddev->recovery) /* probably just the RECOVERY_NEEDED flag */ mddev->recovery = 0; /* no recovery is running. * remove any failed drives, then * add spares if possible. * Spare are also removed and re-added, to allow * the personality to fail the re-add. */ ITERATE_RDEV(mddev,rdev,rtmp) if (rdev->raid_disk >= 0 && (rdev->faulty || ! rdev->in_sync) && atomic_read(&rdev->nr_pending)==0) { if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) rdev->raid_disk = -1; } if (mddev->degraded) { ITERATE_RDEV(mddev,rdev,rtmp) if (rdev->raid_disk < 0 && !rdev->faulty) { if (mddev->pers->hot_add_disk(mddev,rdev)) spares++; else break; } } if (!spares && (mddev->recovery_cp == MaxSector )) { /* nothing we can do ... */ goto unlock; } if (mddev->pers->sync_request) { set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); if (!spares) set_bit(MD_RECOVERY_SYNC, &mddev->recovery); mddev->sync_thread = md_register_thread(md_do_sync, mddev, "%s_resync"); if (!mddev->sync_thread) { printk(KERN_ERR "%s: could not start resync" " thread...\n", mdname(mddev)); /* leave the spares where they are, it shouldn't hurt */ mddev->recovery = 0; } else { md_wakeup_thread(mddev->sync_thread); } } unlock: mddev_unlock(mddev); } } static int md_notify_reboot(struct notifier_block *this, unsigned long code, void *x) { struct list_head *tmp; mddev_t *mddev; if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) { printk(KERN_INFO "md: stopping all md devices.\n"); ITERATE_MDDEV(mddev,tmp) if (mddev_trylock(mddev)==0) do_md_stop (mddev, 1); /* * certain more exotic SCSI devices are known to be * volatile wrt too early system reboots. While the * right place to handle this issue is the given * driver, we do want to have a safe RAID driver ... */ mdelay(1000*1); } return NOTIFY_DONE; } static struct notifier_block md_notifier = { .notifier_call = md_notify_reboot, .next = NULL, .priority = INT_MAX, /* before any real devices */ }; static void md_geninit(void) { struct proc_dir_entry *p; dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); p = create_proc_entry("mdstat", S_IRUGO, NULL); if (p) p->proc_fops = &md_seq_fops; } static int __init md_init(void) { int minor; printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d," " MD_SB_DISKS=%d\n", MD_MAJOR_VERSION, MD_MINOR_VERSION, MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS); if (register_blkdev(MAJOR_NR, "md")) return -1; if ((mdp_major=register_blkdev(0, "mdp"))<=0) { unregister_blkdev(MAJOR_NR, "md"); return -1; } devfs_mk_dir("md"); blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE, md_probe, NULL, NULL); blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<= 0 && dev_cnt < 127) detected_devices[dev_cnt++] = dev; } static void autostart_arrays(int part) { mdk_rdev_t *rdev; int i; printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); for (i = 0; i < dev_cnt; i++) { dev_t dev = detected_devices[i]; rdev = md_import_device(dev,0, 0); if (IS_ERR(rdev)) continue; if (rdev->faulty) { MD_BUG(); continue; } list_add(&rdev->same_set, &pending_raid_disks); } dev_cnt = 0; autorun_devices(part); } #endif static __exit void md_exit(void) { mddev_t *mddev; struct list_head *tmp; int i; blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS); blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift); for (i=0; i < MAX_MD_DEVS; i++) devfs_remove("md/%d", i); for (i=0; i < MAX_MD_DEVS; i++) devfs_remove("md/d%d", i); devfs_remove("md"); unregister_blkdev(MAJOR_NR,"md"); unregister_blkdev(mdp_major, "mdp"); unregister_reboot_notifier(&md_notifier); unregister_sysctl_table(raid_table_header); remove_proc_entry("mdstat", NULL); ITERATE_MDDEV(mddev,tmp) { struct gendisk *disk = mddev->gendisk; if (!disk) continue; export_array(mddev); del_gendisk(disk); put_disk(disk); mddev->gendisk = NULL; mddev_put(mddev); } } module_init(md_init) module_exit(md_exit) EXPORT_SYMBOL(register_md_personality); EXPORT_SYMBOL(unregister_md_personality); EXPORT_SYMBOL(md_error); EXPORT_SYMBOL(md_done_sync); EXPORT_SYMBOL(md_write_start); EXPORT_SYMBOL(md_write_end); EXPORT_SYMBOL(md_register_thread); EXPORT_SYMBOL(md_unregister_thread); EXPORT_SYMBOL(md_wakeup_thread); EXPORT_SYMBOL(md_print_devices); EXPORT_SYMBOL(md_check_recovery); MODULE_LICENSE("GPL");