/* * Copyright © 2012 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eugeni Dodonov * */ #include "i915_drv.h" #include "intel_drv.h" /* FBC, or Frame Buffer Compression, is a technique employed to compress the * framebuffer contents in-memory, aiming at reducing the required bandwidth * during in-memory transfers and, therefore, reduce the power packet. * * The benefits of FBC are mostly visible with solid backgrounds and * variation-less patterns. * * FBC-related functionality can be enabled by the means of the * i915.i915_enable_fbc parameter */ void i8xx_disable_fbc(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u32 fbc_ctl; /* Disable compression */ fbc_ctl = I915_READ(FBC_CONTROL); if ((fbc_ctl & FBC_CTL_EN) == 0) return; fbc_ctl &= ~FBC_CTL_EN; I915_WRITE(FBC_CONTROL, fbc_ctl); /* Wait for compressing bit to clear */ if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) { DRM_DEBUG_KMS("FBC idle timed out\n"); return; } DRM_DEBUG_KMS("disabled FBC\n"); } void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_framebuffer *fb = crtc->fb; struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); struct drm_i915_gem_object *obj = intel_fb->obj; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int cfb_pitch; int plane, i; u32 fbc_ctl, fbc_ctl2; cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE; if (fb->pitches[0] < cfb_pitch) cfb_pitch = fb->pitches[0]; /* FBC_CTL wants 64B units */ cfb_pitch = (cfb_pitch / 64) - 1; plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB; /* Clear old tags */ for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++) I915_WRITE(FBC_TAG + (i * 4), 0); /* Set it up... */ fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE; fbc_ctl2 |= plane; I915_WRITE(FBC_CONTROL2, fbc_ctl2); I915_WRITE(FBC_FENCE_OFF, crtc->y); /* enable it... */ fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC; if (IS_I945GM(dev)) fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */ fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT; fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT; fbc_ctl |= obj->fence_reg; I915_WRITE(FBC_CONTROL, fbc_ctl); DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ", cfb_pitch, crtc->y, intel_crtc->plane); } bool i8xx_fbc_enabled(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; return I915_READ(FBC_CONTROL) & FBC_CTL_EN; } void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_framebuffer *fb = crtc->fb; struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); struct drm_i915_gem_object *obj = intel_fb->obj; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB; unsigned long stall_watermark = 200; u32 dpfc_ctl; dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X; dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg; I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY); I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN | (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) | (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT)); I915_WRITE(DPFC_FENCE_YOFF, crtc->y); /* enable it... */ I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN); DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane); } void g4x_disable_fbc(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u32 dpfc_ctl; /* Disable compression */ dpfc_ctl = I915_READ(DPFC_CONTROL); if (dpfc_ctl & DPFC_CTL_EN) { dpfc_ctl &= ~DPFC_CTL_EN; I915_WRITE(DPFC_CONTROL, dpfc_ctl); DRM_DEBUG_KMS("disabled FBC\n"); } } bool g4x_fbc_enabled(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN; } static void sandybridge_blit_fbc_update(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u32 blt_ecoskpd; /* Make sure blitter notifies FBC of writes */ gen6_gt_force_wake_get(dev_priv); blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD); blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY << GEN6_BLITTER_LOCK_SHIFT; I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd); blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY; I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd); blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY << GEN6_BLITTER_LOCK_SHIFT); I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd); POSTING_READ(GEN6_BLITTER_ECOSKPD); gen6_gt_force_wake_put(dev_priv); } void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_framebuffer *fb = crtc->fb; struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); struct drm_i915_gem_object *obj = intel_fb->obj; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB; unsigned long stall_watermark = 200; u32 dpfc_ctl; dpfc_ctl = I915_READ(ILK_DPFC_CONTROL); dpfc_ctl &= DPFC_RESERVED; dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X); /* Set persistent mode for front-buffer rendering, ala X. */ dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE; dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg); I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY); I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN | (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) | (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT)); I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y); I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID); /* enable it... */ I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN); if (IS_GEN6(dev)) { I915_WRITE(SNB_DPFC_CTL_SA, SNB_CPU_FENCE_ENABLE | obj->fence_reg); I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y); sandybridge_blit_fbc_update(dev); } DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane); } void ironlake_disable_fbc(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u32 dpfc_ctl; /* Disable compression */ dpfc_ctl = I915_READ(ILK_DPFC_CONTROL); if (dpfc_ctl & DPFC_CTL_EN) { dpfc_ctl &= ~DPFC_CTL_EN; I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl); DRM_DEBUG_KMS("disabled FBC\n"); } } bool ironlake_fbc_enabled(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN; } bool intel_fbc_enabled(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; if (!dev_priv->display.fbc_enabled) return false; return dev_priv->display.fbc_enabled(dev); } static void intel_fbc_work_fn(struct work_struct *__work) { struct intel_fbc_work *work = container_of(to_delayed_work(__work), struct intel_fbc_work, work); struct drm_device *dev = work->crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; mutex_lock(&dev->struct_mutex); if (work == dev_priv->fbc_work) { /* Double check that we haven't switched fb without cancelling * the prior work. */ if (work->crtc->fb == work->fb) { dev_priv->display.enable_fbc(work->crtc, work->interval); dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane; dev_priv->cfb_fb = work->crtc->fb->base.id; dev_priv->cfb_y = work->crtc->y; } dev_priv->fbc_work = NULL; } mutex_unlock(&dev->struct_mutex); kfree(work); } static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv) { if (dev_priv->fbc_work == NULL) return; DRM_DEBUG_KMS("cancelling pending FBC enable\n"); /* Synchronisation is provided by struct_mutex and checking of * dev_priv->fbc_work, so we can perform the cancellation * entirely asynchronously. */ if (cancel_delayed_work(&dev_priv->fbc_work->work)) /* tasklet was killed before being run, clean up */ kfree(dev_priv->fbc_work); /* Mark the work as no longer wanted so that if it does * wake-up (because the work was already running and waiting * for our mutex), it will discover that is no longer * necessary to run. */ dev_priv->fbc_work = NULL; } void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval) { struct intel_fbc_work *work; struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; if (!dev_priv->display.enable_fbc) return; intel_cancel_fbc_work(dev_priv); work = kzalloc(sizeof *work, GFP_KERNEL); if (work == NULL) { dev_priv->display.enable_fbc(crtc, interval); return; } work->crtc = crtc; work->fb = crtc->fb; work->interval = interval; INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn); dev_priv->fbc_work = work; DRM_DEBUG_KMS("scheduling delayed FBC enable\n"); /* Delay the actual enabling to let pageflipping cease and the * display to settle before starting the compression. Note that * this delay also serves a second purpose: it allows for a * vblank to pass after disabling the FBC before we attempt * to modify the control registers. * * A more complicated solution would involve tracking vblanks * following the termination of the page-flipping sequence * and indeed performing the enable as a co-routine and not * waiting synchronously upon the vblank. */ schedule_delayed_work(&work->work, msecs_to_jiffies(50)); } void intel_disable_fbc(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; intel_cancel_fbc_work(dev_priv); if (!dev_priv->display.disable_fbc) return; dev_priv->display.disable_fbc(dev); dev_priv->cfb_plane = -1; } /** * intel_update_fbc - enable/disable FBC as needed * @dev: the drm_device * * Set up the framebuffer compression hardware at mode set time. We * enable it if possible: * - plane A only (on pre-965) * - no pixel mulitply/line duplication * - no alpha buffer discard * - no dual wide * - framebuffer <= 2048 in width, 1536 in height * * We can't assume that any compression will take place (worst case), * so the compressed buffer has to be the same size as the uncompressed * one. It also must reside (along with the line length buffer) in * stolen memory. * * We need to enable/disable FBC on a global basis. */ void intel_update_fbc(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_crtc *crtc = NULL, *tmp_crtc; struct intel_crtc *intel_crtc; struct drm_framebuffer *fb; struct intel_framebuffer *intel_fb; struct drm_i915_gem_object *obj; int enable_fbc; DRM_DEBUG_KMS("\n"); if (!i915_powersave) return; if (!I915_HAS_FBC(dev)) return; /* * If FBC is already on, we just have to verify that we can * keep it that way... * Need to disable if: * - more than one pipe is active * - changing FBC params (stride, fence, mode) * - new fb is too large to fit in compressed buffer * - going to an unsupported config (interlace, pixel multiply, etc.) */ list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) { if (tmp_crtc->enabled && tmp_crtc->fb) { if (crtc) { DRM_DEBUG_KMS("more than one pipe active, disabling compression\n"); dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES; goto out_disable; } crtc = tmp_crtc; } } if (!crtc || crtc->fb == NULL) { DRM_DEBUG_KMS("no output, disabling\n"); dev_priv->no_fbc_reason = FBC_NO_OUTPUT; goto out_disable; } intel_crtc = to_intel_crtc(crtc); fb = crtc->fb; intel_fb = to_intel_framebuffer(fb); obj = intel_fb->obj; enable_fbc = i915_enable_fbc; if (enable_fbc < 0) { DRM_DEBUG_KMS("fbc set to per-chip default\n"); enable_fbc = 1; if (INTEL_INFO(dev)->gen <= 6) enable_fbc = 0; } if (!enable_fbc) { DRM_DEBUG_KMS("fbc disabled per module param\n"); dev_priv->no_fbc_reason = FBC_MODULE_PARAM; goto out_disable; } if (intel_fb->obj->base.size > dev_priv->cfb_size) { DRM_DEBUG_KMS("framebuffer too large, disabling " "compression\n"); dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL; goto out_disable; } if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) || (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) { DRM_DEBUG_KMS("mode incompatible with compression, " "disabling\n"); dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE; goto out_disable; } if ((crtc->mode.hdisplay > 2048) || (crtc->mode.vdisplay > 1536)) { DRM_DEBUG_KMS("mode too large for compression, disabling\n"); dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE; goto out_disable; } if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) { DRM_DEBUG_KMS("plane not 0, disabling compression\n"); dev_priv->no_fbc_reason = FBC_BAD_PLANE; goto out_disable; } /* The use of a CPU fence is mandatory in order to detect writes * by the CPU to the scanout and trigger updates to the FBC. */ if (obj->tiling_mode != I915_TILING_X || obj->fence_reg == I915_FENCE_REG_NONE) { DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n"); dev_priv->no_fbc_reason = FBC_NOT_TILED; goto out_disable; } /* If the kernel debugger is active, always disable compression */ if (in_dbg_master()) goto out_disable; /* If the scanout has not changed, don't modify the FBC settings. * Note that we make the fundamental assumption that the fb->obj * cannot be unpinned (and have its GTT offset and fence revoked) * without first being decoupled from the scanout and FBC disabled. */ if (dev_priv->cfb_plane == intel_crtc->plane && dev_priv->cfb_fb == fb->base.id && dev_priv->cfb_y == crtc->y) return; if (intel_fbc_enabled(dev)) { /* We update FBC along two paths, after changing fb/crtc * configuration (modeswitching) and after page-flipping * finishes. For the latter, we know that not only did * we disable the FBC at the start of the page-flip * sequence, but also more than one vblank has passed. * * For the former case of modeswitching, it is possible * to switch between two FBC valid configurations * instantaneously so we do need to disable the FBC * before we can modify its control registers. We also * have to wait for the next vblank for that to take * effect. However, since we delay enabling FBC we can * assume that a vblank has passed since disabling and * that we can safely alter the registers in the deferred * callback. * * In the scenario that we go from a valid to invalid * and then back to valid FBC configuration we have * no strict enforcement that a vblank occurred since * disabling the FBC. However, along all current pipe * disabling paths we do need to wait for a vblank at * some point. And we wait before enabling FBC anyway. */ DRM_DEBUG_KMS("disabling active FBC for update\n"); intel_disable_fbc(dev); } intel_enable_fbc(crtc, 500); return; out_disable: /* Multiple disables should be harmless */ if (intel_fbc_enabled(dev)) { DRM_DEBUG_KMS("unsupported config, disabling FBC\n"); intel_disable_fbc(dev); } } static const struct cxsr_latency cxsr_latency_table[] = { {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */ {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */ {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */ {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */ {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */ {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */ {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */ {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */ {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */ {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */ {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */ {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */ {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */ {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */ {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */ {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */ {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */ {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */ {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */ {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */ {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */ {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */ {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */ {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */ {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */ {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */ {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */ {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */ {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */ {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */ }; const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int is_ddr3, int fsb, int mem) { const struct cxsr_latency *latency; int i; if (fsb == 0 || mem == 0) return NULL; for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) { latency = &cxsr_latency_table[i]; if (is_desktop == latency->is_desktop && is_ddr3 == latency->is_ddr3 && fsb == latency->fsb_freq && mem == latency->mem_freq) return latency; } DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n"); return NULL; } void pineview_disable_cxsr(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; /* deactivate cxsr */ I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN); } /* * Latency for FIFO fetches is dependent on several factors: * - memory configuration (speed, channels) * - chipset * - current MCH state * It can be fairly high in some situations, so here we assume a fairly * pessimal value. It's a tradeoff between extra memory fetches (if we * set this value too high, the FIFO will fetch frequently to stay full) * and power consumption (set it too low to save power and we might see * FIFO underruns and display "flicker"). * * A value of 5us seems to be a good balance; safe for very low end * platforms but not overly aggressive on lower latency configs. */ static const int latency_ns = 5000; int i9xx_get_fifo_size(struct drm_device *dev, int plane) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t dsparb = I915_READ(DSPARB); int size; size = dsparb & 0x7f; if (plane) size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size; DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A", size); return size; } int i85x_get_fifo_size(struct drm_device *dev, int plane) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t dsparb = I915_READ(DSPARB); int size; size = dsparb & 0x1ff; if (plane) size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size; size >>= 1; /* Convert to cachelines */ DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A", size); return size; } int i845_get_fifo_size(struct drm_device *dev, int plane) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t dsparb = I915_READ(DSPARB); int size; size = dsparb & 0x7f; size >>= 2; /* Convert to cachelines */ DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A", size); return size; } int i830_get_fifo_size(struct drm_device *dev, int plane) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t dsparb = I915_READ(DSPARB); int size; size = dsparb & 0x7f; size >>= 1; /* Convert to cachelines */ DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A", size); return size; } /* Pineview has different values for various configs */ static const struct intel_watermark_params pineview_display_wm = { PINEVIEW_DISPLAY_FIFO, PINEVIEW_MAX_WM, PINEVIEW_DFT_WM, PINEVIEW_GUARD_WM, PINEVIEW_FIFO_LINE_SIZE }; static const struct intel_watermark_params pineview_display_hplloff_wm = { PINEVIEW_DISPLAY_FIFO, PINEVIEW_MAX_WM, PINEVIEW_DFT_HPLLOFF_WM, PINEVIEW_GUARD_WM, PINEVIEW_FIFO_LINE_SIZE }; static const struct intel_watermark_params pineview_cursor_wm = { PINEVIEW_CURSOR_FIFO, PINEVIEW_CURSOR_MAX_WM, PINEVIEW_CURSOR_DFT_WM, PINEVIEW_CURSOR_GUARD_WM, PINEVIEW_FIFO_LINE_SIZE, }; static const struct intel_watermark_params pineview_cursor_hplloff_wm = { PINEVIEW_CURSOR_FIFO, PINEVIEW_CURSOR_MAX_WM, PINEVIEW_CURSOR_DFT_WM, PINEVIEW_CURSOR_GUARD_WM, PINEVIEW_FIFO_LINE_SIZE }; static const struct intel_watermark_params g4x_wm_info = { G4X_FIFO_SIZE, G4X_MAX_WM, G4X_MAX_WM, 2, G4X_FIFO_LINE_SIZE, }; static const struct intel_watermark_params g4x_cursor_wm_info = { I965_CURSOR_FIFO, I965_CURSOR_MAX_WM, I965_CURSOR_DFT_WM, 2, G4X_FIFO_LINE_SIZE, }; static const struct intel_watermark_params valleyview_wm_info = { VALLEYVIEW_FIFO_SIZE, VALLEYVIEW_MAX_WM, VALLEYVIEW_MAX_WM, 2, G4X_FIFO_LINE_SIZE, }; static const struct intel_watermark_params valleyview_cursor_wm_info = { I965_CURSOR_FIFO, VALLEYVIEW_CURSOR_MAX_WM, I965_CURSOR_DFT_WM, 2, G4X_FIFO_LINE_SIZE, }; static const struct intel_watermark_params i965_cursor_wm_info = { I965_CURSOR_FIFO, I965_CURSOR_MAX_WM, I965_CURSOR_DFT_WM, 2, I915_FIFO_LINE_SIZE, }; static const struct intel_watermark_params i945_wm_info = { I945_FIFO_SIZE, I915_MAX_WM, 1, 2, I915_FIFO_LINE_SIZE }; static const struct intel_watermark_params i915_wm_info = { I915_FIFO_SIZE, I915_MAX_WM, 1, 2, I915_FIFO_LINE_SIZE }; static const struct intel_watermark_params i855_wm_info = { I855GM_FIFO_SIZE, I915_MAX_WM, 1, 2, I830_FIFO_LINE_SIZE }; static const struct intel_watermark_params i830_wm_info = { I830_FIFO_SIZE, I915_MAX_WM, 1, 2, I830_FIFO_LINE_SIZE }; static const struct intel_watermark_params ironlake_display_wm_info = { ILK_DISPLAY_FIFO, ILK_DISPLAY_MAXWM, ILK_DISPLAY_DFTWM, 2, ILK_FIFO_LINE_SIZE }; static const struct intel_watermark_params ironlake_cursor_wm_info = { ILK_CURSOR_FIFO, ILK_CURSOR_MAXWM, ILK_CURSOR_DFTWM, 2, ILK_FIFO_LINE_SIZE }; static const struct intel_watermark_params ironlake_display_srwm_info = { ILK_DISPLAY_SR_FIFO, ILK_DISPLAY_MAX_SRWM, ILK_DISPLAY_DFT_SRWM, 2, ILK_FIFO_LINE_SIZE }; static const struct intel_watermark_params ironlake_cursor_srwm_info = { ILK_CURSOR_SR_FIFO, ILK_CURSOR_MAX_SRWM, ILK_CURSOR_DFT_SRWM, 2, ILK_FIFO_LINE_SIZE }; static const struct intel_watermark_params sandybridge_display_wm_info = { SNB_DISPLAY_FIFO, SNB_DISPLAY_MAXWM, SNB_DISPLAY_DFTWM, 2, SNB_FIFO_LINE_SIZE }; static const struct intel_watermark_params sandybridge_cursor_wm_info = { SNB_CURSOR_FIFO, SNB_CURSOR_MAXWM, SNB_CURSOR_DFTWM, 2, SNB_FIFO_LINE_SIZE }; static const struct intel_watermark_params sandybridge_display_srwm_info = { SNB_DISPLAY_SR_FIFO, SNB_DISPLAY_MAX_SRWM, SNB_DISPLAY_DFT_SRWM, 2, SNB_FIFO_LINE_SIZE }; static const struct intel_watermark_params sandybridge_cursor_srwm_info = { SNB_CURSOR_SR_FIFO, SNB_CURSOR_MAX_SRWM, SNB_CURSOR_DFT_SRWM, 2, SNB_FIFO_LINE_SIZE }; /** * intel_calculate_wm - calculate watermark level * @clock_in_khz: pixel clock * @wm: chip FIFO params * @pixel_size: display pixel size * @latency_ns: memory latency for the platform * * Calculate the watermark level (the level at which the display plane will * start fetching from memory again). Each chip has a different display * FIFO size and allocation, so the caller needs to figure that out and pass * in the correct intel_watermark_params structure. * * As the pixel clock runs, the FIFO will be drained at a rate that depends * on the pixel size. When it reaches the watermark level, it'll start * fetching FIFO line sized based chunks from memory until the FIFO fills * past the watermark point. If the FIFO drains completely, a FIFO underrun * will occur, and a display engine hang could result. */ static unsigned long intel_calculate_wm(unsigned long clock_in_khz, const struct intel_watermark_params *wm, int fifo_size, int pixel_size, unsigned long latency_ns) { long entries_required, wm_size; /* * Note: we need to make sure we don't overflow for various clock & * latency values. * clocks go from a few thousand to several hundred thousand. * latency is usually a few thousand */ entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) / 1000; entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size); DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required); wm_size = fifo_size - (entries_required + wm->guard_size); DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size); /* Don't promote wm_size to unsigned... */ if (wm_size > (long)wm->max_wm) wm_size = wm->max_wm; if (wm_size <= 0) wm_size = wm->default_wm; return wm_size; } static struct drm_crtc *single_enabled_crtc(struct drm_device *dev) { struct drm_crtc *crtc, *enabled = NULL; list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { if (crtc->enabled && crtc->fb) { if (enabled) return NULL; enabled = crtc; } } return enabled; } void pineview_update_wm(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_crtc *crtc; const struct cxsr_latency *latency; u32 reg; unsigned long wm; latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3, dev_priv->fsb_freq, dev_priv->mem_freq); if (!latency) { DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n"); pineview_disable_cxsr(dev); return; } crtc = single_enabled_crtc(dev); if (crtc) { int clock = crtc->mode.clock; int pixel_size = crtc->fb->bits_per_pixel / 8; /* Display SR */ wm = intel_calculate_wm(clock, &pineview_display_wm, pineview_display_wm.fifo_size, pixel_size, latency->display_sr); reg = I915_READ(DSPFW1); reg &= ~DSPFW_SR_MASK; reg |= wm << DSPFW_SR_SHIFT; I915_WRITE(DSPFW1, reg); DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg); /* cursor SR */ wm = intel_calculate_wm(clock, &pineview_cursor_wm, pineview_display_wm.fifo_size, pixel_size, latency->cursor_sr); reg = I915_READ(DSPFW3); reg &= ~DSPFW_CURSOR_SR_MASK; reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT; I915_WRITE(DSPFW3, reg); /* Display HPLL off SR */ wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm, pineview_display_hplloff_wm.fifo_size, pixel_size, latency->display_hpll_disable); reg = I915_READ(DSPFW3); reg &= ~DSPFW_HPLL_SR_MASK; reg |= wm & DSPFW_HPLL_SR_MASK; I915_WRITE(DSPFW3, reg); /* cursor HPLL off SR */ wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm, pineview_display_hplloff_wm.fifo_size, pixel_size, latency->cursor_hpll_disable); reg = I915_READ(DSPFW3); reg &= ~DSPFW_HPLL_CURSOR_MASK; reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT; I915_WRITE(DSPFW3, reg); DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg); /* activate cxsr */ I915_WRITE(DSPFW3, I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN); DRM_DEBUG_KMS("Self-refresh is enabled\n"); } else { pineview_disable_cxsr(dev); DRM_DEBUG_KMS("Self-refresh is disabled\n"); } } static bool g4x_compute_wm0(struct drm_device *dev, int plane, const struct intel_watermark_params *display, int display_latency_ns, const struct intel_watermark_params *cursor, int cursor_latency_ns, int *plane_wm, int *cursor_wm) { struct drm_crtc *crtc; int htotal, hdisplay, clock, pixel_size; int line_time_us, line_count; int entries, tlb_miss; crtc = intel_get_crtc_for_plane(dev, plane); if (crtc->fb == NULL || !crtc->enabled) { *cursor_wm = cursor->guard_size; *plane_wm = display->guard_size; return false; } htotal = crtc->mode.htotal; hdisplay = crtc->mode.hdisplay; clock = crtc->mode.clock; pixel_size = crtc->fb->bits_per_pixel / 8; /* Use the small buffer method to calculate plane watermark */ entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000; tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8; if (tlb_miss > 0) entries += tlb_miss; entries = DIV_ROUND_UP(entries, display->cacheline_size); *plane_wm = entries + display->guard_size; if (*plane_wm > (int)display->max_wm) *plane_wm = display->max_wm; /* Use the large buffer method to calculate cursor watermark */ line_time_us = ((htotal * 1000) / clock); line_count = (cursor_latency_ns / line_time_us + 1000) / 1000; entries = line_count * 64 * pixel_size; tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8; if (tlb_miss > 0) entries += tlb_miss; entries = DIV_ROUND_UP(entries, cursor->cacheline_size); *cursor_wm = entries + cursor->guard_size; if (*cursor_wm > (int)cursor->max_wm) *cursor_wm = (int)cursor->max_wm; return true; } /* * Check the wm result. * * If any calculated watermark values is larger than the maximum value that * can be programmed into the associated watermark register, that watermark * must be disabled. */ static bool g4x_check_srwm(struct drm_device *dev, int display_wm, int cursor_wm, const struct intel_watermark_params *display, const struct intel_watermark_params *cursor) { DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n", display_wm, cursor_wm); if (display_wm > display->max_wm) { DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n", display_wm, display->max_wm); return false; } if (cursor_wm > cursor->max_wm) { DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n", cursor_wm, cursor->max_wm); return false; } if (!(display_wm || cursor_wm)) { DRM_DEBUG_KMS("SR latency is 0, disabling\n"); return false; } return true; } static bool g4x_compute_srwm(struct drm_device *dev, int plane, int latency_ns, const struct intel_watermark_params *display, const struct intel_watermark_params *cursor, int *display_wm, int *cursor_wm) { struct drm_crtc *crtc; int hdisplay, htotal, pixel_size, clock; unsigned long line_time_us; int line_count, line_size; int small, large; int entries; if (!latency_ns) { *display_wm = *cursor_wm = 0; return false; } crtc = intel_get_crtc_for_plane(dev, plane); hdisplay = crtc->mode.hdisplay; htotal = crtc->mode.htotal; clock = crtc->mode.clock; pixel_size = crtc->fb->bits_per_pixel / 8; line_time_us = (htotal * 1000) / clock; line_count = (latency_ns / line_time_us + 1000) / 1000; line_size = hdisplay * pixel_size; /* Use the minimum of the small and large buffer method for primary */ small = ((clock * pixel_size / 1000) * latency_ns) / 1000; large = line_count * line_size; entries = DIV_ROUND_UP(min(small, large), display->cacheline_size); *display_wm = entries + display->guard_size; /* calculate the self-refresh watermark for display cursor */ entries = line_count * pixel_size * 64; entries = DIV_ROUND_UP(entries, cursor->cacheline_size); *cursor_wm = entries + cursor->guard_size; return g4x_check_srwm(dev, *display_wm, *cursor_wm, display, cursor); } static bool vlv_compute_drain_latency(struct drm_device *dev, int plane, int *plane_prec_mult, int *plane_dl, int *cursor_prec_mult, int *cursor_dl) { struct drm_crtc *crtc; int clock, pixel_size; int entries; crtc = intel_get_crtc_for_plane(dev, plane); if (crtc->fb == NULL || !crtc->enabled) return false; clock = crtc->mode.clock; /* VESA DOT Clock */ pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */ entries = (clock / 1000) * pixel_size; *plane_prec_mult = (entries > 256) ? DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16; *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) * pixel_size); entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */ *cursor_prec_mult = (entries > 256) ? DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16; *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4); return true; } /* * Update drain latency registers of memory arbiter * * Valleyview SoC has a new memory arbiter and needs drain latency registers * to be programmed. Each plane has a drain latency multiplier and a drain * latency value. */ static void vlv_update_drain_latency(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; int planea_prec, planea_dl, planeb_prec, planeb_dl; int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl; int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is either 16 or 32 */ /* For plane A, Cursor A */ if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl, &cursor_prec_mult, &cursora_dl)) { cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ? DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16; planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ? DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16; I915_WRITE(VLV_DDL1, cursora_prec | (cursora_dl << DDL_CURSORA_SHIFT) | planea_prec | planea_dl); } /* For plane B, Cursor B */ if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl, &cursor_prec_mult, &cursorb_dl)) { cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ? DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16; planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ? DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16; I915_WRITE(VLV_DDL2, cursorb_prec | (cursorb_dl << DDL_CURSORB_SHIFT) | planeb_prec | planeb_dl); } } #define single_plane_enabled(mask) is_power_of_2(mask) void valleyview_update_wm(struct drm_device *dev) { static const int sr_latency_ns = 12000; struct drm_i915_private *dev_priv = dev->dev_private; int planea_wm, planeb_wm, cursora_wm, cursorb_wm; int plane_sr, cursor_sr; unsigned int enabled = 0; vlv_update_drain_latency(dev); if (g4x_compute_wm0(dev, 0, &valleyview_wm_info, latency_ns, &valleyview_cursor_wm_info, latency_ns, &planea_wm, &cursora_wm)) enabled |= 1; if (g4x_compute_wm0(dev, 1, &valleyview_wm_info, latency_ns, &valleyview_cursor_wm_info, latency_ns, &planeb_wm, &cursorb_wm)) enabled |= 2; plane_sr = cursor_sr = 0; if (single_plane_enabled(enabled) && g4x_compute_srwm(dev, ffs(enabled) - 1, sr_latency_ns, &valleyview_wm_info, &valleyview_cursor_wm_info, &plane_sr, &cursor_sr)) I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN); else I915_WRITE(FW_BLC_SELF_VLV, I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN); DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n", planea_wm, cursora_wm, planeb_wm, cursorb_wm, plane_sr, cursor_sr); I915_WRITE(DSPFW1, (plane_sr << DSPFW_SR_SHIFT) | (cursorb_wm << DSPFW_CURSORB_SHIFT) | (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm); I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) | (cursora_wm << DSPFW_CURSORA_SHIFT)); I915_WRITE(DSPFW3, (I915_READ(DSPFW3) | (cursor_sr << DSPFW_CURSOR_SR_SHIFT))); } void g4x_update_wm(struct drm_device *dev) { static const int sr_latency_ns = 12000; struct drm_i915_private *dev_priv = dev->dev_private; int planea_wm, planeb_wm, cursora_wm, cursorb_wm; int plane_sr, cursor_sr; unsigned int enabled = 0; if (g4x_compute_wm0(dev, 0, &g4x_wm_info, latency_ns, &g4x_cursor_wm_info, latency_ns, &planea_wm, &cursora_wm)) enabled |= 1; if (g4x_compute_wm0(dev, 1, &g4x_wm_info, latency_ns, &g4x_cursor_wm_info, latency_ns, &planeb_wm, &cursorb_wm)) enabled |= 2; plane_sr = cursor_sr = 0; if (single_plane_enabled(enabled) && g4x_compute_srwm(dev, ffs(enabled) - 1, sr_latency_ns, &g4x_wm_info, &g4x_cursor_wm_info, &plane_sr, &cursor_sr)) I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN); else I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN); DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n", planea_wm, cursora_wm, planeb_wm, cursorb_wm, plane_sr, cursor_sr); I915_WRITE(DSPFW1, (plane_sr << DSPFW_SR_SHIFT) | (cursorb_wm << DSPFW_CURSORB_SHIFT) | (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm); I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) | (cursora_wm << DSPFW_CURSORA_SHIFT)); /* HPLL off in SR has some issues on G4x... disable it */ I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) | (cursor_sr << DSPFW_CURSOR_SR_SHIFT)); } void i965_update_wm(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_crtc *crtc; int srwm = 1; int cursor_sr = 16; /* Calc sr entries for one plane configs */ crtc = single_enabled_crtc(dev); if (crtc) { /* self-refresh has much higher latency */ static const int sr_latency_ns = 12000; int clock = crtc->mode.clock; int htotal = crtc->mode.htotal; int hdisplay = crtc->mode.hdisplay; int pixel_size = crtc->fb->bits_per_pixel / 8; unsigned long line_time_us; int entries; line_time_us = ((htotal * 1000) / clock); /* Use ns/us then divide to preserve precision */ entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) * pixel_size * hdisplay; entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE); srwm = I965_FIFO_SIZE - entries; if (srwm < 0) srwm = 1; srwm &= 0x1ff; DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n", entries, srwm); entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) * pixel_size * 64; entries = DIV_ROUND_UP(entries, i965_cursor_wm_info.cacheline_size); cursor_sr = i965_cursor_wm_info.fifo_size - (entries + i965_cursor_wm_info.guard_size); if (cursor_sr > i965_cursor_wm_info.max_wm) cursor_sr = i965_cursor_wm_info.max_wm; DRM_DEBUG_KMS("self-refresh watermark: display plane %d " "cursor %d\n", srwm, cursor_sr); if (IS_CRESTLINE(dev)) I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN); } else { /* Turn off self refresh if both pipes are enabled */ if (IS_CRESTLINE(dev)) I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN); } DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n", srwm); /* 965 has limitations... */ I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) | (8 << 0)); I915_WRITE(DSPFW2, (8 << 8) | (8 << 0)); /* update cursor SR watermark */ I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT)); } void i9xx_update_wm(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; const struct intel_watermark_params *wm_info; uint32_t fwater_lo; uint32_t fwater_hi; int cwm, srwm = 1; int fifo_size; int planea_wm, planeb_wm; struct drm_crtc *crtc, *enabled = NULL; if (IS_I945GM(dev)) wm_info = &i945_wm_info; else if (!IS_GEN2(dev)) wm_info = &i915_wm_info; else wm_info = &i855_wm_info; fifo_size = dev_priv->display.get_fifo_size(dev, 0); crtc = intel_get_crtc_for_plane(dev, 0); if (crtc->enabled && crtc->fb) { planea_wm = intel_calculate_wm(crtc->mode.clock, wm_info, fifo_size, crtc->fb->bits_per_pixel / 8, latency_ns); enabled = crtc; } else planea_wm = fifo_size - wm_info->guard_size; fifo_size = dev_priv->display.get_fifo_size(dev, 1); crtc = intel_get_crtc_for_plane(dev, 1); if (crtc->enabled && crtc->fb) { planeb_wm = intel_calculate_wm(crtc->mode.clock, wm_info, fifo_size, crtc->fb->bits_per_pixel / 8, latency_ns); if (enabled == NULL) enabled = crtc; else enabled = NULL; } else planeb_wm = fifo_size - wm_info->guard_size; DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm); /* * Overlay gets an aggressive default since video jitter is bad. */ cwm = 2; /* Play safe and disable self-refresh before adjusting watermarks. */ if (IS_I945G(dev) || IS_I945GM(dev)) I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0); else if (IS_I915GM(dev)) I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN); /* Calc sr entries for one plane configs */ if (HAS_FW_BLC(dev) && enabled) { /* self-refresh has much higher latency */ static const int sr_latency_ns = 6000; int clock = enabled->mode.clock; int htotal = enabled->mode.htotal; int hdisplay = enabled->mode.hdisplay; int pixel_size = enabled->fb->bits_per_pixel / 8; unsigned long line_time_us; int entries; line_time_us = (htotal * 1000) / clock; /* Use ns/us then divide to preserve precision */ entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) * pixel_size * hdisplay; entries = DIV_ROUND_UP(entries, wm_info->cacheline_size); DRM_DEBUG_KMS("self-refresh entries: %d\n", entries); srwm = wm_info->fifo_size - entries; if (srwm < 0) srwm = 1; if (IS_I945G(dev) || IS_I945GM(dev)) I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff)); else if (IS_I915GM(dev)) I915_WRITE(FW_BLC_SELF, srwm & 0x3f); } DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n", planea_wm, planeb_wm, cwm, srwm); fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f); fwater_hi = (cwm & 0x1f); /* Set request length to 8 cachelines per fetch */ fwater_lo = fwater_lo | (1 << 24) | (1 << 8); fwater_hi = fwater_hi | (1 << 8); I915_WRITE(FW_BLC, fwater_lo); I915_WRITE(FW_BLC2, fwater_hi); if (HAS_FW_BLC(dev)) { if (enabled) { if (IS_I945G(dev) || IS_I945GM(dev)) I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN); else if (IS_I915GM(dev)) I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN); DRM_DEBUG_KMS("memory self refresh enabled\n"); } else DRM_DEBUG_KMS("memory self refresh disabled\n"); } } void i830_update_wm(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_crtc *crtc; uint32_t fwater_lo; int planea_wm; crtc = single_enabled_crtc(dev); if (crtc == NULL) return; planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info, dev_priv->display.get_fifo_size(dev, 0), crtc->fb->bits_per_pixel / 8, latency_ns); fwater_lo = I915_READ(FW_BLC) & ~0xfff; fwater_lo |= (3<<8) | planea_wm; DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm); I915_WRITE(FW_BLC, fwater_lo); } #define ILK_LP0_PLANE_LATENCY 700 #define ILK_LP0_CURSOR_LATENCY 1300 /* * Check the wm result. * * If any calculated watermark values is larger than the maximum value that * can be programmed into the associated watermark register, that watermark * must be disabled. */ static bool ironlake_check_srwm(struct drm_device *dev, int level, int fbc_wm, int display_wm, int cursor_wm, const struct intel_watermark_params *display, const struct intel_watermark_params *cursor) { struct drm_i915_private *dev_priv = dev->dev_private; DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d," " cursor %d\n", level, display_wm, fbc_wm, cursor_wm); if (fbc_wm > SNB_FBC_MAX_SRWM) { DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n", fbc_wm, SNB_FBC_MAX_SRWM, level); /* fbc has it's own way to disable FBC WM */ I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS); return false; } if (display_wm > display->max_wm) { DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n", display_wm, SNB_DISPLAY_MAX_SRWM, level); return false; } if (cursor_wm > cursor->max_wm) { DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n", cursor_wm, SNB_CURSOR_MAX_SRWM, level); return false; } if (!(fbc_wm || display_wm || cursor_wm)) { DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level); return false; } return true; } /* * Compute watermark values of WM[1-3], */ static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane, int latency_ns, const struct intel_watermark_params *display, const struct intel_watermark_params *cursor, int *fbc_wm, int *display_wm, int *cursor_wm) { struct drm_crtc *crtc; unsigned long line_time_us; int hdisplay, htotal, pixel_size, clock; int line_count, line_size; int small, large; int entries; if (!latency_ns) { *fbc_wm = *display_wm = *cursor_wm = 0; return false; } crtc = intel_get_crtc_for_plane(dev, plane); hdisplay = crtc->mode.hdisplay; htotal = crtc->mode.htotal; clock = crtc->mode.clock; pixel_size = crtc->fb->bits_per_pixel / 8; line_time_us = (htotal * 1000) / clock; line_count = (latency_ns / line_time_us + 1000) / 1000; line_size = hdisplay * pixel_size; /* Use the minimum of the small and large buffer method for primary */ small = ((clock * pixel_size / 1000) * latency_ns) / 1000; large = line_count * line_size; entries = DIV_ROUND_UP(min(small, large), display->cacheline_size); *display_wm = entries + display->guard_size; /* * Spec says: * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2 */ *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2; /* calculate the self-refresh watermark for display cursor */ entries = line_count * pixel_size * 64; entries = DIV_ROUND_UP(entries, cursor->cacheline_size); *cursor_wm = entries + cursor->guard_size; return ironlake_check_srwm(dev, level, *fbc_wm, *display_wm, *cursor_wm, display, cursor); } void ironlake_update_wm(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; int fbc_wm, plane_wm, cursor_wm; unsigned int enabled; enabled = 0; if (g4x_compute_wm0(dev, 0, &ironlake_display_wm_info, ILK_LP0_PLANE_LATENCY, &ironlake_cursor_wm_info, ILK_LP0_CURSOR_LATENCY, &plane_wm, &cursor_wm)) { I915_WRITE(WM0_PIPEA_ILK, (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm); DRM_DEBUG_KMS("FIFO watermarks For pipe A -" " plane %d, " "cursor: %d\n", plane_wm, cursor_wm); enabled |= 1; } if (g4x_compute_wm0(dev, 1, &ironlake_display_wm_info, ILK_LP0_PLANE_LATENCY, &ironlake_cursor_wm_info, ILK_LP0_CURSOR_LATENCY, &plane_wm, &cursor_wm)) { I915_WRITE(WM0_PIPEB_ILK, (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm); DRM_DEBUG_KMS("FIFO watermarks For pipe B -" " plane %d, cursor: %d\n", plane_wm, cursor_wm); enabled |= 2; } /* * Calculate and update the self-refresh watermark only when one * display plane is used. */ I915_WRITE(WM3_LP_ILK, 0); I915_WRITE(WM2_LP_ILK, 0); I915_WRITE(WM1_LP_ILK, 0); if (!single_plane_enabled(enabled)) return; enabled = ffs(enabled) - 1; /* WM1 */ if (!ironlake_compute_srwm(dev, 1, enabled, ILK_READ_WM1_LATENCY() * 500, &ironlake_display_srwm_info, &ironlake_cursor_srwm_info, &fbc_wm, &plane_wm, &cursor_wm)) return; I915_WRITE(WM1_LP_ILK, WM1_LP_SR_EN | (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) | (fbc_wm << WM1_LP_FBC_SHIFT) | (plane_wm << WM1_LP_SR_SHIFT) | cursor_wm); /* WM2 */ if (!ironlake_compute_srwm(dev, 2, enabled, ILK_READ_WM2_LATENCY() * 500, &ironlake_display_srwm_info, &ironlake_cursor_srwm_info, &fbc_wm, &plane_wm, &cursor_wm)) return; I915_WRITE(WM2_LP_ILK, WM2_LP_EN | (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) | (fbc_wm << WM1_LP_FBC_SHIFT) | (plane_wm << WM1_LP_SR_SHIFT) | cursor_wm); /* * WM3 is unsupported on ILK, probably because we don't have latency * data for that power state */ } void sandybridge_update_wm(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */ u32 val; int fbc_wm, plane_wm, cursor_wm; unsigned int enabled; enabled = 0; if (g4x_compute_wm0(dev, 0, &sandybridge_display_wm_info, latency, &sandybridge_cursor_wm_info, latency, &plane_wm, &cursor_wm)) { val = I915_READ(WM0_PIPEA_ILK); val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK); I915_WRITE(WM0_PIPEA_ILK, val | ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm)); DRM_DEBUG_KMS("FIFO watermarks For pipe A -" " plane %d, " "cursor: %d\n", plane_wm, cursor_wm); enabled |= 1; } if (g4x_compute_wm0(dev, 1, &sandybridge_display_wm_info, latency, &sandybridge_cursor_wm_info, latency, &plane_wm, &cursor_wm)) { val = I915_READ(WM0_PIPEB_ILK); val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK); I915_WRITE(WM0_PIPEB_ILK, val | ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm)); DRM_DEBUG_KMS("FIFO watermarks For pipe B -" " plane %d, cursor: %d\n", plane_wm, cursor_wm); enabled |= 2; } /* IVB has 3 pipes */ if (IS_IVYBRIDGE(dev) && g4x_compute_wm0(dev, 2, &sandybridge_display_wm_info, latency, &sandybridge_cursor_wm_info, latency, &plane_wm, &cursor_wm)) { val = I915_READ(WM0_PIPEC_IVB); val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK); I915_WRITE(WM0_PIPEC_IVB, val | ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm)); DRM_DEBUG_KMS("FIFO watermarks For pipe C -" " plane %d, cursor: %d\n", plane_wm, cursor_wm); enabled |= 3; } /* * Calculate and update the self-refresh watermark only when one * display plane is used. * * SNB support 3 levels of watermark. * * WM1/WM2/WM2 watermarks have to be enabled in the ascending order, * and disabled in the descending order * */ I915_WRITE(WM3_LP_ILK, 0); I915_WRITE(WM2_LP_ILK, 0); I915_WRITE(WM1_LP_ILK, 0); if (!single_plane_enabled(enabled) || dev_priv->sprite_scaling_enabled) return; enabled = ffs(enabled) - 1; /* WM1 */ if (!ironlake_compute_srwm(dev, 1, enabled, SNB_READ_WM1_LATENCY() * 500, &sandybridge_display_srwm_info, &sandybridge_cursor_srwm_info, &fbc_wm, &plane_wm, &cursor_wm)) return; I915_WRITE(WM1_LP_ILK, WM1_LP_SR_EN | (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) | (fbc_wm << WM1_LP_FBC_SHIFT) | (plane_wm << WM1_LP_SR_SHIFT) | cursor_wm); /* WM2 */ if (!ironlake_compute_srwm(dev, 2, enabled, SNB_READ_WM2_LATENCY() * 500, &sandybridge_display_srwm_info, &sandybridge_cursor_srwm_info, &fbc_wm, &plane_wm, &cursor_wm)) return; I915_WRITE(WM2_LP_ILK, WM2_LP_EN | (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) | (fbc_wm << WM1_LP_FBC_SHIFT) | (plane_wm << WM1_LP_SR_SHIFT) | cursor_wm); /* WM3 */ if (!ironlake_compute_srwm(dev, 3, enabled, SNB_READ_WM3_LATENCY() * 500, &sandybridge_display_srwm_info, &sandybridge_cursor_srwm_info, &fbc_wm, &plane_wm, &cursor_wm)) return; I915_WRITE(WM3_LP_ILK, WM3_LP_EN | (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) | (fbc_wm << WM1_LP_FBC_SHIFT) | (plane_wm << WM1_LP_SR_SHIFT) | cursor_wm); } static bool sandybridge_compute_sprite_wm(struct drm_device *dev, int plane, uint32_t sprite_width, int pixel_size, const struct intel_watermark_params *display, int display_latency_ns, int *sprite_wm) { struct drm_crtc *crtc; int clock; int entries, tlb_miss; crtc = intel_get_crtc_for_plane(dev, plane); if (crtc->fb == NULL || !crtc->enabled) { *sprite_wm = display->guard_size; return false; } clock = crtc->mode.clock; /* Use the small buffer method to calculate the sprite watermark */ entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000; tlb_miss = display->fifo_size*display->cacheline_size - sprite_width * 8; if (tlb_miss > 0) entries += tlb_miss; entries = DIV_ROUND_UP(entries, display->cacheline_size); *sprite_wm = entries + display->guard_size; if (*sprite_wm > (int)display->max_wm) *sprite_wm = display->max_wm; return true; } static bool sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane, uint32_t sprite_width, int pixel_size, const struct intel_watermark_params *display, int latency_ns, int *sprite_wm) { struct drm_crtc *crtc; unsigned long line_time_us; int clock; int line_count, line_size; int small, large; int entries; if (!latency_ns) { *sprite_wm = 0; return false; } crtc = intel_get_crtc_for_plane(dev, plane); clock = crtc->mode.clock; if (!clock) { *sprite_wm = 0; return false; } line_time_us = (sprite_width * 1000) / clock; if (!line_time_us) { *sprite_wm = 0; return false; } line_count = (latency_ns / line_time_us + 1000) / 1000; line_size = sprite_width * pixel_size; /* Use the minimum of the small and large buffer method for primary */ small = ((clock * pixel_size / 1000) * latency_ns) / 1000; large = line_count * line_size; entries = DIV_ROUND_UP(min(small, large), display->cacheline_size); *sprite_wm = entries + display->guard_size; return *sprite_wm > 0x3ff ? false : true; } void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe, uint32_t sprite_width, int pixel_size) { struct drm_i915_private *dev_priv = dev->dev_private; int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */ u32 val; int sprite_wm, reg; int ret; switch (pipe) { case 0: reg = WM0_PIPEA_ILK; break; case 1: reg = WM0_PIPEB_ILK; break; case 2: reg = WM0_PIPEC_IVB; break; default: return; /* bad pipe */ } ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size, &sandybridge_display_wm_info, latency, &sprite_wm); if (!ret) { DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n", pipe); return; } val = I915_READ(reg); val &= ~WM0_PIPE_SPRITE_MASK; I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT)); DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm); ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width, pixel_size, &sandybridge_display_srwm_info, SNB_READ_WM1_LATENCY() * 500, &sprite_wm); if (!ret) { DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n", pipe); return; } I915_WRITE(WM1S_LP_ILK, sprite_wm); /* Only IVB has two more LP watermarks for sprite */ if (!IS_IVYBRIDGE(dev)) return; ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width, pixel_size, &sandybridge_display_srwm_info, SNB_READ_WM2_LATENCY() * 500, &sprite_wm); if (!ret) { DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n", pipe); return; } I915_WRITE(WM2S_LP_IVB, sprite_wm); ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width, pixel_size, &sandybridge_display_srwm_info, SNB_READ_WM3_LATENCY() * 500, &sprite_wm); if (!ret) { DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n", pipe); return; } I915_WRITE(WM3S_LP_IVB, sprite_wm); } /** * intel_update_watermarks - update FIFO watermark values based on current modes * * Calculate watermark values for the various WM regs based on current mode * and plane configuration. * * There are several cases to deal with here: * - normal (i.e. non-self-refresh) * - self-refresh (SR) mode * - lines are large relative to FIFO size (buffer can hold up to 2) * - lines are small relative to FIFO size (buffer can hold more than 2 * lines), so need to account for TLB latency * * The normal calculation is: * watermark = dotclock * bytes per pixel * latency * where latency is platform & configuration dependent (we assume pessimal * values here). * * The SR calculation is: * watermark = (trunc(latency/line time)+1) * surface width * * bytes per pixel * where * line time = htotal / dotclock * surface width = hdisplay for normal plane and 64 for cursor * and latency is assumed to be high, as above. * * The final value programmed to the register should always be rounded up, * and include an extra 2 entries to account for clock crossings. * * We don't use the sprite, so we can ignore that. And on Crestline we have * to set the non-SR watermarks to 8. */ void intel_update_watermarks(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; if (dev_priv->display.update_wm) dev_priv->display.update_wm(dev); } void intel_update_sprite_watermarks(struct drm_device *dev, int pipe, uint32_t sprite_width, int pixel_size) { struct drm_i915_private *dev_priv = dev->dev_private; if (dev_priv->display.update_sprite_wm) dev_priv->display.update_sprite_wm(dev, pipe, sprite_width, pixel_size); }