/* * kerneltop.c: show top kernel functions - performance counters showcase Build with: make -C Documentation/perf_counter/ Sample output: ------------------------------------------------------------------------------ KernelTop: 2669 irqs/sec [cache-misses/cache-refs], (all, cpu: 2) ------------------------------------------------------------------------------ weight RIP kernel function ______ ________________ _______________ 35.20 - ffffffff804ce74b : skb_copy_and_csum_dev 33.00 - ffffffff804cb740 : sock_alloc_send_skb 31.26 - ffffffff804ce808 : skb_push 22.43 - ffffffff80510004 : tcp_established_options 19.00 - ffffffff8027d250 : find_get_page 15.76 - ffffffff804e4fc9 : eth_type_trans 15.20 - ffffffff804d8baa : dst_release 14.86 - ffffffff804cf5d8 : skb_release_head_state 14.00 - ffffffff802217d5 : read_hpet 12.00 - ffffffff804ffb7f : __ip_local_out 11.97 - ffffffff804fc0c8 : ip_local_deliver_finish 8.54 - ffffffff805001a3 : ip_queue_xmit */ /* * Copyright (C) 2008, Red Hat Inc, Ingo Molnar * * Improvements and fixes by: * * Arjan van de Ven * Yanmin Zhang * Wu Fengguang * Mike Galbraith * Paul Mackerras * * Released under the GPL v2. (and only v2, not any later version) */ #include "perf.h" #include "util/util.h" #include "util/util.h" #include "util/parse-options.h" #include "util/parse-events.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int system_wide = 0; static __u64 default_event_id[MAX_COUNTERS] = { EID(PERF_TYPE_SOFTWARE, PERF_COUNT_TASK_CLOCK), EID(PERF_TYPE_SOFTWARE, PERF_COUNT_CONTEXT_SWITCHES), EID(PERF_TYPE_SOFTWARE, PERF_COUNT_CPU_MIGRATIONS), EID(PERF_TYPE_SOFTWARE, PERF_COUNT_PAGE_FAULTS), EID(PERF_TYPE_HARDWARE, PERF_COUNT_CPU_CYCLES), EID(PERF_TYPE_HARDWARE, PERF_COUNT_INSTRUCTIONS), EID(PERF_TYPE_HARDWARE, PERF_COUNT_CACHE_REFERENCES), EID(PERF_TYPE_HARDWARE, PERF_COUNT_CACHE_MISSES), }; static int default_interval = 100000; static int event_count[MAX_COUNTERS]; static int fd[MAX_NR_CPUS][MAX_COUNTERS]; static __u64 count_filter = 100; static int target_pid = -1; static int profile_cpu = -1; static int nr_cpus = 0; static unsigned int realtime_prio = 0; static int group = 0; static unsigned int page_size; static unsigned int mmap_pages = 16; static int use_mmap = 0; static int use_munmap = 0; static int freq = 0; static char *sym_filter; static unsigned long filter_start; static unsigned long filter_end; static int delay_secs = 2; static int zero; static int dump_symtab; static const unsigned int default_count[] = { 1000000, 1000000, 10000, 10000, 1000000, 10000, }; /* * Symbols */ static uint64_t min_ip; static uint64_t max_ip = -1ll; struct sym_entry { unsigned long long addr; char *sym; unsigned long count[MAX_COUNTERS]; int skip; }; #define MAX_SYMS 100000 static int sym_table_count; struct sym_entry *sym_filter_entry; static struct sym_entry sym_table[MAX_SYMS]; /* * Ordering weight: count-1 * count-2 * ... / count-n */ static double sym_weight(const struct sym_entry *sym) { double weight; int counter; weight = sym->count[0]; for (counter = 1; counter < nr_counters-1; counter++) weight *= sym->count[counter]; weight /= (sym->count[counter] + 1); return weight; } static int compare(const void *__sym1, const void *__sym2) { const struct sym_entry *sym1 = __sym1, *sym2 = __sym2; return sym_weight(sym1) < sym_weight(sym2); } static long events; static long userspace_events; static const char CONSOLE_CLEAR[] = ""; static struct sym_entry tmp[MAX_SYMS]; static void print_sym_table(void) { int i, j, active_count, printed; int counter; float events_per_sec = events/delay_secs; float kevents_per_sec = (events-userspace_events)/delay_secs; float sum_kevents = 0.0; events = userspace_events = 0; /* Iterate over symbol table and copy/tally/decay active symbols. */ for (i = 0, active_count = 0; i < sym_table_count; i++) { if (sym_table[i].count[0]) { tmp[active_count++] = sym_table[i]; sum_kevents += sym_table[i].count[0]; for (j = 0; j < nr_counters; j++) sym_table[i].count[j] = zero ? 0 : sym_table[i].count[j] * 7 / 8; } } qsort(tmp, active_count + 1, sizeof(tmp[0]), compare); write(1, CONSOLE_CLEAR, strlen(CONSOLE_CLEAR)); printf( "------------------------------------------------------------------------------\n"); printf( " KernelTop:%8.0f irqs/sec kernel:%4.1f%% [", events_per_sec, 100.0 - (100.0*((events_per_sec-kevents_per_sec)/events_per_sec))); if (nr_counters == 1) printf("%d ", event_count[0]); for (counter = 0; counter < nr_counters; counter++) { if (counter) printf("/"); printf("%s", event_name(counter)); } printf( "], "); if (target_pid != -1) printf(" (target_pid: %d", target_pid); else printf(" (all"); if (profile_cpu != -1) printf(", cpu: %d)\n", profile_cpu); else { if (target_pid != -1) printf(")\n"); else printf(", %d CPUs)\n", nr_cpus); } printf("------------------------------------------------------------------------------\n\n"); if (nr_counters == 1) printf(" events pcnt"); else printf(" weight events pcnt"); printf(" RIP kernel function\n" " ______ ______ _____ ________________ _______________\n\n" ); for (i = 0, printed = 0; i < active_count; i++) { float pcnt; if (++printed > 18 || tmp[i].count[0] < count_filter) break; pcnt = 100.0 - (100.0*((sum_kevents-tmp[i].count[0])/sum_kevents)); if (nr_counters == 1) printf("%19.2f - %4.1f%% - %016llx : %s\n", sym_weight(tmp + i), pcnt, tmp[i].addr, tmp[i].sym); else printf("%8.1f %10ld - %4.1f%% - %016llx : %s\n", sym_weight(tmp + i), tmp[i].count[0], pcnt, tmp[i].addr, tmp[i].sym); } { struct pollfd stdin_poll = { .fd = 0, .events = POLLIN }; if (poll(&stdin_poll, 1, 0) == 1) { printf("key pressed - exiting.\n"); exit(0); } } } static void *display_thread(void *arg) { printf("KernelTop refresh period: %d seconds\n", delay_secs); while (!sleep(delay_secs)) print_sym_table(); return NULL; } static int read_symbol(FILE *in, struct sym_entry *s) { static int filter_match = 0; char *sym, stype; char str[500]; int rc, pos; rc = fscanf(in, "%llx %c %499s", &s->addr, &stype, str); if (rc == EOF) return -1; assert(rc == 3); /* skip until end of line: */ pos = strlen(str); do { rc = fgetc(in); if (rc == '\n' || rc == EOF || pos >= 499) break; str[pos] = rc; pos++; } while (1); str[pos] = 0; sym = str; /* Filter out known duplicates and non-text symbols. */ if (!strcmp(sym, "_text")) return 1; if (!min_ip && !strcmp(sym, "_stext")) return 1; if (!strcmp(sym, "_etext") || !strcmp(sym, "_sinittext")) return 1; if (stype != 'T' && stype != 't') return 1; if (!strncmp("init_module", sym, 11) || !strncmp("cleanup_module", sym, 14)) return 1; if (strstr(sym, "_text_start") || strstr(sym, "_text_end")) return 1; s->sym = malloc(strlen(str)+1); assert(s->sym); strcpy((char *)s->sym, str); s->skip = 0; /* Tag events to be skipped. */ if (!strcmp("default_idle", s->sym) || !strcmp("cpu_idle", s->sym)) s->skip = 1; else if (!strcmp("enter_idle", s->sym) || !strcmp("exit_idle", s->sym)) s->skip = 1; else if (!strcmp("mwait_idle", s->sym)) s->skip = 1; if (filter_match == 1) { filter_end = s->addr; filter_match = -1; if (filter_end - filter_start > 10000) { printf("hm, too large filter symbol <%s> - skipping.\n", sym_filter); printf("symbol filter start: %016lx\n", filter_start); printf(" end: %016lx\n", filter_end); filter_end = filter_start = 0; sym_filter = NULL; sleep(1); } } if (filter_match == 0 && sym_filter && !strcmp(s->sym, sym_filter)) { filter_match = 1; filter_start = s->addr; } return 0; } static int compare_addr(const void *__sym1, const void *__sym2) { const struct sym_entry *sym1 = __sym1, *sym2 = __sym2; return sym1->addr > sym2->addr; } static void sort_symbol_table(void) { int i, dups; do { qsort(sym_table, sym_table_count, sizeof(sym_table[0]), compare_addr); for (i = 0, dups = 0; i < sym_table_count; i++) { if (sym_table[i].addr == sym_table[i+1].addr) { sym_table[i+1].addr = -1ll; dups++; } } sym_table_count -= dups; } while(dups); } static void parse_symbols(void) { struct sym_entry *last; FILE *kallsyms = fopen("/proc/kallsyms", "r"); if (!kallsyms) { printf("Could not open /proc/kallsyms - no CONFIG_KALLSYMS_ALL=y?\n"); exit(-1); } while (!feof(kallsyms)) { if (read_symbol(kallsyms, &sym_table[sym_table_count]) == 0) { sym_table_count++; assert(sym_table_count <= MAX_SYMS); } } sort_symbol_table(); min_ip = sym_table[0].addr; max_ip = sym_table[sym_table_count-1].addr; last = sym_table + sym_table_count++; last->addr = -1ll; last->sym = ""; if (filter_end) { int count; for (count=0; count < sym_table_count; count ++) { if (!strcmp(sym_table[count].sym, sym_filter)) { sym_filter_entry = &sym_table[count]; break; } } } if (dump_symtab) { int i; for (i = 0; i < sym_table_count; i++) fprintf(stderr, "%llx %s\n", sym_table[i].addr, sym_table[i].sym); } } #define TRACE_COUNT 3 /* * Binary search in the histogram table and record the hit: */ static void record_ip(uint64_t ip, int counter) { int left_idx, middle_idx, right_idx, idx; unsigned long left, middle, right; left_idx = 0; right_idx = sym_table_count-1; assert(ip <= max_ip && ip >= min_ip); while (left_idx + 1 < right_idx) { middle_idx = (left_idx + right_idx) / 2; left = sym_table[ left_idx].addr; middle = sym_table[middle_idx].addr; right = sym_table[ right_idx].addr; if (!(left <= middle && middle <= right)) { printf("%016lx...\n%016lx...\n%016lx\n", left, middle, right); printf("%d %d %d\n", left_idx, middle_idx, right_idx); } assert(left <= middle && middle <= right); if (!(left <= ip && ip <= right)) { printf(" left: %016lx\n", left); printf(" ip: %016lx\n", (unsigned long)ip); printf("right: %016lx\n", right); } assert(left <= ip && ip <= right); /* * [ left .... target .... middle .... right ] * => right := middle */ if (ip < middle) { right_idx = middle_idx; continue; } /* * [ left .... middle ... target ... right ] * => left := middle */ left_idx = middle_idx; } idx = left_idx; if (!sym_table[idx].skip) sym_table[idx].count[counter]++; else events--; } static void process_event(uint64_t ip, int counter) { events++; if (ip < min_ip || ip > max_ip) { userspace_events++; return; } record_ip(ip, counter); } struct mmap_data { int counter; void *base; unsigned int mask; unsigned int prev; }; static unsigned int mmap_read_head(struct mmap_data *md) { struct perf_counter_mmap_page *pc = md->base; int head; head = pc->data_head; rmb(); return head; } struct timeval last_read, this_read; static void mmap_read(struct mmap_data *md) { unsigned int head = mmap_read_head(md); unsigned int old = md->prev; unsigned char *data = md->base + page_size; int diff; gettimeofday(&this_read, NULL); /* * If we're further behind than half the buffer, there's a chance * the writer will bite our tail and screw up the events under us. * * If we somehow ended up ahead of the head, we got messed up. * * In either case, truncate and restart at head. */ diff = head - old; if (diff > md->mask / 2 || diff < 0) { struct timeval iv; unsigned long msecs; timersub(&this_read, &last_read, &iv); msecs = iv.tv_sec*1000 + iv.tv_usec/1000; fprintf(stderr, "WARNING: failed to keep up with mmap data." " Last read %lu msecs ago.\n", msecs); /* * head points to a known good entry, start there. */ old = head; } last_read = this_read; for (; old != head;) { struct ip_event { struct perf_event_header header; __u64 ip; __u32 pid, target_pid; }; struct mmap_event { struct perf_event_header header; __u32 pid, target_pid; __u64 start; __u64 len; __u64 pgoff; char filename[PATH_MAX]; }; typedef union event_union { struct perf_event_header header; struct ip_event ip; struct mmap_event mmap; } event_t; event_t *event = (event_t *)&data[old & md->mask]; event_t event_copy; size_t size = event->header.size; /* * Event straddles the mmap boundary -- header should always * be inside due to u64 alignment of output. */ if ((old & md->mask) + size != ((old + size) & md->mask)) { unsigned int offset = old; unsigned int len = min(sizeof(*event), size), cpy; void *dst = &event_copy; do { cpy = min(md->mask + 1 - (offset & md->mask), len); memcpy(dst, &data[offset & md->mask], cpy); offset += cpy; dst += cpy; len -= cpy; } while (len); event = &event_copy; } old += size; if (event->header.misc & PERF_EVENT_MISC_OVERFLOW) { if (event->header.type & PERF_RECORD_IP) process_event(event->ip.ip, md->counter); } else { switch (event->header.type) { case PERF_EVENT_MMAP: case PERF_EVENT_MUNMAP: printf("%s: %Lu %Lu %Lu %s\n", event->header.type == PERF_EVENT_MMAP ? "mmap" : "munmap", event->mmap.start, event->mmap.len, event->mmap.pgoff, event->mmap.filename); break; } } } md->prev = old; } static struct pollfd event_array[MAX_NR_CPUS * MAX_COUNTERS]; static struct mmap_data mmap_array[MAX_NR_CPUS][MAX_COUNTERS]; static int __cmd_top(void) { struct perf_counter_hw_event hw_event; pthread_t thread; int i, counter, group_fd, nr_poll = 0; unsigned int cpu; int ret; for (i = 0; i < nr_cpus; i++) { group_fd = -1; for (counter = 0; counter < nr_counters; counter++) { cpu = profile_cpu; if (target_pid == -1 && profile_cpu == -1) cpu = i; memset(&hw_event, 0, sizeof(hw_event)); hw_event.config = event_id[counter]; hw_event.irq_period = event_count[counter]; hw_event.record_type = PERF_RECORD_IP | PERF_RECORD_TID; hw_event.nmi = 1; hw_event.mmap = use_mmap; hw_event.munmap = use_munmap; hw_event.freq = freq; fd[i][counter] = sys_perf_counter_open(&hw_event, target_pid, cpu, group_fd, 0); if (fd[i][counter] < 0) { int err = errno; printf("kerneltop error: syscall returned with %d (%s)\n", fd[i][counter], strerror(err)); if (err == EPERM) printf("Are you root?\n"); exit(-1); } assert(fd[i][counter] >= 0); fcntl(fd[i][counter], F_SETFL, O_NONBLOCK); /* * First counter acts as the group leader: */ if (group && group_fd == -1) group_fd = fd[i][counter]; event_array[nr_poll].fd = fd[i][counter]; event_array[nr_poll].events = POLLIN; nr_poll++; mmap_array[i][counter].counter = counter; mmap_array[i][counter].prev = 0; mmap_array[i][counter].mask = mmap_pages*page_size - 1; mmap_array[i][counter].base = mmap(NULL, (mmap_pages+1)*page_size, PROT_READ, MAP_SHARED, fd[i][counter], 0); if (mmap_array[i][counter].base == MAP_FAILED) { printf("kerneltop error: failed to mmap with %d (%s)\n", errno, strerror(errno)); exit(-1); } } } if (pthread_create(&thread, NULL, display_thread, NULL)) { printf("Could not create display thread.\n"); exit(-1); } if (realtime_prio) { struct sched_param param; param.sched_priority = realtime_prio; if (sched_setscheduler(0, SCHED_FIFO, ¶m)) { printf("Could not set realtime priority.\n"); exit(-1); } } while (1) { int hits = events; for (i = 0; i < nr_cpus; i++) { for (counter = 0; counter < nr_counters; counter++) mmap_read(&mmap_array[i][counter]); } if (hits == events) ret = poll(event_array, nr_poll, 100); } return 0; } static const char * const top_usage[] = { "perf top []", NULL }; static char events_help_msg[EVENTS_HELP_MAX]; static const struct option options[] = { OPT_CALLBACK('e', "event", NULL, "event", events_help_msg, parse_events), OPT_INTEGER('c', "count", &default_interval, "event period to sample"), OPT_INTEGER('p', "pid", &target_pid, "profile events on existing pid"), OPT_BOOLEAN('a', "all-cpus", &system_wide, "system-wide collection from all CPUs"), OPT_INTEGER('C', "CPU", &profile_cpu, "CPU to profile on"), OPT_INTEGER('m', "mmap-pages", &mmap_pages, "number of mmap data pages"), OPT_INTEGER('r', "realtime", &realtime_prio, "collect data with this RT SCHED_FIFO priority"), OPT_INTEGER('d', "delay", &realtime_prio, "number of seconds to delay between refreshes"), OPT_BOOLEAN('D', "dump-symtab", &dump_symtab, "dump the symbol table used for profiling"), OPT_INTEGER('f', "--count-filter", &count_filter, "only display functions with more events than this"), OPT_BOOLEAN('g', "group", &group, "put the counters into a counter group"), OPT_STRING('s', "sym-filter", &sym_filter, "pattern", "only display symbols matchig this pattern"), OPT_BOOLEAN('z', "zero", &group, "zero history across updates"), OPT_BOOLEAN('M', "use-mmap", &use_mmap, "track mmap events"), OPT_BOOLEAN('U', "use-munmap", &use_munmap, "track munmap events"), OPT_INTEGER('F', "--freq", &freq, "profile at this frequency"), OPT_END() }; int cmd_top(int argc, const char **argv, const char *prefix) { int counter; page_size = sysconf(_SC_PAGE_SIZE); create_events_help(events_help_msg); memcpy(event_id, default_event_id, sizeof(default_event_id)); argc = parse_options(argc, argv, options, top_usage, 0); if (argc) usage_with_options(top_usage, options); if (freq) { default_interval = freq; freq = 1; } /* CPU and PID are mutually exclusive */ if (target_pid != -1 && profile_cpu != -1) { printf("WARNING: PID switch overriding CPU\n"); sleep(1); profile_cpu = -1; } if (!nr_counters) { nr_counters = 1; event_id[0] = 0; } for (counter = 0; counter < nr_counters; counter++) { if (event_count[counter]) continue; event_count[counter] = default_interval; } nr_cpus = sysconf(_SC_NPROCESSORS_ONLN); assert(nr_cpus <= MAX_NR_CPUS); assert(nr_cpus >= 0); if (target_pid != -1 || profile_cpu != -1) nr_cpus = 1; parse_symbols(); return __cmd_top(); }