/* * STMicroelectronics magnetometers driver * * Copyright 2012-2013 STMicroelectronics Inc. * * Denis Ciocca * * Licensed under the GPL-2. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "st_magn.h" #define ST_MAGN_NUMBER_DATA_CHANNELS 3 /* DEFAULT VALUE FOR SENSORS */ #define ST_MAGN_DEFAULT_OUT_X_L_ADDR 0X04 #define ST_MAGN_DEFAULT_OUT_Y_L_ADDR 0X08 #define ST_MAGN_DEFAULT_OUT_Z_L_ADDR 0X06 /* FULLSCALE */ #define ST_MAGN_FS_AVL_1300MG 1300 #define ST_MAGN_FS_AVL_1900MG 1900 #define ST_MAGN_FS_AVL_2500MG 2500 #define ST_MAGN_FS_AVL_4000MG 4000 #define ST_MAGN_FS_AVL_4700MG 4700 #define ST_MAGN_FS_AVL_5600MG 5600 #define ST_MAGN_FS_AVL_8000MG 8000 #define ST_MAGN_FS_AVL_8100MG 8100 #define ST_MAGN_FS_AVL_10000MG 10000 /* CUSTOM VALUES FOR SENSOR 1 */ #define ST_MAGN_1_WAI_EXP 0x3c #define ST_MAGN_1_ODR_ADDR 0x00 #define ST_MAGN_1_ODR_MASK 0x1c #define ST_MAGN_1_ODR_AVL_1HZ_VAL 0x00 #define ST_MAGN_1_ODR_AVL_2HZ_VAL 0x01 #define ST_MAGN_1_ODR_AVL_3HZ_VAL 0x02 #define ST_MAGN_1_ODR_AVL_8HZ_VAL 0x03 #define ST_MAGN_1_ODR_AVL_15HZ_VAL 0x04 #define ST_MAGN_1_ODR_AVL_30HZ_VAL 0x05 #define ST_MAGN_1_ODR_AVL_75HZ_VAL 0x06 #define ST_MAGN_1_ODR_AVL_220HZ_VAL 0x07 #define ST_MAGN_1_PW_ADDR 0x02 #define ST_MAGN_1_PW_MASK 0x03 #define ST_MAGN_1_PW_ON 0x00 #define ST_MAGN_1_PW_OFF 0x03 #define ST_MAGN_1_FS_ADDR 0x01 #define ST_MAGN_1_FS_MASK 0xe0 #define ST_MAGN_1_FS_AVL_1300_VAL 0x01 #define ST_MAGN_1_FS_AVL_1900_VAL 0x02 #define ST_MAGN_1_FS_AVL_2500_VAL 0x03 #define ST_MAGN_1_FS_AVL_4000_VAL 0x04 #define ST_MAGN_1_FS_AVL_4700_VAL 0x05 #define ST_MAGN_1_FS_AVL_5600_VAL 0x06 #define ST_MAGN_1_FS_AVL_8100_VAL 0x07 #define ST_MAGN_1_FS_AVL_1300_GAIN_XY 1100 #define ST_MAGN_1_FS_AVL_1900_GAIN_XY 855 #define ST_MAGN_1_FS_AVL_2500_GAIN_XY 670 #define ST_MAGN_1_FS_AVL_4000_GAIN_XY 450 #define ST_MAGN_1_FS_AVL_4700_GAIN_XY 400 #define ST_MAGN_1_FS_AVL_5600_GAIN_XY 330 #define ST_MAGN_1_FS_AVL_8100_GAIN_XY 230 #define ST_MAGN_1_FS_AVL_1300_GAIN_Z 980 #define ST_MAGN_1_FS_AVL_1900_GAIN_Z 760 #define ST_MAGN_1_FS_AVL_2500_GAIN_Z 600 #define ST_MAGN_1_FS_AVL_4000_GAIN_Z 400 #define ST_MAGN_1_FS_AVL_4700_GAIN_Z 355 #define ST_MAGN_1_FS_AVL_5600_GAIN_Z 295 #define ST_MAGN_1_FS_AVL_8100_GAIN_Z 205 #define ST_MAGN_1_MULTIREAD_BIT false /* CUSTOM VALUES FOR SENSOR 2 */ #define ST_MAGN_2_WAI_EXP 0x3d #define ST_MAGN_2_ODR_ADDR 0x20 #define ST_MAGN_2_ODR_MASK 0x1c #define ST_MAGN_2_ODR_AVL_1HZ_VAL 0x00 #define ST_MAGN_2_ODR_AVL_2HZ_VAL 0x01 #define ST_MAGN_2_ODR_AVL_3HZ_VAL 0x02 #define ST_MAGN_2_ODR_AVL_5HZ_VAL 0x03 #define ST_MAGN_2_ODR_AVL_10HZ_VAL 0x04 #define ST_MAGN_2_ODR_AVL_20HZ_VAL 0x05 #define ST_MAGN_2_ODR_AVL_40HZ_VAL 0x06 #define ST_MAGN_2_ODR_AVL_80HZ_VAL 0x07 #define ST_MAGN_2_PW_ADDR 0x22 #define ST_MAGN_2_PW_MASK 0x03 #define ST_MAGN_2_PW_ON 0x00 #define ST_MAGN_2_PW_OFF 0x03 #define ST_MAGN_2_FS_ADDR 0x21 #define ST_MAGN_2_FS_MASK 0x60 #define ST_MAGN_2_FS_AVL_4000_VAL 0x00 #define ST_MAGN_2_FS_AVL_8000_VAL 0x01 #define ST_MAGN_2_FS_AVL_10000_VAL 0x02 #define ST_MAGN_2_FS_AVL_4000_GAIN 430 #define ST_MAGN_2_FS_AVL_8000_GAIN 230 #define ST_MAGN_2_FS_AVL_10000_GAIN 230 #define ST_MAGN_2_MULTIREAD_BIT false #define ST_MAGN_2_OUT_X_L_ADDR 0x28 #define ST_MAGN_2_OUT_Y_L_ADDR 0x2a #define ST_MAGN_2_OUT_Z_L_ADDR 0x2c static const struct iio_chan_spec st_magn_16bit_channels[] = { ST_SENSORS_LSM_CHANNELS(IIO_MAGN, BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), ST_SENSORS_SCAN_X, 1, IIO_MOD_X, 's', IIO_LE, 16, 16, ST_MAGN_DEFAULT_OUT_X_L_ADDR), ST_SENSORS_LSM_CHANNELS(IIO_MAGN, BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), ST_SENSORS_SCAN_Y, 1, IIO_MOD_Y, 's', IIO_LE, 16, 16, ST_MAGN_DEFAULT_OUT_Y_L_ADDR), ST_SENSORS_LSM_CHANNELS(IIO_MAGN, BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), ST_SENSORS_SCAN_Z, 1, IIO_MOD_Z, 's', IIO_LE, 16, 16, ST_MAGN_DEFAULT_OUT_Z_L_ADDR), IIO_CHAN_SOFT_TIMESTAMP(3) }; static const struct iio_chan_spec st_magn_2_16bit_channels[] = { ST_SENSORS_LSM_CHANNELS(IIO_MAGN, BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), ST_SENSORS_SCAN_X, 1, IIO_MOD_X, 's', IIO_LE, 16, 16, ST_MAGN_2_OUT_X_L_ADDR), ST_SENSORS_LSM_CHANNELS(IIO_MAGN, BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), ST_SENSORS_SCAN_Y, 1, IIO_MOD_Y, 's', IIO_LE, 16, 16, ST_MAGN_2_OUT_Y_L_ADDR), ST_SENSORS_LSM_CHANNELS(IIO_MAGN, BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), ST_SENSORS_SCAN_Z, 1, IIO_MOD_Z, 's', IIO_LE, 16, 16, ST_MAGN_2_OUT_Z_L_ADDR), IIO_CHAN_SOFT_TIMESTAMP(3) }; static const struct st_sensors st_magn_sensors[] = { { .wai = ST_MAGN_1_WAI_EXP, .sensors_supported = { [0] = LSM303DLHC_MAGN_DEV_NAME, [1] = LSM303DLM_MAGN_DEV_NAME, }, .ch = (struct iio_chan_spec *)st_magn_16bit_channels, .odr = { .addr = ST_MAGN_1_ODR_ADDR, .mask = ST_MAGN_1_ODR_MASK, .odr_avl = { { 1, ST_MAGN_1_ODR_AVL_1HZ_VAL, }, { 2, ST_MAGN_1_ODR_AVL_2HZ_VAL, }, { 3, ST_MAGN_1_ODR_AVL_3HZ_VAL, }, { 8, ST_MAGN_1_ODR_AVL_8HZ_VAL, }, { 15, ST_MAGN_1_ODR_AVL_15HZ_VAL, }, { 30, ST_MAGN_1_ODR_AVL_30HZ_VAL, }, { 75, ST_MAGN_1_ODR_AVL_75HZ_VAL, }, { 220, ST_MAGN_1_ODR_AVL_220HZ_VAL, }, }, }, .pw = { .addr = ST_MAGN_1_PW_ADDR, .mask = ST_MAGN_1_PW_MASK, .value_on = ST_MAGN_1_PW_ON, .value_off = ST_MAGN_1_PW_OFF, }, .fs = { .addr = ST_MAGN_1_FS_ADDR, .mask = ST_MAGN_1_FS_MASK, .fs_avl = { [0] = { .num = ST_MAGN_FS_AVL_1300MG, .value = ST_MAGN_1_FS_AVL_1300_VAL, .gain = ST_MAGN_1_FS_AVL_1300_GAIN_XY, .gain2 = ST_MAGN_1_FS_AVL_1300_GAIN_Z, }, [1] = { .num = ST_MAGN_FS_AVL_1900MG, .value = ST_MAGN_1_FS_AVL_1900_VAL, .gain = ST_MAGN_1_FS_AVL_1900_GAIN_XY, .gain2 = ST_MAGN_1_FS_AVL_1900_GAIN_Z, }, [2] = { .num = ST_MAGN_FS_AVL_2500MG, .value = ST_MAGN_1_FS_AVL_2500_VAL, .gain = ST_MAGN_1_FS_AVL_2500_GAIN_XY, .gain2 = ST_MAGN_1_FS_AVL_2500_GAIN_Z, }, [3] = { .num = ST_MAGN_FS_AVL_4000MG, .value = ST_MAGN_1_FS_AVL_4000_VAL, .gain = ST_MAGN_1_FS_AVL_4000_GAIN_XY, .gain2 = ST_MAGN_1_FS_AVL_4000_GAIN_Z, }, [4] = { .num = ST_MAGN_FS_AVL_4700MG, .value = ST_MAGN_1_FS_AVL_4700_VAL, .gain = ST_MAGN_1_FS_AVL_4700_GAIN_XY, .gain2 = ST_MAGN_1_FS_AVL_4700_GAIN_Z, }, [5] = { .num = ST_MAGN_FS_AVL_5600MG, .value = ST_MAGN_1_FS_AVL_5600_VAL, .gain = ST_MAGN_1_FS_AVL_5600_GAIN_XY, .gain2 = ST_MAGN_1_FS_AVL_5600_GAIN_Z, }, [6] = { .num = ST_MAGN_FS_AVL_8100MG, .value = ST_MAGN_1_FS_AVL_8100_VAL, .gain = ST_MAGN_1_FS_AVL_8100_GAIN_XY, .gain2 = ST_MAGN_1_FS_AVL_8100_GAIN_Z, }, }, }, .multi_read_bit = ST_MAGN_1_MULTIREAD_BIT, .bootime = 2, }, { .wai = ST_MAGN_2_WAI_EXP, .sensors_supported = { [0] = LIS3MDL_MAGN_DEV_NAME, }, .ch = (struct iio_chan_spec *)st_magn_2_16bit_channels, .odr = { .addr = ST_MAGN_2_ODR_ADDR, .mask = ST_MAGN_2_ODR_MASK, .odr_avl = { { 1, ST_MAGN_2_ODR_AVL_1HZ_VAL, }, { 2, ST_MAGN_2_ODR_AVL_2HZ_VAL, }, { 3, ST_MAGN_2_ODR_AVL_3HZ_VAL, }, { 5, ST_MAGN_2_ODR_AVL_5HZ_VAL, }, { 10, ST_MAGN_2_ODR_AVL_10HZ_VAL, }, { 20, ST_MAGN_2_ODR_AVL_20HZ_VAL, }, { 40, ST_MAGN_2_ODR_AVL_40HZ_VAL, }, { 80, ST_MAGN_2_ODR_AVL_80HZ_VAL, }, }, }, .pw = { .addr = ST_MAGN_2_PW_ADDR, .mask = ST_MAGN_2_PW_MASK, .value_on = ST_MAGN_2_PW_ON, .value_off = ST_MAGN_2_PW_OFF, }, .fs = { .addr = ST_MAGN_2_FS_ADDR, .mask = ST_MAGN_2_FS_MASK, .fs_avl = { [0] = { .num = ST_MAGN_FS_AVL_4000MG, .value = ST_MAGN_2_FS_AVL_4000_VAL, .gain = ST_MAGN_2_FS_AVL_4000_GAIN, }, [1] = { .num = ST_MAGN_FS_AVL_8000MG, .value = ST_MAGN_2_FS_AVL_8000_VAL, .gain = ST_MAGN_2_FS_AVL_8000_GAIN, }, [2] = { .num = ST_MAGN_FS_AVL_10000MG, .value = ST_MAGN_2_FS_AVL_10000_VAL, .gain = ST_MAGN_2_FS_AVL_10000_GAIN, }, }, }, .multi_read_bit = ST_MAGN_2_MULTIREAD_BIT, .bootime = 2, }, }; static int st_magn_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *ch, int *val, int *val2, long mask) { int err; struct st_sensor_data *mdata = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_RAW: err = st_sensors_read_info_raw(indio_dev, ch, val); if (err < 0) goto read_error; return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: *val = 0; if ((ch->scan_index == ST_SENSORS_SCAN_Z) && (mdata->current_fullscale->gain2 != 0)) *val2 = mdata->current_fullscale->gain2; else *val2 = mdata->current_fullscale->gain; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } read_error: return err; } static int st_magn_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { int err; switch (mask) { case IIO_CHAN_INFO_SCALE: err = st_sensors_set_fullscale_by_gain(indio_dev, val2); break; default: err = -EINVAL; } return err; } static ST_SENSOR_DEV_ATTR_SAMP_FREQ(); static ST_SENSORS_DEV_ATTR_SAMP_FREQ_AVAIL(); static ST_SENSORS_DEV_ATTR_SCALE_AVAIL(in_magn_scale_available); static struct attribute *st_magn_attributes[] = { &iio_dev_attr_sampling_frequency_available.dev_attr.attr, &iio_dev_attr_in_magn_scale_available.dev_attr.attr, &iio_dev_attr_sampling_frequency.dev_attr.attr, NULL, }; static const struct attribute_group st_magn_attribute_group = { .attrs = st_magn_attributes, }; static const struct iio_info magn_info = { .driver_module = THIS_MODULE, .attrs = &st_magn_attribute_group, .read_raw = &st_magn_read_raw, .write_raw = &st_magn_write_raw, }; int st_magn_common_probe(struct iio_dev *indio_dev, struct st_sensors_platform_data *pdata) { struct st_sensor_data *mdata = iio_priv(indio_dev); int irq = mdata->get_irq_data_ready(indio_dev); int err; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->info = &magn_info; err = st_sensors_check_device_support(indio_dev, ARRAY_SIZE(st_magn_sensors), st_magn_sensors); if (err < 0) return err; mdata->num_data_channels = ST_MAGN_NUMBER_DATA_CHANNELS; mdata->multiread_bit = mdata->sensor->multi_read_bit; indio_dev->channels = mdata->sensor->ch; indio_dev->num_channels = ST_SENSORS_NUMBER_ALL_CHANNELS; mdata->current_fullscale = (struct st_sensor_fullscale_avl *) &mdata->sensor->fs.fs_avl[0]; mdata->odr = mdata->sensor->odr.odr_avl[0].hz; err = st_sensors_init_sensor(indio_dev, pdata); if (err < 0) return err; if (irq > 0) { err = st_magn_allocate_ring(indio_dev); if (err < 0) return err; err = st_sensors_allocate_trigger(indio_dev, NULL); if (err < 0) goto st_magn_probe_trigger_error; } err = iio_device_register(indio_dev); if (err) goto st_magn_device_register_error; return 0; st_magn_device_register_error: if (irq > 0) st_sensors_deallocate_trigger(indio_dev); st_magn_probe_trigger_error: if (irq > 0) st_magn_deallocate_ring(indio_dev); return err; } EXPORT_SYMBOL(st_magn_common_probe); void st_magn_common_remove(struct iio_dev *indio_dev) { struct st_sensor_data *mdata = iio_priv(indio_dev); iio_device_unregister(indio_dev); if (mdata->get_irq_data_ready(indio_dev) > 0) { st_sensors_deallocate_trigger(indio_dev); st_magn_deallocate_ring(indio_dev); } } EXPORT_SYMBOL(st_magn_common_remove); MODULE_AUTHOR("Denis Ciocca "); MODULE_DESCRIPTION("STMicroelectronics magnetometers driver"); MODULE_LICENSE("GPL v2");