/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Vinit Azad * Ben Widawsky * Dave Gordon * Alex Dai */ #include #include "i915_drv.h" #include "intel_guc.h" /** * DOC: GuC-specific firmware loader * * intel_guc: * Top level structure of guc. It handles firmware loading and manages client * pool and doorbells. intel_guc owns a i915_guc_client to replace the legacy * ExecList submission. * * Firmware versioning: * The firmware build process will generate a version header file with major and * minor version defined. The versions are built into CSS header of firmware. * i915 kernel driver set the minimal firmware version required per platform. * The firmware installation package will install (symbolic link) proper version * of firmware. * * GuC address space: * GuC does not allow any gfx GGTT address that falls into range [0, WOPCM_TOP), * which is reserved for Boot ROM, SRAM and WOPCM. Currently this top address is * 512K. In order to exclude 0-512K address space from GGTT, all gfx objects * used by GuC is pinned with PIN_OFFSET_BIAS along with size of WOPCM. * * Firmware log: * Firmware log is enabled by setting i915.guc_log_level to non-negative level. * Log data is printed out via reading debugfs i915_guc_log_dump. Reading from * i915_guc_load_status will print out firmware loading status and scratch * registers value. * */ #define I915_SKL_GUC_UCODE "i915/skl_guc_ver6_1.bin" MODULE_FIRMWARE(I915_SKL_GUC_UCODE); #define I915_BXT_GUC_UCODE "i915/bxt_guc_ver8_7.bin" MODULE_FIRMWARE(I915_BXT_GUC_UCODE); #define I915_KBL_GUC_UCODE "i915/kbl_guc_ver9_14.bin" MODULE_FIRMWARE(I915_KBL_GUC_UCODE); /* User-friendly representation of an enum */ const char *intel_guc_fw_status_repr(enum intel_guc_fw_status status) { switch (status) { case GUC_FIRMWARE_FAIL: return "FAIL"; case GUC_FIRMWARE_NONE: return "NONE"; case GUC_FIRMWARE_PENDING: return "PENDING"; case GUC_FIRMWARE_SUCCESS: return "SUCCESS"; default: return "UNKNOWN!"; } }; static void direct_interrupts_to_host(struct drm_i915_private *dev_priv) { struct intel_engine_cs *engine; int irqs; /* tell all command streamers NOT to forward interrupts or vblank to GuC */ irqs = _MASKED_FIELD(GFX_FORWARD_VBLANK_MASK, GFX_FORWARD_VBLANK_NEVER); irqs |= _MASKED_BIT_DISABLE(GFX_INTERRUPT_STEERING); for_each_engine(engine, dev_priv) I915_WRITE(RING_MODE_GEN7(engine), irqs); /* route all GT interrupts to the host */ I915_WRITE(GUC_BCS_RCS_IER, 0); I915_WRITE(GUC_VCS2_VCS1_IER, 0); I915_WRITE(GUC_WD_VECS_IER, 0); } static void direct_interrupts_to_guc(struct drm_i915_private *dev_priv) { struct intel_engine_cs *engine; int irqs; u32 tmp; /* tell all command streamers to forward interrupts (but not vblank) to GuC */ irqs = _MASKED_BIT_ENABLE(GFX_INTERRUPT_STEERING); for_each_engine(engine, dev_priv) I915_WRITE(RING_MODE_GEN7(engine), irqs); /* route USER_INTERRUPT to Host, all others are sent to GuC. */ irqs = GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT | GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT; /* These three registers have the same bit definitions */ I915_WRITE(GUC_BCS_RCS_IER, ~irqs); I915_WRITE(GUC_VCS2_VCS1_IER, ~irqs); I915_WRITE(GUC_WD_VECS_IER, ~irqs); /* * If GuC has routed PM interrupts to itself, don't keep it. * and keep other interrupts those are unmasked by GuC. */ tmp = I915_READ(GEN6_PMINTRMSK); if (tmp & GEN8_PMINTR_REDIRECT_TO_NON_DISP) { dev_priv->rps.pm_intr_keep |= ~(tmp & ~GEN8_PMINTR_REDIRECT_TO_NON_DISP); dev_priv->rps.pm_intr_keep &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP; } } static u32 get_gttype(struct drm_i915_private *dev_priv) { /* XXX: GT type based on PCI device ID? field seems unused by fw */ return 0; } static u32 get_core_family(struct drm_i915_private *dev_priv) { switch (INTEL_INFO(dev_priv)->gen) { case 9: return GFXCORE_FAMILY_GEN9; default: DRM_ERROR("GUC: unsupported core family\n"); return GFXCORE_FAMILY_UNKNOWN; } } static void set_guc_init_params(struct drm_i915_private *dev_priv) { struct intel_guc *guc = &dev_priv->guc; u32 params[GUC_CTL_MAX_DWORDS]; int i; memset(¶ms, 0, sizeof(params)); params[GUC_CTL_DEVICE_INFO] |= (get_gttype(dev_priv) << GUC_CTL_GTTYPE_SHIFT) | (get_core_family(dev_priv) << GUC_CTL_COREFAMILY_SHIFT); /* * GuC ARAT increment is 10 ns. GuC default scheduler quantum is one * second. This ARAR is calculated by: * Scheduler-Quantum-in-ns / ARAT-increment-in-ns = 1000000000 / 10 */ params[GUC_CTL_ARAT_HIGH] = 0; params[GUC_CTL_ARAT_LOW] = 100000000; params[GUC_CTL_WA] |= GUC_CTL_WA_UK_BY_DRIVER; params[GUC_CTL_FEATURE] |= GUC_CTL_DISABLE_SCHEDULER | GUC_CTL_VCS2_ENABLED; if (i915.guc_log_level >= 0) { params[GUC_CTL_LOG_PARAMS] = guc->log_flags; params[GUC_CTL_DEBUG] = i915.guc_log_level << GUC_LOG_VERBOSITY_SHIFT; } if (guc->ads_obj) { u32 ads = (u32)i915_gem_obj_ggtt_offset(guc->ads_obj) >> PAGE_SHIFT; params[GUC_CTL_DEBUG] |= ads << GUC_ADS_ADDR_SHIFT; params[GUC_CTL_DEBUG] |= GUC_ADS_ENABLED; } /* If GuC submission is enabled, set up additional parameters here */ if (i915.enable_guc_submission) { u32 pgs = i915_gem_obj_ggtt_offset(dev_priv->guc.ctx_pool_obj); u32 ctx_in_16 = GUC_MAX_GPU_CONTEXTS / 16; pgs >>= PAGE_SHIFT; params[GUC_CTL_CTXINFO] = (pgs << GUC_CTL_BASE_ADDR_SHIFT) | (ctx_in_16 << GUC_CTL_CTXNUM_IN16_SHIFT); params[GUC_CTL_FEATURE] |= GUC_CTL_KERNEL_SUBMISSIONS; /* Unmask this bit to enable the GuC's internal scheduler */ params[GUC_CTL_FEATURE] &= ~GUC_CTL_DISABLE_SCHEDULER; } I915_WRITE(SOFT_SCRATCH(0), 0); for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) I915_WRITE(SOFT_SCRATCH(1 + i), params[i]); } /* * Read the GuC status register (GUC_STATUS) and store it in the * specified location; then return a boolean indicating whether * the value matches either of two values representing completion * of the GuC boot process. * * This is used for polling the GuC status in a wait_for() * loop below. */ static inline bool guc_ucode_response(struct drm_i915_private *dev_priv, u32 *status) { u32 val = I915_READ(GUC_STATUS); u32 uk_val = val & GS_UKERNEL_MASK; *status = val; return (uk_val == GS_UKERNEL_READY || ((val & GS_MIA_CORE_STATE) && uk_val == GS_UKERNEL_LAPIC_DONE)); } /* * Transfer the firmware image to RAM for execution by the microcontroller. * * Architecturally, the DMA engine is bidirectional, and can potentially even * transfer between GTT locations. This functionality is left out of the API * for now as there is no need for it. * * Note that GuC needs the CSS header plus uKernel code to be copied by the * DMA engine in one operation, whereas the RSA signature is loaded via MMIO. */ static int guc_ucode_xfer_dma(struct drm_i915_private *dev_priv) { struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw; struct drm_i915_gem_object *fw_obj = guc_fw->guc_fw_obj; unsigned long offset; struct sg_table *sg = fw_obj->pages; u32 status, rsa[UOS_RSA_SCRATCH_MAX_COUNT]; int i, ret = 0; /* where RSA signature starts */ offset = guc_fw->rsa_offset; /* Copy RSA signature from the fw image to HW for verification */ sg_pcopy_to_buffer(sg->sgl, sg->nents, rsa, sizeof(rsa), offset); for (i = 0; i < UOS_RSA_SCRATCH_MAX_COUNT; i++) I915_WRITE(UOS_RSA_SCRATCH(i), rsa[i]); /* The header plus uCode will be copied to WOPCM via DMA, excluding any * other components */ I915_WRITE(DMA_COPY_SIZE, guc_fw->header_size + guc_fw->ucode_size); /* Set the source address for the new blob */ offset = i915_gem_obj_ggtt_offset(fw_obj) + guc_fw->header_offset; I915_WRITE(DMA_ADDR_0_LOW, lower_32_bits(offset)); I915_WRITE(DMA_ADDR_0_HIGH, upper_32_bits(offset) & 0xFFFF); /* * Set the DMA destination. Current uCode expects the code to be * loaded at 8k; locations below this are used for the stack. */ I915_WRITE(DMA_ADDR_1_LOW, 0x2000); I915_WRITE(DMA_ADDR_1_HIGH, DMA_ADDRESS_SPACE_WOPCM); /* Finally start the DMA */ I915_WRITE(DMA_CTRL, _MASKED_BIT_ENABLE(UOS_MOVE | START_DMA)); /* * Wait for the DMA to complete & the GuC to start up. * NB: Docs recommend not using the interrupt for completion. * Measurements indicate this should take no more than 20ms, so a * timeout here indicates that the GuC has failed and is unusable. * (Higher levels of the driver will attempt to fall back to * execlist mode if this happens.) */ ret = wait_for(guc_ucode_response(dev_priv, &status), 100); DRM_DEBUG_DRIVER("DMA status 0x%x, GuC status 0x%x\n", I915_READ(DMA_CTRL), status); if ((status & GS_BOOTROM_MASK) == GS_BOOTROM_RSA_FAILED) { DRM_ERROR("GuC firmware signature verification failed\n"); ret = -ENOEXEC; } DRM_DEBUG_DRIVER("returning %d\n", ret); return ret; } static u32 guc_wopcm_size(struct drm_i915_private *dev_priv) { u32 wopcm_size = GUC_WOPCM_TOP; /* On BXT, the top of WOPCM is reserved for RC6 context */ if (IS_BROXTON(dev_priv)) wopcm_size -= BXT_GUC_WOPCM_RC6_RESERVED; return wopcm_size; } /* * Load the GuC firmware blob into the MinuteIA. */ static int guc_ucode_xfer(struct drm_i915_private *dev_priv) { struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw; struct drm_device *dev = dev_priv->dev; int ret; ret = i915_gem_object_set_to_gtt_domain(guc_fw->guc_fw_obj, false); if (ret) { DRM_DEBUG_DRIVER("set-domain failed %d\n", ret); return ret; } ret = i915_gem_obj_ggtt_pin(guc_fw->guc_fw_obj, 0, 0); if (ret) { DRM_DEBUG_DRIVER("pin failed %d\n", ret); return ret; } /* Invalidate GuC TLB to let GuC take the latest updates to GTT. */ I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE); intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); /* init WOPCM */ I915_WRITE(GUC_WOPCM_SIZE, guc_wopcm_size(dev_priv)); I915_WRITE(DMA_GUC_WOPCM_OFFSET, GUC_WOPCM_OFFSET_VALUE); /* Enable MIA caching. GuC clock gating is disabled. */ I915_WRITE(GUC_SHIM_CONTROL, GUC_SHIM_CONTROL_VALUE); /* WaDisableMinuteIaClockGating:skl,bxt */ if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) || IS_BXT_REVID(dev, 0, BXT_REVID_A1)) { I915_WRITE(GUC_SHIM_CONTROL, (I915_READ(GUC_SHIM_CONTROL) & ~GUC_ENABLE_MIA_CLOCK_GATING)); } /* WaC6DisallowByGfxPause*/ I915_WRITE(GEN6_GFXPAUSE, 0x30FFF); if (IS_BROXTON(dev)) I915_WRITE(GEN9LP_GT_PM_CONFIG, GT_DOORBELL_ENABLE); else I915_WRITE(GEN9_GT_PM_CONFIG, GT_DOORBELL_ENABLE); if (IS_GEN9(dev)) { /* DOP Clock Gating Enable for GuC clocks */ I915_WRITE(GEN7_MISCCPCTL, (GEN8_DOP_CLOCK_GATE_GUC_ENABLE | I915_READ(GEN7_MISCCPCTL))); /* allows for 5us before GT can go to RC6 */ I915_WRITE(GUC_ARAT_C6DIS, 0x1FF); } set_guc_init_params(dev_priv); ret = guc_ucode_xfer_dma(dev_priv); intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); /* * We keep the object pages for reuse during resume. But we can unpin it * now that DMA has completed, so it doesn't continue to take up space. */ i915_gem_object_ggtt_unpin(guc_fw->guc_fw_obj); return ret; } static int i915_reset_guc(struct drm_i915_private *dev_priv) { int ret; u32 guc_status; ret = intel_guc_reset(dev_priv); if (ret) { DRM_ERROR("GuC reset failed, ret = %d\n", ret); return ret; } guc_status = I915_READ(GUC_STATUS); WARN(!(guc_status & GS_MIA_IN_RESET), "GuC status: 0x%x, MIA core expected to be in reset\n", guc_status); return ret; } /** * intel_guc_setup() - finish preparing the GuC for activity * @dev: drm device * * Called from gem_init_hw() during driver loading and also after a GPU reset. * * The main action required here it to load the GuC uCode into the device. * The firmware image should have already been fetched into memory by the * earlier call to intel_guc_init(), so here we need only check that worked, * and then transfer the image to the h/w. * * Return: non-zero code on error */ int intel_guc_setup(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw; const char *fw_path = guc_fw->guc_fw_path; int retries, ret, err; DRM_DEBUG_DRIVER("GuC fw status: path %s, fetch %s, load %s\n", fw_path, intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status), intel_guc_fw_status_repr(guc_fw->guc_fw_load_status)); /* Loading forbidden, or no firmware to load? */ if (!i915.enable_guc_loading) { err = 0; goto fail; } else if (fw_path == NULL) { /* Device is known to have no uCode (e.g. no GuC) */ err = -ENXIO; goto fail; } else if (*fw_path == '\0') { /* Device has a GuC but we don't know what f/w to load? */ DRM_INFO("No GuC firmware known for this platform\n"); err = -ENODEV; goto fail; } /* Fetch failed, or already fetched but failed to load? */ if (guc_fw->guc_fw_fetch_status != GUC_FIRMWARE_SUCCESS) { err = -EIO; goto fail; } else if (guc_fw->guc_fw_load_status == GUC_FIRMWARE_FAIL) { err = -ENOEXEC; goto fail; } direct_interrupts_to_host(dev_priv); guc_fw->guc_fw_load_status = GUC_FIRMWARE_PENDING; DRM_DEBUG_DRIVER("GuC fw status: fetch %s, load %s\n", intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status), intel_guc_fw_status_repr(guc_fw->guc_fw_load_status)); err = i915_guc_submission_init(dev_priv); if (err) goto fail; /* * WaEnableuKernelHeaderValidFix:skl,bxt * For BXT, this is only upto B0 but below WA is required for later * steppings also so this is extended as well. */ /* WaEnableGuCBootHashCheckNotSet:skl,bxt */ for (retries = 3; ; ) { /* * Always reset the GuC just before (re)loading, so * that the state and timing are fairly predictable */ err = i915_reset_guc(dev_priv); if (err) { DRM_ERROR("GuC reset failed: %d\n", err); goto fail; } err = guc_ucode_xfer(dev_priv); if (!err) break; if (--retries == 0) goto fail; DRM_INFO("GuC fw load failed: %d; will reset and " "retry %d more time(s)\n", err, retries); } guc_fw->guc_fw_load_status = GUC_FIRMWARE_SUCCESS; DRM_DEBUG_DRIVER("GuC fw status: fetch %s, load %s\n", intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status), intel_guc_fw_status_repr(guc_fw->guc_fw_load_status)); if (i915.enable_guc_submission) { err = i915_guc_submission_enable(dev_priv); if (err) goto fail; direct_interrupts_to_guc(dev_priv); } return 0; fail: if (guc_fw->guc_fw_load_status == GUC_FIRMWARE_PENDING) guc_fw->guc_fw_load_status = GUC_FIRMWARE_FAIL; direct_interrupts_to_host(dev_priv); i915_guc_submission_disable(dev_priv); i915_guc_submission_fini(dev_priv); /* * We've failed to load the firmware :( * * Decide whether to disable GuC submission and fall back to * execlist mode, and whether to hide the error by returning * zero or to return -EIO, which the caller will treat as a * nonfatal error (i.e. it doesn't prevent driver load, but * marks the GPU as wedged until reset). */ if (i915.enable_guc_loading > 1) { ret = -EIO; } else if (i915.enable_guc_submission > 1) { ret = -EIO; } else { ret = 0; } if (err == 0 && !HAS_GUC_UCODE(dev)) ; /* Don't mention the GuC! */ else if (err == 0) DRM_INFO("GuC firmware load skipped\n"); else if (ret != -EIO) DRM_INFO("GuC firmware load failed: %d\n", err); else DRM_ERROR("GuC firmware load failed: %d\n", err); if (i915.enable_guc_submission) { if (fw_path == NULL) DRM_INFO("GuC submission without firmware not supported\n"); if (ret == 0) DRM_INFO("Falling back from GuC submission to execlist mode\n"); else DRM_ERROR("GuC init failed: %d\n", ret); } i915.enable_guc_submission = 0; return ret; } static void guc_fw_fetch(struct drm_device *dev, struct intel_guc_fw *guc_fw) { struct drm_i915_gem_object *obj; const struct firmware *fw; struct guc_css_header *css; size_t size; int err; DRM_DEBUG_DRIVER("before requesting firmware: GuC fw fetch status %s\n", intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status)); err = request_firmware(&fw, guc_fw->guc_fw_path, &dev->pdev->dev); if (err) goto fail; if (!fw) goto fail; DRM_DEBUG_DRIVER("fetch GuC fw from %s succeeded, fw %p\n", guc_fw->guc_fw_path, fw); /* Check the size of the blob before examining buffer contents */ if (fw->size < sizeof(struct guc_css_header)) { DRM_ERROR("Firmware header is missing\n"); goto fail; } css = (struct guc_css_header *)fw->data; /* Firmware bits always start from header */ guc_fw->header_offset = 0; guc_fw->header_size = (css->header_size_dw - css->modulus_size_dw - css->key_size_dw - css->exponent_size_dw) * sizeof(u32); if (guc_fw->header_size != sizeof(struct guc_css_header)) { DRM_ERROR("CSS header definition mismatch\n"); goto fail; } /* then, uCode */ guc_fw->ucode_offset = guc_fw->header_offset + guc_fw->header_size; guc_fw->ucode_size = (css->size_dw - css->header_size_dw) * sizeof(u32); /* now RSA */ if (css->key_size_dw != UOS_RSA_SCRATCH_MAX_COUNT) { DRM_ERROR("RSA key size is bad\n"); goto fail; } guc_fw->rsa_offset = guc_fw->ucode_offset + guc_fw->ucode_size; guc_fw->rsa_size = css->key_size_dw * sizeof(u32); /* At least, it should have header, uCode and RSA. Size of all three. */ size = guc_fw->header_size + guc_fw->ucode_size + guc_fw->rsa_size; if (fw->size < size) { DRM_ERROR("Missing firmware components\n"); goto fail; } /* Header and uCode will be loaded to WOPCM. Size of the two. */ size = guc_fw->header_size + guc_fw->ucode_size; if (size > guc_wopcm_size(dev->dev_private)) { DRM_ERROR("Firmware is too large to fit in WOPCM\n"); goto fail; } /* * The GuC firmware image has the version number embedded at a well-known * offset within the firmware blob; note that major / minor version are * TWO bytes each (i.e. u16), although all pointers and offsets are defined * in terms of bytes (u8). */ guc_fw->guc_fw_major_found = css->guc_sw_version >> 16; guc_fw->guc_fw_minor_found = css->guc_sw_version & 0xFFFF; if (guc_fw->guc_fw_major_found != guc_fw->guc_fw_major_wanted || guc_fw->guc_fw_minor_found < guc_fw->guc_fw_minor_wanted) { DRM_ERROR("GuC firmware version %d.%d, required %d.%d\n", guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found, guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted); err = -ENOEXEC; goto fail; } DRM_DEBUG_DRIVER("firmware version %d.%d OK (minimum %d.%d)\n", guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found, guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted); mutex_lock(&dev->struct_mutex); obj = i915_gem_object_create_from_data(dev, fw->data, fw->size); mutex_unlock(&dev->struct_mutex); if (IS_ERR_OR_NULL(obj)) { err = obj ? PTR_ERR(obj) : -ENOMEM; goto fail; } guc_fw->guc_fw_obj = obj; guc_fw->guc_fw_size = fw->size; DRM_DEBUG_DRIVER("GuC fw fetch status SUCCESS, obj %p\n", guc_fw->guc_fw_obj); release_firmware(fw); guc_fw->guc_fw_fetch_status = GUC_FIRMWARE_SUCCESS; return; fail: DRM_DEBUG_DRIVER("GuC fw fetch status FAIL; err %d, fw %p, obj %p\n", err, fw, guc_fw->guc_fw_obj); DRM_ERROR("Failed to fetch GuC firmware from %s (error %d)\n", guc_fw->guc_fw_path, err); mutex_lock(&dev->struct_mutex); obj = guc_fw->guc_fw_obj; if (obj) drm_gem_object_unreference(&obj->base); guc_fw->guc_fw_obj = NULL; mutex_unlock(&dev->struct_mutex); release_firmware(fw); /* OK even if fw is NULL */ guc_fw->guc_fw_fetch_status = GUC_FIRMWARE_FAIL; } /** * intel_guc_init() - define parameters and fetch firmware * @dev: drm device * * Called early during driver load, but after GEM is initialised. * * The firmware will be transferred to the GuC's memory later, * when intel_guc_setup() is called. */ void intel_guc_init(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw; const char *fw_path; /* A negative value means "use platform default" */ if (i915.enable_guc_loading < 0) i915.enable_guc_loading = HAS_GUC_UCODE(dev); if (i915.enable_guc_submission < 0) i915.enable_guc_submission = HAS_GUC_SCHED(dev); if (!HAS_GUC_UCODE(dev)) { fw_path = NULL; } else if (IS_SKYLAKE(dev)) { fw_path = I915_SKL_GUC_UCODE; guc_fw->guc_fw_major_wanted = 6; guc_fw->guc_fw_minor_wanted = 1; } else if (IS_BROXTON(dev)) { fw_path = I915_BXT_GUC_UCODE; guc_fw->guc_fw_major_wanted = 8; guc_fw->guc_fw_minor_wanted = 7; } else if (IS_KABYLAKE(dev)) { fw_path = I915_KBL_GUC_UCODE; guc_fw->guc_fw_major_wanted = 9; guc_fw->guc_fw_minor_wanted = 14; } else { fw_path = ""; /* unknown device */ } guc_fw->guc_dev = dev; guc_fw->guc_fw_path = fw_path; guc_fw->guc_fw_fetch_status = GUC_FIRMWARE_NONE; guc_fw->guc_fw_load_status = GUC_FIRMWARE_NONE; /* Early (and silent) return if GuC loading is disabled */ if (!i915.enable_guc_loading) return; if (fw_path == NULL) return; if (*fw_path == '\0') return; guc_fw->guc_fw_fetch_status = GUC_FIRMWARE_PENDING; DRM_DEBUG_DRIVER("GuC firmware pending, path %s\n", fw_path); guc_fw_fetch(dev, guc_fw); /* status must now be FAIL or SUCCESS */ } /** * intel_guc_fini() - clean up all allocated resources * @dev: drm device */ void intel_guc_fini(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw; mutex_lock(&dev->struct_mutex); direct_interrupts_to_host(dev_priv); i915_guc_submission_disable(dev_priv); i915_guc_submission_fini(dev_priv); if (guc_fw->guc_fw_obj) drm_gem_object_unreference(&guc_fw->guc_fw_obj->base); guc_fw->guc_fw_obj = NULL; mutex_unlock(&dev->struct_mutex); guc_fw->guc_fw_fetch_status = GUC_FIRMWARE_NONE; }