/* $Id: process.c,v 1.131 2002/02/09 19:49:30 davem Exp $ * arch/sparc64/kernel/process.c * * Copyright (C) 1995, 1996 David S. Miller (davem@caip.rutgers.edu) * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) */ /* * This file handles the architecture-dependent parts of process handling.. */ #include <stdarg.h> #include <linux/config.h> #include <linux/errno.h> #include <linux/module.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/kallsyms.h> #include <linux/mm.h> #include <linux/smp.h> #include <linux/smp_lock.h> #include <linux/stddef.h> #include <linux/ptrace.h> #include <linux/slab.h> #include <linux/user.h> #include <linux/a.out.h> #include <linux/config.h> #include <linux/reboot.h> #include <linux/delay.h> #include <linux/compat.h> #include <linux/init.h> #include <asm/oplib.h> #include <asm/uaccess.h> #include <asm/system.h> #include <asm/page.h> #include <asm/pgalloc.h> #include <asm/pgtable.h> #include <asm/processor.h> #include <asm/pstate.h> #include <asm/elf.h> #include <asm/fpumacro.h> #include <asm/head.h> #include <asm/cpudata.h> #include <asm/unistd.h> /* #define VERBOSE_SHOWREGS */ /* * Nothing special yet... */ void default_idle(void) { } #ifndef CONFIG_SMP /* * the idle loop on a Sparc... ;) */ void cpu_idle(void) { /* endless idle loop with no priority at all */ for (;;) { /* If current->work.need_resched is zero we should really * setup for a system wakup event and execute a shutdown * instruction. * * But this requires writing back the contents of the * L2 cache etc. so implement this later. -DaveM */ while (!need_resched()) barrier(); schedule(); check_pgt_cache(); } } #else /* * the idle loop on a UltraMultiPenguin... */ #define idle_me_harder() (cpu_data(smp_processor_id()).idle_volume += 1) #define unidle_me() (cpu_data(smp_processor_id()).idle_volume = 0) void cpu_idle(void) { set_thread_flag(TIF_POLLING_NRFLAG); while(1) { if (need_resched()) { unidle_me(); clear_thread_flag(TIF_POLLING_NRFLAG); schedule(); set_thread_flag(TIF_POLLING_NRFLAG); check_pgt_cache(); } idle_me_harder(); /* The store ordering is so that IRQ handlers on * other cpus see our increasing idleness for the buddy * redistribution algorithm. -DaveM */ membar_storeload_storestore(); } } #endif extern char reboot_command []; extern void (*prom_palette)(int); extern void (*prom_keyboard)(void); void machine_halt(void) { if (!serial_console && prom_palette) prom_palette (1); if (prom_keyboard) prom_keyboard(); prom_halt(); panic("Halt failed!"); } void machine_alt_power_off(void) { if (!serial_console && prom_palette) prom_palette(1); if (prom_keyboard) prom_keyboard(); prom_halt_power_off(); panic("Power-off failed!"); } void machine_restart(char * cmd) { char *p; p = strchr (reboot_command, '\n'); if (p) *p = 0; if (!serial_console && prom_palette) prom_palette (1); if (prom_keyboard) prom_keyboard(); if (cmd) prom_reboot(cmd); if (*reboot_command) prom_reboot(reboot_command); prom_reboot(""); panic("Reboot failed!"); } static void show_regwindow32(struct pt_regs *regs) { struct reg_window32 __user *rw; struct reg_window32 r_w; mm_segment_t old_fs; __asm__ __volatile__ ("flushw"); rw = compat_ptr((unsigned)regs->u_regs[14]); old_fs = get_fs(); set_fs (USER_DS); if (copy_from_user (&r_w, rw, sizeof(r_w))) { set_fs (old_fs); return; } set_fs (old_fs); printk("l0: %08x l1: %08x l2: %08x l3: %08x " "l4: %08x l5: %08x l6: %08x l7: %08x\n", r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3], r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]); printk("i0: %08x i1: %08x i2: %08x i3: %08x " "i4: %08x i5: %08x i6: %08x i7: %08x\n", r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3], r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]); } static void show_regwindow(struct pt_regs *regs) { struct reg_window __user *rw; struct reg_window *rwk; struct reg_window r_w; mm_segment_t old_fs; if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) { __asm__ __volatile__ ("flushw"); rw = (struct reg_window __user *) (regs->u_regs[14] + STACK_BIAS); rwk = (struct reg_window *) (regs->u_regs[14] + STACK_BIAS); if (!(regs->tstate & TSTATE_PRIV)) { old_fs = get_fs(); set_fs (USER_DS); if (copy_from_user (&r_w, rw, sizeof(r_w))) { set_fs (old_fs); return; } rwk = &r_w; set_fs (old_fs); } } else { show_regwindow32(regs); return; } printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n", rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]); printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n", rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]); printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n", rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]); printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n", rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]); if (regs->tstate & TSTATE_PRIV) print_symbol("I7: <%s>\n", rwk->ins[7]); } void show_stackframe(struct sparc_stackf *sf) { unsigned long size; unsigned long *stk; int i; printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n" "l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n", sf->locals[0], sf->locals[1], sf->locals[2], sf->locals[3], sf->locals[4], sf->locals[5], sf->locals[6], sf->locals[7]); printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n" "i4: %016lx i5: %016lx fp: %016lx ret_pc: %016lx\n", sf->ins[0], sf->ins[1], sf->ins[2], sf->ins[3], sf->ins[4], sf->ins[5], (unsigned long)sf->fp, sf->callers_pc); printk("sp: %016lx x0: %016lx x1: %016lx x2: %016lx\n" "x3: %016lx x4: %016lx x5: %016lx xx: %016lx\n", (unsigned long)sf->structptr, sf->xargs[0], sf->xargs[1], sf->xargs[2], sf->xargs[3], sf->xargs[4], sf->xargs[5], sf->xxargs[0]); size = ((unsigned long)sf->fp) - ((unsigned long)sf); size -= STACKFRAME_SZ; stk = (unsigned long *)((unsigned long)sf + STACKFRAME_SZ); i = 0; do { printk("s%d: %016lx\n", i++, *stk++); } while ((size -= sizeof(unsigned long))); } void show_stackframe32(struct sparc_stackf32 *sf) { unsigned long size; unsigned *stk; int i; printk("l0: %08x l1: %08x l2: %08x l3: %08x\n", sf->locals[0], sf->locals[1], sf->locals[2], sf->locals[3]); printk("l4: %08x l5: %08x l6: %08x l7: %08x\n", sf->locals[4], sf->locals[5], sf->locals[6], sf->locals[7]); printk("i0: %08x i1: %08x i2: %08x i3: %08x\n", sf->ins[0], sf->ins[1], sf->ins[2], sf->ins[3]); printk("i4: %08x i5: %08x fp: %08x ret_pc: %08x\n", sf->ins[4], sf->ins[5], sf->fp, sf->callers_pc); printk("sp: %08x x0: %08x x1: %08x x2: %08x\n" "x3: %08x x4: %08x x5: %08x xx: %08x\n", sf->structptr, sf->xargs[0], sf->xargs[1], sf->xargs[2], sf->xargs[3], sf->xargs[4], sf->xargs[5], sf->xxargs[0]); size = ((unsigned long)sf->fp) - ((unsigned long)sf); size -= STACKFRAME32_SZ; stk = (unsigned *)((unsigned long)sf + STACKFRAME32_SZ); i = 0; do { printk("s%d: %08x\n", i++, *stk++); } while ((size -= sizeof(unsigned))); } #ifdef CONFIG_SMP static DEFINE_SPINLOCK(regdump_lock); #endif void __show_regs(struct pt_regs * regs) { #ifdef CONFIG_SMP unsigned long flags; /* Protect against xcall ipis which might lead to livelock on the lock */ __asm__ __volatile__("rdpr %%pstate, %0\n\t" "wrpr %0, %1, %%pstate" : "=r" (flags) : "i" (PSTATE_IE)); spin_lock(®dump_lock); #endif printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate, regs->tpc, regs->tnpc, regs->y, print_tainted()); print_symbol("TPC: <%s>\n", regs->tpc); printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n", regs->u_regs[0], regs->u_regs[1], regs->u_regs[2], regs->u_regs[3]); printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n", regs->u_regs[4], regs->u_regs[5], regs->u_regs[6], regs->u_regs[7]); printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n", regs->u_regs[8], regs->u_regs[9], regs->u_regs[10], regs->u_regs[11]); printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n", regs->u_regs[12], regs->u_regs[13], regs->u_regs[14], regs->u_regs[15]); print_symbol("RPC: <%s>\n", regs->u_regs[15]); show_regwindow(regs); #ifdef CONFIG_SMP spin_unlock(®dump_lock); __asm__ __volatile__("wrpr %0, 0, %%pstate" : : "r" (flags)); #endif } #ifdef VERBOSE_SHOWREGS static void idump_from_user (unsigned int *pc) { int i; int code; if((((unsigned long) pc) & 3)) return; pc -= 3; for(i = -3; i < 6; i++) { get_user(code, pc); printk("%c%08x%c",i?' ':'<',code,i?' ':'>'); pc++; } printk("\n"); } #endif void show_regs(struct pt_regs *regs) { #ifdef VERBOSE_SHOWREGS extern long etrap, etraptl1; #endif __show_regs(regs); #ifdef CONFIG_SMP { extern void smp_report_regs(void); smp_report_regs(); } #endif #ifdef VERBOSE_SHOWREGS if (regs->tpc >= &etrap && regs->tpc < &etraptl1 && regs->u_regs[14] >= (long)current - PAGE_SIZE && regs->u_regs[14] < (long)current + 6 * PAGE_SIZE) { printk ("*********parent**********\n"); __show_regs((struct pt_regs *)(regs->u_regs[14] + PTREGS_OFF)); idump_from_user(((struct pt_regs *)(regs->u_regs[14] + PTREGS_OFF))->tpc); printk ("*********endpar**********\n"); } #endif } void show_regs32(struct pt_regs32 *regs) { printk("PSR: %08x PC: %08x NPC: %08x Y: %08x %s\n", regs->psr, regs->pc, regs->npc, regs->y, print_tainted()); printk("g0: %08x g1: %08x g2: %08x g3: %08x ", regs->u_regs[0], regs->u_regs[1], regs->u_regs[2], regs->u_regs[3]); printk("g4: %08x g5: %08x g6: %08x g7: %08x\n", regs->u_regs[4], regs->u_regs[5], regs->u_regs[6], regs->u_regs[7]); printk("o0: %08x o1: %08x o2: %08x o3: %08x ", regs->u_regs[8], regs->u_regs[9], regs->u_regs[10], regs->u_regs[11]); printk("o4: %08x o5: %08x sp: %08x ret_pc: %08x\n", regs->u_regs[12], regs->u_regs[13], regs->u_regs[14], regs->u_regs[15]); } unsigned long thread_saved_pc(struct task_struct *tsk) { struct thread_info *ti = tsk->thread_info; unsigned long ret = 0xdeadbeefUL; if (ti && ti->ksp) { unsigned long *sp; sp = (unsigned long *)(ti->ksp + STACK_BIAS); if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL && sp[14]) { unsigned long *fp; fp = (unsigned long *)(sp[14] + STACK_BIAS); if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL) ret = fp[15]; } } return ret; } /* Free current thread data structures etc.. */ void exit_thread(void) { struct thread_info *t = current_thread_info(); if (t->utraps) { if (t->utraps[0] < 2) kfree (t->utraps); else t->utraps[0]--; } if (test_and_clear_thread_flag(TIF_PERFCTR)) { t->user_cntd0 = t->user_cntd1 = NULL; t->pcr_reg = 0; write_pcr(0); } } void flush_thread(void) { struct thread_info *t = current_thread_info(); if (t->flags & _TIF_ABI_PENDING) t->flags ^= (_TIF_ABI_PENDING | _TIF_32BIT); if (t->task->mm) { unsigned long pgd_cache = 0UL; if (test_thread_flag(TIF_32BIT)) { struct mm_struct *mm = t->task->mm; pgd_t *pgd0 = &mm->pgd[0]; pud_t *pud0 = pud_offset(pgd0, 0); if (pud_none(*pud0)) { pmd_t *page = pmd_alloc_one(mm, 0); pud_set(pud0, page); } pgd_cache = get_pgd_cache(pgd0); } __asm__ __volatile__("stxa %0, [%1] %2\n\t" "membar #Sync" : /* no outputs */ : "r" (pgd_cache), "r" (TSB_REG), "i" (ASI_DMMU)); } set_thread_wsaved(0); /* Turn off performance counters if on. */ if (test_and_clear_thread_flag(TIF_PERFCTR)) { t->user_cntd0 = t->user_cntd1 = NULL; t->pcr_reg = 0; write_pcr(0); } /* Clear FPU register state. */ t->fpsaved[0] = 0; if (get_thread_current_ds() != ASI_AIUS) set_fs(USER_DS); /* Init new signal delivery disposition. */ clear_thread_flag(TIF_NEWSIGNALS); } /* It's a bit more tricky when 64-bit tasks are involved... */ static unsigned long clone_stackframe(unsigned long csp, unsigned long psp) { unsigned long fp, distance, rval; if (!(test_thread_flag(TIF_32BIT))) { csp += STACK_BIAS; psp += STACK_BIAS; __get_user(fp, &(((struct reg_window __user *)psp)->ins[6])); fp += STACK_BIAS; } else __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6])); /* Now 8-byte align the stack as this is mandatory in the * Sparc ABI due to how register windows work. This hides * the restriction from thread libraries etc. -DaveM */ csp &= ~7UL; distance = fp - psp; rval = (csp - distance); if (copy_in_user((void __user *) rval, (void __user *) psp, distance)) rval = 0; else if (test_thread_flag(TIF_32BIT)) { if (put_user(((u32)csp), &(((struct reg_window32 __user *)rval)->ins[6]))) rval = 0; } else { if (put_user(((u64)csp - STACK_BIAS), &(((struct reg_window __user *)rval)->ins[6]))) rval = 0; else rval = rval - STACK_BIAS; } return rval; } /* Standard stuff. */ static inline void shift_window_buffer(int first_win, int last_win, struct thread_info *t) { int i; for (i = first_win; i < last_win; i++) { t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1]; memcpy(&t->reg_window[i], &t->reg_window[i+1], sizeof(struct reg_window)); } } void synchronize_user_stack(void) { struct thread_info *t = current_thread_info(); unsigned long window; flush_user_windows(); if ((window = get_thread_wsaved()) != 0) { int winsize = sizeof(struct reg_window); int bias = 0; if (test_thread_flag(TIF_32BIT)) winsize = sizeof(struct reg_window32); else bias = STACK_BIAS; window -= 1; do { unsigned long sp = (t->rwbuf_stkptrs[window] + bias); struct reg_window *rwin = &t->reg_window[window]; if (!copy_to_user((char __user *)sp, rwin, winsize)) { shift_window_buffer(window, get_thread_wsaved() - 1, t); set_thread_wsaved(get_thread_wsaved() - 1); } } while (window--); } } void fault_in_user_windows(void) { struct thread_info *t = current_thread_info(); unsigned long window; int winsize = sizeof(struct reg_window); int bias = 0; if (test_thread_flag(TIF_32BIT)) winsize = sizeof(struct reg_window32); else bias = STACK_BIAS; flush_user_windows(); window = get_thread_wsaved(); if (window != 0) { window -= 1; do { unsigned long sp = (t->rwbuf_stkptrs[window] + bias); struct reg_window *rwin = &t->reg_window[window]; if (copy_to_user((char __user *)sp, rwin, winsize)) goto barf; } while (window--); } set_thread_wsaved(0); return; barf: set_thread_wsaved(window + 1); do_exit(SIGILL); } asmlinkage long sparc_do_fork(unsigned long clone_flags, unsigned long stack_start, struct pt_regs *regs, unsigned long stack_size) { int __user *parent_tid_ptr, *child_tid_ptr; #ifdef CONFIG_COMPAT if (test_thread_flag(TIF_32BIT)) { parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]); child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]); } else #endif { parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2]; child_tid_ptr = (int __user *) regs->u_regs[UREG_I4]; } return do_fork(clone_flags, stack_start, regs, stack_size, parent_tid_ptr, child_tid_ptr); } /* Copy a Sparc thread. The fork() return value conventions * under SunOS are nothing short of bletcherous: * Parent --> %o0 == childs pid, %o1 == 0 * Child --> %o0 == parents pid, %o1 == 1 */ int copy_thread(int nr, unsigned long clone_flags, unsigned long sp, unsigned long unused, struct task_struct *p, struct pt_regs *regs) { struct thread_info *t = p->thread_info; char *child_trap_frame; /* Calculate offset to stack_frame & pt_regs */ child_trap_frame = ((char *)t) + (THREAD_SIZE - (TRACEREG_SZ+STACKFRAME_SZ)); memcpy(child_trap_frame, (((struct sparc_stackf *)regs)-1), (TRACEREG_SZ+STACKFRAME_SZ)); t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) | (0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) | (((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT); t->new_child = 1; t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS; t->kregs = (struct pt_regs *)(child_trap_frame+sizeof(struct sparc_stackf)); t->fpsaved[0] = 0; if (regs->tstate & TSTATE_PRIV) { /* Special case, if we are spawning a kernel thread from * a userspace task (via KMOD, NFS, or similar) we must * disable performance counters in the child because the * address space and protection realm are changing. */ if (t->flags & _TIF_PERFCTR) { t->user_cntd0 = t->user_cntd1 = NULL; t->pcr_reg = 0; t->flags &= ~_TIF_PERFCTR; } t->kregs->u_regs[UREG_FP] = t->ksp; t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT); flush_register_windows(); memcpy((void *)(t->ksp + STACK_BIAS), (void *)(regs->u_regs[UREG_FP] + STACK_BIAS), sizeof(struct sparc_stackf)); t->kregs->u_regs[UREG_G6] = (unsigned long) t; t->kregs->u_regs[UREG_G4] = (unsigned long) t->task; } else { if (t->flags & _TIF_32BIT) { sp &= 0x00000000ffffffffUL; regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL; } t->kregs->u_regs[UREG_FP] = sp; t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT); if (sp != regs->u_regs[UREG_FP]) { unsigned long csp; csp = clone_stackframe(sp, regs->u_regs[UREG_FP]); if (!csp) return -EFAULT; t->kregs->u_regs[UREG_FP] = csp; } if (t->utraps) t->utraps[0]++; } /* Set the return value for the child. */ t->kregs->u_regs[UREG_I0] = current->pid; t->kregs->u_regs[UREG_I1] = 1; /* Set the second return value for the parent. */ regs->u_regs[UREG_I1] = 0; if (clone_flags & CLONE_SETTLS) t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3]; return 0; } /* * This is the mechanism for creating a new kernel thread. * * NOTE! Only a kernel-only process(ie the swapper or direct descendants * who haven't done an "execve()") should use this: it will work within * a system call from a "real" process, but the process memory space will * not be free'd until both the parent and the child have exited. */ pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) { long retval; /* If the parent runs before fn(arg) is called by the child, * the input registers of this function can be clobbered. * So we stash 'fn' and 'arg' into global registers which * will not be modified by the parent. */ __asm__ __volatile__("mov %4, %%g2\n\t" /* Save FN into global */ "mov %5, %%g3\n\t" /* Save ARG into global */ "mov %1, %%g1\n\t" /* Clone syscall nr. */ "mov %2, %%o0\n\t" /* Clone flags. */ "mov 0, %%o1\n\t" /* usp arg == 0 */ "t 0x6d\n\t" /* Linux/Sparc clone(). */ "brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */ " mov %%o0, %0\n\t" "jmpl %%g2, %%o7\n\t" /* Call the function. */ " mov %%g3, %%o0\n\t" /* Set arg in delay. */ "mov %3, %%g1\n\t" "t 0x6d\n\t" /* Linux/Sparc exit(). */ /* Notreached by child. */ "1:" : "=r" (retval) : "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED), "i" (__NR_exit), "r" (fn), "r" (arg) : "g1", "g2", "g3", "o0", "o1", "memory", "cc"); return retval; } /* * fill in the user structure for a core dump.. */ void dump_thread(struct pt_regs * regs, struct user * dump) { /* Only should be used for SunOS and ancient a.out * SparcLinux binaries... Not worth implementing. */ memset(dump, 0, sizeof(struct user)); } typedef struct { union { unsigned int pr_regs[32]; unsigned long pr_dregs[16]; } pr_fr; unsigned int __unused; unsigned int pr_fsr; unsigned char pr_qcnt; unsigned char pr_q_entrysize; unsigned char pr_en; unsigned int pr_q[64]; } elf_fpregset_t32; /* * fill in the fpu structure for a core dump. */ int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs) { unsigned long *kfpregs = current_thread_info()->fpregs; unsigned long fprs = current_thread_info()->fpsaved[0]; if (test_thread_flag(TIF_32BIT)) { elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs; if (fprs & FPRS_DL) memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs, sizeof(unsigned int) * 32); else memset(&fpregs32->pr_fr.pr_regs[0], 0, sizeof(unsigned int) * 32); fpregs32->pr_qcnt = 0; fpregs32->pr_q_entrysize = 8; memset(&fpregs32->pr_q[0], 0, (sizeof(unsigned int) * 64)); if (fprs & FPRS_FEF) { fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0]; fpregs32->pr_en = 1; } else { fpregs32->pr_fsr = 0; fpregs32->pr_en = 0; } } else { if(fprs & FPRS_DL) memcpy(&fpregs->pr_regs[0], kfpregs, sizeof(unsigned int) * 32); else memset(&fpregs->pr_regs[0], 0, sizeof(unsigned int) * 32); if(fprs & FPRS_DU) memcpy(&fpregs->pr_regs[16], kfpregs+16, sizeof(unsigned int) * 32); else memset(&fpregs->pr_regs[16], 0, sizeof(unsigned int) * 32); if(fprs & FPRS_FEF) { fpregs->pr_fsr = current_thread_info()->xfsr[0]; fpregs->pr_gsr = current_thread_info()->gsr[0]; } else { fpregs->pr_fsr = fpregs->pr_gsr = 0; } fpregs->pr_fprs = fprs; } return 1; } /* * sparc_execve() executes a new program after the asm stub has set * things up for us. This should basically do what I want it to. */ asmlinkage int sparc_execve(struct pt_regs *regs) { int error, base = 0; char *filename; /* User register window flush is done by entry.S */ /* Check for indirect call. */ if (regs->u_regs[UREG_G1] == 0) base = 1; filename = getname((char __user *)regs->u_regs[base + UREG_I0]); error = PTR_ERR(filename); if (IS_ERR(filename)) goto out; error = do_execve(filename, (char __user * __user *) regs->u_regs[base + UREG_I1], (char __user * __user *) regs->u_regs[base + UREG_I2], regs); putname(filename); if (!error) { fprs_write(0); current_thread_info()->xfsr[0] = 0; current_thread_info()->fpsaved[0] = 0; regs->tstate &= ~TSTATE_PEF; task_lock(current); current->ptrace &= ~PT_DTRACE; task_unlock(current); } out: return error; } unsigned long get_wchan(struct task_struct *task) { unsigned long pc, fp, bias = 0; unsigned long thread_info_base; struct reg_window *rw; unsigned long ret = 0; int count = 0; if (!task || task == current || task->state == TASK_RUNNING) goto out; thread_info_base = (unsigned long) task->thread_info; bias = STACK_BIAS; fp = task->thread_info->ksp + bias; do { /* Bogus frame pointer? */ if (fp < (thread_info_base + sizeof(struct thread_info)) || fp >= (thread_info_base + THREAD_SIZE)) break; rw = (struct reg_window *) fp; pc = rw->ins[7]; if (!in_sched_functions(pc)) { ret = pc; goto out; } fp = rw->ins[6] + bias; } while (++count < 16); out: return ret; }