/* * * Intel Management Engine Interface (Intel MEI) Linux driver * Copyright (c) 2003-2012, Intel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * */ #include #include #include #include "mei_dev.h" #include "hw-me.h" #include "hbm.h" /** * mei_reg_read - Reads 32bit data from the mei device * * @dev: the device structure * @offset: offset from which to read the data * * returns register value (u32) */ static inline u32 mei_reg_read(const struct mei_me_hw *hw, unsigned long offset) { return ioread32(hw->mem_addr + offset); } /** * mei_reg_write - Writes 32bit data to the mei device * * @dev: the device structure * @offset: offset from which to write the data * @value: register value to write (u32) */ static inline void mei_reg_write(const struct mei_me_hw *hw, unsigned long offset, u32 value) { iowrite32(value, hw->mem_addr + offset); } /** * mei_mecbrw_read - Reads 32bit data from ME circular buffer * read window register * * @dev: the device structure * * returns ME_CB_RW register value (u32) */ static u32 mei_me_mecbrw_read(const struct mei_device *dev) { return mei_reg_read(to_me_hw(dev), ME_CB_RW); } /** * mei_mecsr_read - Reads 32bit data from the ME CSR * * @dev: the device structure * * returns ME_CSR_HA register value (u32) */ static inline u32 mei_mecsr_read(const struct mei_me_hw *hw) { return mei_reg_read(hw, ME_CSR_HA); } /** * mei_hcsr_read - Reads 32bit data from the host CSR * * @dev: the device structure * * returns H_CSR register value (u32) */ static inline u32 mei_hcsr_read(const struct mei_me_hw *hw) { return mei_reg_read(hw, H_CSR); } /** * mei_hcsr_set - writes H_CSR register to the mei device, * and ignores the H_IS bit for it is write-one-to-zero. * * @dev: the device structure */ static inline void mei_hcsr_set(struct mei_me_hw *hw, u32 hcsr) { hcsr &= ~H_IS; mei_reg_write(hw, H_CSR, hcsr); } /** * me_hw_config - configure hw dependent settings * * @dev: mei device */ static void mei_me_hw_config(struct mei_device *dev) { u32 hcsr = mei_hcsr_read(to_me_hw(dev)); /* Doesn't change in runtime */ dev->hbuf_depth = (hcsr & H_CBD) >> 24; } /** * mei_clear_interrupts - clear and stop interrupts * * @dev: the device structure */ static void mei_me_intr_clear(struct mei_device *dev) { struct mei_me_hw *hw = to_me_hw(dev); u32 hcsr = mei_hcsr_read(hw); if ((hcsr & H_IS) == H_IS) mei_reg_write(hw, H_CSR, hcsr); } /** * mei_me_intr_enable - enables mei device interrupts * * @dev: the device structure */ static void mei_me_intr_enable(struct mei_device *dev) { struct mei_me_hw *hw = to_me_hw(dev); u32 hcsr = mei_hcsr_read(hw); hcsr |= H_IE; mei_hcsr_set(hw, hcsr); } /** * mei_disable_interrupts - disables mei device interrupts * * @dev: the device structure */ static void mei_me_intr_disable(struct mei_device *dev) { struct mei_me_hw *hw = to_me_hw(dev); u32 hcsr = mei_hcsr_read(hw); hcsr &= ~H_IE; mei_hcsr_set(hw, hcsr); } /** * mei_me_hw_reset - resets fw via mei csr register. * * @dev: the device structure * @interrupts_enabled: if interrupt should be enabled after reset. */ static void mei_me_hw_reset(struct mei_device *dev, bool intr_enable) { struct mei_me_hw *hw = to_me_hw(dev); u32 hcsr = mei_hcsr_read(hw); dev_dbg(&dev->pdev->dev, "before reset HCSR = 0x%08x.\n", hcsr); hcsr |= (H_RST | H_IG); if (intr_enable) hcsr |= H_IE; else hcsr &= ~H_IE; mei_hcsr_set(hw, hcsr); hcsr = mei_hcsr_read(hw) | H_IG; hcsr &= ~H_RST; mei_hcsr_set(hw, hcsr); hcsr = mei_hcsr_read(hw); dev_dbg(&dev->pdev->dev, "current HCSR = 0x%08x.\n", hcsr); } /** * mei_me_host_set_ready - enable device * * @dev - mei device * returns bool */ static void mei_me_host_set_ready(struct mei_device *dev) { struct mei_me_hw *hw = to_me_hw(dev); hw->host_hw_state |= H_IE | H_IG | H_RDY; mei_hcsr_set(hw, hw->host_hw_state); } /** * mei_me_host_is_ready - check whether the host has turned ready * * @dev - mei device * returns bool */ static bool mei_me_host_is_ready(struct mei_device *dev) { struct mei_me_hw *hw = to_me_hw(dev); hw->host_hw_state = mei_hcsr_read(hw); return (hw->host_hw_state & H_RDY) == H_RDY; } /** * mei_me_hw_is_ready - check whether the me(hw) has turned ready * * @dev - mei device * returns bool */ static bool mei_me_hw_is_ready(struct mei_device *dev) { struct mei_me_hw *hw = to_me_hw(dev); hw->me_hw_state = mei_mecsr_read(hw); return (hw->me_hw_state & ME_RDY_HRA) == ME_RDY_HRA; } static int mei_me_hw_ready_wait(struct mei_device *dev) { int err; if (mei_me_hw_is_ready(dev)) return 0; mutex_unlock(&dev->device_lock); err = wait_event_interruptible_timeout(dev->wait_hw_ready, dev->recvd_hw_ready, MEI_INTEROP_TIMEOUT); mutex_lock(&dev->device_lock); if (!err && !dev->recvd_hw_ready) { dev_err(&dev->pdev->dev, "wait hw ready failed. status = 0x%x\n", err); return -ETIMEDOUT; } dev->recvd_hw_ready = false; return 0; } static int mei_me_hw_start(struct mei_device *dev) { int ret = mei_me_hw_ready_wait(dev); if (ret) return ret; dev_dbg(&dev->pdev->dev, "hw is ready\n"); mei_me_host_set_ready(dev); return ret; } /** * mei_hbuf_filled_slots - gets number of device filled buffer slots * * @dev: the device structure * * returns number of filled slots */ static unsigned char mei_hbuf_filled_slots(struct mei_device *dev) { struct mei_me_hw *hw = to_me_hw(dev); char read_ptr, write_ptr; hw->host_hw_state = mei_hcsr_read(hw); read_ptr = (char) ((hw->host_hw_state & H_CBRP) >> 8); write_ptr = (char) ((hw->host_hw_state & H_CBWP) >> 16); return (unsigned char) (write_ptr - read_ptr); } /** * mei_hbuf_is_empty - checks if host buffer is empty. * * @dev: the device structure * * returns true if empty, false - otherwise. */ static bool mei_me_hbuf_is_empty(struct mei_device *dev) { return mei_hbuf_filled_slots(dev) == 0; } /** * mei_me_hbuf_empty_slots - counts write empty slots. * * @dev: the device structure * * returns -1(ESLOTS_OVERFLOW) if overflow, otherwise empty slots count */ static int mei_me_hbuf_empty_slots(struct mei_device *dev) { unsigned char filled_slots, empty_slots; filled_slots = mei_hbuf_filled_slots(dev); empty_slots = dev->hbuf_depth - filled_slots; /* check for overflow */ if (filled_slots > dev->hbuf_depth) return -EOVERFLOW; return empty_slots; } static size_t mei_me_hbuf_max_len(const struct mei_device *dev) { return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr); } /** * mei_write_message - writes a message to mei device. * * @dev: the device structure * @header: mei HECI header of message * @buf: message payload will be written * * This function returns -EIO if write has failed */ static int mei_me_write_message(struct mei_device *dev, struct mei_msg_hdr *header, unsigned char *buf) { struct mei_me_hw *hw = to_me_hw(dev); unsigned long rem; unsigned long length = header->length; u32 *reg_buf = (u32 *)buf; u32 hcsr; u32 dw_cnt; int i; int empty_slots; dev_dbg(&dev->pdev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header)); empty_slots = mei_hbuf_empty_slots(dev); dev_dbg(&dev->pdev->dev, "empty slots = %hu.\n", empty_slots); dw_cnt = mei_data2slots(length); if (empty_slots < 0 || dw_cnt > empty_slots) return -EIO; mei_reg_write(hw, H_CB_WW, *((u32 *) header)); for (i = 0; i < length / 4; i++) mei_reg_write(hw, H_CB_WW, reg_buf[i]); rem = length & 0x3; if (rem > 0) { u32 reg = 0; memcpy(®, &buf[length - rem], rem); mei_reg_write(hw, H_CB_WW, reg); } hcsr = mei_hcsr_read(hw) | H_IG; mei_hcsr_set(hw, hcsr); if (!mei_me_hw_is_ready(dev)) return -EIO; return 0; } /** * mei_me_count_full_read_slots - counts read full slots. * * @dev: the device structure * * returns -1(ESLOTS_OVERFLOW) if overflow, otherwise filled slots count */ static int mei_me_count_full_read_slots(struct mei_device *dev) { struct mei_me_hw *hw = to_me_hw(dev); char read_ptr, write_ptr; unsigned char buffer_depth, filled_slots; hw->me_hw_state = mei_mecsr_read(hw); buffer_depth = (unsigned char)((hw->me_hw_state & ME_CBD_HRA) >> 24); read_ptr = (char) ((hw->me_hw_state & ME_CBRP_HRA) >> 8); write_ptr = (char) ((hw->me_hw_state & ME_CBWP_HRA) >> 16); filled_slots = (unsigned char) (write_ptr - read_ptr); /* check for overflow */ if (filled_slots > buffer_depth) return -EOVERFLOW; dev_dbg(&dev->pdev->dev, "filled_slots =%08x\n", filled_slots); return (int)filled_slots; } /** * mei_me_read_slots - reads a message from mei device. * * @dev: the device structure * @buffer: message buffer will be written * @buffer_length: message size will be read */ static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer, unsigned long buffer_length) { struct mei_me_hw *hw = to_me_hw(dev); u32 *reg_buf = (u32 *)buffer; u32 hcsr; for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32)) *reg_buf++ = mei_me_mecbrw_read(dev); if (buffer_length > 0) { u32 reg = mei_me_mecbrw_read(dev); memcpy(reg_buf, ®, buffer_length); } hcsr = mei_hcsr_read(hw) | H_IG; mei_hcsr_set(hw, hcsr); return 0; } /** * mei_me_irq_quick_handler - The ISR of the MEI device * * @irq: The irq number * @dev_id: pointer to the device structure * * returns irqreturn_t */ irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id) { struct mei_device *dev = (struct mei_device *) dev_id; struct mei_me_hw *hw = to_me_hw(dev); u32 csr_reg = mei_hcsr_read(hw); if ((csr_reg & H_IS) != H_IS) return IRQ_NONE; /* clear H_IS bit in H_CSR */ mei_reg_write(hw, H_CSR, csr_reg); return IRQ_WAKE_THREAD; } /** * mei_me_irq_thread_handler - function called after ISR to handle the interrupt * processing. * * @irq: The irq number * @dev_id: pointer to the device structure * * returns irqreturn_t * */ irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id) { struct mei_device *dev = (struct mei_device *) dev_id; struct mei_cl_cb complete_list; struct mei_cl_cb *cb_pos = NULL, *cb_next = NULL; struct mei_cl *cl; s32 slots; int rets; bool bus_message_received; dev_dbg(&dev->pdev->dev, "function called after ISR to handle the interrupt processing.\n"); /* initialize our complete list */ mutex_lock(&dev->device_lock); mei_io_list_init(&complete_list); /* Ack the interrupt here * In case of MSI we don't go through the quick handler */ if (pci_dev_msi_enabled(dev->pdev)) mei_clear_interrupts(dev); /* check if ME wants a reset */ if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETING && dev->dev_state != MEI_DEV_INITIALIZING) { dev_dbg(&dev->pdev->dev, "FW not ready.\n"); mei_reset(dev, 1); mutex_unlock(&dev->device_lock); return IRQ_HANDLED; } /* check if we need to start the dev */ if (!mei_host_is_ready(dev)) { if (mei_hw_is_ready(dev)) { dev_dbg(&dev->pdev->dev, "we need to start the dev.\n"); dev->recvd_hw_ready = true; wake_up_interruptible(&dev->wait_hw_ready); mutex_unlock(&dev->device_lock); return IRQ_HANDLED; } else { dev_dbg(&dev->pdev->dev, "FW not ready.\n"); mutex_unlock(&dev->device_lock); return IRQ_HANDLED; } } /* check slots available for reading */ slots = mei_count_full_read_slots(dev); while (slots > 0) { /* we have urgent data to send so break the read */ if (dev->wr_ext_msg.hdr.length) break; dev_dbg(&dev->pdev->dev, "slots =%08x\n", slots); dev_dbg(&dev->pdev->dev, "call mei_irq_read_handler.\n"); rets = mei_irq_read_handler(dev, &complete_list, &slots); if (rets) goto end; } rets = mei_irq_write_handler(dev, &complete_list); end: dev_dbg(&dev->pdev->dev, "end of bottom half function.\n"); dev->hbuf_is_ready = mei_hbuf_is_ready(dev); bus_message_received = false; if (dev->recvd_msg && waitqueue_active(&dev->wait_recvd_msg)) { dev_dbg(&dev->pdev->dev, "received waiting bus message\n"); bus_message_received = true; } mutex_unlock(&dev->device_lock); if (bus_message_received) { dev_dbg(&dev->pdev->dev, "wake up dev->wait_recvd_msg\n"); wake_up_interruptible(&dev->wait_recvd_msg); bus_message_received = false; } if (list_empty(&complete_list.list)) return IRQ_HANDLED; list_for_each_entry_safe(cb_pos, cb_next, &complete_list.list, list) { cl = cb_pos->cl; list_del(&cb_pos->list); if (cl) { if (cl != &dev->iamthif_cl) { dev_dbg(&dev->pdev->dev, "completing call back.\n"); mei_irq_complete_handler(cl, cb_pos); cb_pos = NULL; } else if (cl == &dev->iamthif_cl) { mei_amthif_complete(dev, cb_pos); } } } return IRQ_HANDLED; } static const struct mei_hw_ops mei_me_hw_ops = { .host_is_ready = mei_me_host_is_ready, .hw_is_ready = mei_me_hw_is_ready, .hw_reset = mei_me_hw_reset, .hw_config = mei_me_hw_config, .hw_start = mei_me_hw_start, .intr_clear = mei_me_intr_clear, .intr_enable = mei_me_intr_enable, .intr_disable = mei_me_intr_disable, .hbuf_free_slots = mei_me_hbuf_empty_slots, .hbuf_is_ready = mei_me_hbuf_is_empty, .hbuf_max_len = mei_me_hbuf_max_len, .write = mei_me_write_message, .rdbuf_full_slots = mei_me_count_full_read_slots, .read_hdr = mei_me_mecbrw_read, .read = mei_me_read_slots }; /** * init_mei_device - allocates and initializes the mei device structure * * @pdev: The pci device structure * * returns The mei_device_device pointer on success, NULL on failure. */ struct mei_device *mei_me_dev_init(struct pci_dev *pdev) { struct mei_device *dev; dev = kzalloc(sizeof(struct mei_device) + sizeof(struct mei_me_hw), GFP_KERNEL); if (!dev) return NULL; mei_device_init(dev); INIT_LIST_HEAD(&dev->wd_cl.link); INIT_LIST_HEAD(&dev->iamthif_cl.link); mei_io_list_init(&dev->amthif_cmd_list); mei_io_list_init(&dev->amthif_rd_complete_list); INIT_DELAYED_WORK(&dev->timer_work, mei_timer); INIT_WORK(&dev->init_work, mei_host_client_init); dev->ops = &mei_me_hw_ops; dev->pdev = pdev; return dev; }