/* * Routines to indentify caches on Intel CPU. * * Changes: * Venkatesh Pallipadi : Adding cache identification through cpuid(4) * Ashok Raj : Work with CPU hotplug infrastructure. * Andi Kleen / Andreas Herrmann : CPUID4 emulation on AMD. */ #include #include #include #include #include #include #include #include #include #include #include #define LVL_1_INST 1 #define LVL_1_DATA 2 #define LVL_2 3 #define LVL_3 4 #define LVL_TRACE 5 struct _cache_table { unsigned char descriptor; char cache_type; short size; }; #define MB(x) ((x) * 1024) /* All the cache descriptor types we care about (no TLB or trace cache entries) */ static const struct _cache_table __cpuinitconst cache_table[] = { { 0x06, LVL_1_INST, 8 }, /* 4-way set assoc, 32 byte line size */ { 0x08, LVL_1_INST, 16 }, /* 4-way set assoc, 32 byte line size */ { 0x09, LVL_1_INST, 32 }, /* 4-way set assoc, 64 byte line size */ { 0x0a, LVL_1_DATA, 8 }, /* 2 way set assoc, 32 byte line size */ { 0x0c, LVL_1_DATA, 16 }, /* 4-way set assoc, 32 byte line size */ { 0x0d, LVL_1_DATA, 16 }, /* 4-way set assoc, 64 byte line size */ { 0x21, LVL_2, 256 }, /* 8-way set assoc, 64 byte line size */ { 0x22, LVL_3, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */ { 0x23, LVL_3, MB(1) }, /* 8-way set assoc, sectored cache, 64 byte line size */ { 0x25, LVL_3, MB(2) }, /* 8-way set assoc, sectored cache, 64 byte line size */ { 0x29, LVL_3, MB(4) }, /* 8-way set assoc, sectored cache, 64 byte line size */ { 0x2c, LVL_1_DATA, 32 }, /* 8-way set assoc, 64 byte line size */ { 0x30, LVL_1_INST, 32 }, /* 8-way set assoc, 64 byte line size */ { 0x39, LVL_2, 128 }, /* 4-way set assoc, sectored cache, 64 byte line size */ { 0x3a, LVL_2, 192 }, /* 6-way set assoc, sectored cache, 64 byte line size */ { 0x3b, LVL_2, 128 }, /* 2-way set assoc, sectored cache, 64 byte line size */ { 0x3c, LVL_2, 256 }, /* 4-way set assoc, sectored cache, 64 byte line size */ { 0x3d, LVL_2, 384 }, /* 6-way set assoc, sectored cache, 64 byte line size */ { 0x3e, LVL_2, 512 }, /* 4-way set assoc, sectored cache, 64 byte line size */ { 0x3f, LVL_2, 256 }, /* 2-way set assoc, 64 byte line size */ { 0x41, LVL_2, 128 }, /* 4-way set assoc, 32 byte line size */ { 0x42, LVL_2, 256 }, /* 4-way set assoc, 32 byte line size */ { 0x43, LVL_2, 512 }, /* 4-way set assoc, 32 byte line size */ { 0x44, LVL_2, MB(1) }, /* 4-way set assoc, 32 byte line size */ { 0x45, LVL_2, MB(2) }, /* 4-way set assoc, 32 byte line size */ { 0x46, LVL_3, MB(4) }, /* 4-way set assoc, 64 byte line size */ { 0x47, LVL_3, MB(8) }, /* 8-way set assoc, 64 byte line size */ { 0x49, LVL_3, MB(4) }, /* 16-way set assoc, 64 byte line size */ { 0x4a, LVL_3, MB(6) }, /* 12-way set assoc, 64 byte line size */ { 0x4b, LVL_3, MB(8) }, /* 16-way set assoc, 64 byte line size */ { 0x4c, LVL_3, MB(12) }, /* 12-way set assoc, 64 byte line size */ { 0x4d, LVL_3, MB(16) }, /* 16-way set assoc, 64 byte line size */ { 0x4e, LVL_2, MB(6) }, /* 24-way set assoc, 64 byte line size */ { 0x60, LVL_1_DATA, 16 }, /* 8-way set assoc, sectored cache, 64 byte line size */ { 0x66, LVL_1_DATA, 8 }, /* 4-way set assoc, sectored cache, 64 byte line size */ { 0x67, LVL_1_DATA, 16 }, /* 4-way set assoc, sectored cache, 64 byte line size */ { 0x68, LVL_1_DATA, 32 }, /* 4-way set assoc, sectored cache, 64 byte line size */ { 0x70, LVL_TRACE, 12 }, /* 8-way set assoc */ { 0x71, LVL_TRACE, 16 }, /* 8-way set assoc */ { 0x72, LVL_TRACE, 32 }, /* 8-way set assoc */ { 0x73, LVL_TRACE, 64 }, /* 8-way set assoc */ { 0x78, LVL_2, MB(1) }, /* 4-way set assoc, 64 byte line size */ { 0x79, LVL_2, 128 }, /* 8-way set assoc, sectored cache, 64 byte line size */ { 0x7a, LVL_2, 256 }, /* 8-way set assoc, sectored cache, 64 byte line size */ { 0x7b, LVL_2, 512 }, /* 8-way set assoc, sectored cache, 64 byte line size */ { 0x7c, LVL_2, MB(1) }, /* 8-way set assoc, sectored cache, 64 byte line size */ { 0x7d, LVL_2, MB(2) }, /* 8-way set assoc, 64 byte line size */ { 0x7f, LVL_2, 512 }, /* 2-way set assoc, 64 byte line size */ { 0x82, LVL_2, 256 }, /* 8-way set assoc, 32 byte line size */ { 0x83, LVL_2, 512 }, /* 8-way set assoc, 32 byte line size */ { 0x84, LVL_2, MB(1) }, /* 8-way set assoc, 32 byte line size */ { 0x85, LVL_2, MB(2) }, /* 8-way set assoc, 32 byte line size */ { 0x86, LVL_2, 512 }, /* 4-way set assoc, 64 byte line size */ { 0x87, LVL_2, MB(1) }, /* 8-way set assoc, 64 byte line size */ { 0xd0, LVL_3, 512 }, /* 4-way set assoc, 64 byte line size */ { 0xd1, LVL_3, MB(1) }, /* 4-way set assoc, 64 byte line size */ { 0xd2, LVL_3, MB(2) }, /* 4-way set assoc, 64 byte line size */ { 0xd6, LVL_3, MB(1) }, /* 8-way set assoc, 64 byte line size */ { 0xd7, LVL_3, MB(2) }, /* 8-way set assoc, 64 byte line size */ { 0xd8, LVL_3, MB(4) }, /* 12-way set assoc, 64 byte line size */ { 0xdc, LVL_3, MB(2) }, /* 12-way set assoc, 64 byte line size */ { 0xdd, LVL_3, MB(4) }, /* 12-way set assoc, 64 byte line size */ { 0xde, LVL_3, MB(8) }, /* 12-way set assoc, 64 byte line size */ { 0xe2, LVL_3, MB(2) }, /* 16-way set assoc, 64 byte line size */ { 0xe3, LVL_3, MB(4) }, /* 16-way set assoc, 64 byte line size */ { 0xe4, LVL_3, MB(8) }, /* 16-way set assoc, 64 byte line size */ { 0xea, LVL_3, MB(12) }, /* 24-way set assoc, 64 byte line size */ { 0xeb, LVL_3, MB(18) }, /* 24-way set assoc, 64 byte line size */ { 0xec, LVL_3, MB(24) }, /* 24-way set assoc, 64 byte line size */ { 0x00, 0, 0} }; enum _cache_type { CACHE_TYPE_NULL = 0, CACHE_TYPE_DATA = 1, CACHE_TYPE_INST = 2, CACHE_TYPE_UNIFIED = 3 }; union _cpuid4_leaf_eax { struct { enum _cache_type type:5; unsigned int level:3; unsigned int is_self_initializing:1; unsigned int is_fully_associative:1; unsigned int reserved:4; unsigned int num_threads_sharing:12; unsigned int num_cores_on_die:6; } split; u32 full; }; union _cpuid4_leaf_ebx { struct { unsigned int coherency_line_size:12; unsigned int physical_line_partition:10; unsigned int ways_of_associativity:10; } split; u32 full; }; union _cpuid4_leaf_ecx { struct { unsigned int number_of_sets:32; } split; u32 full; }; struct _cpuid4_info { union _cpuid4_leaf_eax eax; union _cpuid4_leaf_ebx ebx; union _cpuid4_leaf_ecx ecx; unsigned long size; bool can_disable; unsigned int l3_indices; DECLARE_BITMAP(shared_cpu_map, NR_CPUS); }; /* subset of above _cpuid4_info w/o shared_cpu_map */ struct _cpuid4_info_regs { union _cpuid4_leaf_eax eax; union _cpuid4_leaf_ebx ebx; union _cpuid4_leaf_ecx ecx; unsigned long size; bool can_disable; unsigned int l3_indices; }; unsigned short num_cache_leaves; /* AMD doesn't have CPUID4. Emulate it here to report the same information to the user. This makes some assumptions about the machine: L2 not shared, no SMT etc. that is currently true on AMD CPUs. In theory the TLBs could be reported as fake type (they are in "dummy"). Maybe later */ union l1_cache { struct { unsigned line_size:8; unsigned lines_per_tag:8; unsigned assoc:8; unsigned size_in_kb:8; }; unsigned val; }; union l2_cache { struct { unsigned line_size:8; unsigned lines_per_tag:4; unsigned assoc:4; unsigned size_in_kb:16; }; unsigned val; }; union l3_cache { struct { unsigned line_size:8; unsigned lines_per_tag:4; unsigned assoc:4; unsigned res:2; unsigned size_encoded:14; }; unsigned val; }; static const unsigned short __cpuinitconst assocs[] = { [1] = 1, [2] = 2, [4] = 4, [6] = 8, [8] = 16, [0xa] = 32, [0xb] = 48, [0xc] = 64, [0xd] = 96, [0xe] = 128, [0xf] = 0xffff /* fully associative - no way to show this currently */ }; static const unsigned char __cpuinitconst levels[] = { 1, 1, 2, 3 }; static const unsigned char __cpuinitconst types[] = { 1, 2, 3, 3 }; static void __cpuinit amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax, union _cpuid4_leaf_ebx *ebx, union _cpuid4_leaf_ecx *ecx) { unsigned dummy; unsigned line_size, lines_per_tag, assoc, size_in_kb; union l1_cache l1i, l1d; union l2_cache l2; union l3_cache l3; union l1_cache *l1 = &l1d; eax->full = 0; ebx->full = 0; ecx->full = 0; cpuid(0x80000005, &dummy, &dummy, &l1d.val, &l1i.val); cpuid(0x80000006, &dummy, &dummy, &l2.val, &l3.val); switch (leaf) { case 1: l1 = &l1i; case 0: if (!l1->val) return; assoc = assocs[l1->assoc]; line_size = l1->line_size; lines_per_tag = l1->lines_per_tag; size_in_kb = l1->size_in_kb; break; case 2: if (!l2.val) return; assoc = assocs[l2.assoc]; line_size = l2.line_size; lines_per_tag = l2.lines_per_tag; /* cpu_data has errata corrections for K7 applied */ size_in_kb = current_cpu_data.x86_cache_size; break; case 3: if (!l3.val) return; assoc = assocs[l3.assoc]; line_size = l3.line_size; lines_per_tag = l3.lines_per_tag; size_in_kb = l3.size_encoded * 512; if (boot_cpu_has(X86_FEATURE_AMD_DCM)) { size_in_kb = size_in_kb >> 1; assoc = assoc >> 1; } break; default: return; } eax->split.is_self_initializing = 1; eax->split.type = types[leaf]; eax->split.level = levels[leaf]; eax->split.num_threads_sharing = 0; eax->split.num_cores_on_die = current_cpu_data.x86_max_cores - 1; if (assoc == 0xffff) eax->split.is_fully_associative = 1; ebx->split.coherency_line_size = line_size - 1; ebx->split.ways_of_associativity = assoc - 1; ebx->split.physical_line_partition = lines_per_tag - 1; ecx->split.number_of_sets = (size_in_kb * 1024) / line_size / (ebx->split.ways_of_associativity + 1) - 1; } struct _cache_attr { struct attribute attr; ssize_t (*show)(struct _cpuid4_info *, char *); ssize_t (*store)(struct _cpuid4_info *, const char *, size_t count); }; #ifdef CONFIG_CPU_SUP_AMD static unsigned int __cpuinit amd_calc_l3_indices(void) { /* * We're called over smp_call_function_single() and therefore * are on the correct cpu. */ int cpu = smp_processor_id(); int node = cpu_to_node(cpu); struct pci_dev *dev = node_to_k8_nb_misc(node); unsigned int sc0, sc1, sc2, sc3; u32 val = 0; pci_read_config_dword(dev, 0x1C4, &val); /* calculate subcache sizes */ sc0 = !(val & BIT(0)); sc1 = !(val & BIT(4)); sc2 = !(val & BIT(8)) + !(val & BIT(9)); sc3 = !(val & BIT(12)) + !(val & BIT(13)); return (max(max(max(sc0, sc1), sc2), sc3) << 10) - 1; } static void __cpuinit amd_check_l3_disable(int index, struct _cpuid4_info_regs *this_leaf) { if (boot_cpu_data.x86 != 0x10) return; if (index < 3) return; /* see errata #382 and #388 */ if (boot_cpu_data.x86_model < 0x8) return; if ((boot_cpu_data.x86_model == 0x8 || boot_cpu_data.x86_model == 0x9) && boot_cpu_data.x86_mask < 0x1) return; /* not in virtualized environments */ if (num_k8_northbridges == 0) return; this_leaf->can_disable = true; this_leaf->l3_indices = amd_calc_l3_indices(); } static ssize_t show_cache_disable(struct _cpuid4_info *this_leaf, char *buf, unsigned int index) { int cpu = cpumask_first(to_cpumask(this_leaf->shared_cpu_map)); int node = amd_get_nb_id(cpu); struct pci_dev *dev = node_to_k8_nb_misc(node); unsigned int reg = 0; if (!this_leaf->can_disable) return -EINVAL; if (!dev) return -EINVAL; pci_read_config_dword(dev, 0x1BC + index * 4, ®); return sprintf(buf, "0x%08x\n", reg); } #define SHOW_CACHE_DISABLE(index) \ static ssize_t \ show_cache_disable_##index(struct _cpuid4_info *this_leaf, char *buf) \ { \ return show_cache_disable(this_leaf, buf, index); \ } SHOW_CACHE_DISABLE(0) SHOW_CACHE_DISABLE(1) static ssize_t store_cache_disable(struct _cpuid4_info *this_leaf, const char *buf, size_t count, unsigned int index) { int cpu = cpumask_first(to_cpumask(this_leaf->shared_cpu_map)); int node = amd_get_nb_id(cpu); struct pci_dev *dev = node_to_k8_nb_misc(node); unsigned long val = 0; #define SUBCACHE_MASK (3UL << 20) #define SUBCACHE_INDEX 0xfff if (!this_leaf->can_disable) return -EINVAL; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (!dev) return -EINVAL; if (strict_strtoul(buf, 10, &val) < 0) return -EINVAL; /* do not allow writes outside of allowed bits */ if ((val & ~(SUBCACHE_MASK | SUBCACHE_INDEX)) || ((val & SUBCACHE_INDEX) > this_leaf->l3_indices)) return -EINVAL; val |= BIT(30); pci_write_config_dword(dev, 0x1BC + index * 4, val); /* * We need to WBINVD on a core on the node containing the L3 cache which * indices we disable therefore a simple wbinvd() is not sufficient. */ wbinvd_on_cpu(cpu); pci_write_config_dword(dev, 0x1BC + index * 4, val | BIT(31)); return count; } #define STORE_CACHE_DISABLE(index) \ static ssize_t \ store_cache_disable_##index(struct _cpuid4_info *this_leaf, \ const char *buf, size_t count) \ { \ return store_cache_disable(this_leaf, buf, count, index); \ } STORE_CACHE_DISABLE(0) STORE_CACHE_DISABLE(1) static struct _cache_attr cache_disable_0 = __ATTR(cache_disable_0, 0644, show_cache_disable_0, store_cache_disable_0); static struct _cache_attr cache_disable_1 = __ATTR(cache_disable_1, 0644, show_cache_disable_1, store_cache_disable_1); #else /* CONFIG_CPU_SUP_AMD */ static void __cpuinit amd_check_l3_disable(int index, struct _cpuid4_info_regs *this_leaf) { }; #endif /* CONFIG_CPU_SUP_AMD */ static int __cpuinit cpuid4_cache_lookup_regs(int index, struct _cpuid4_info_regs *this_leaf) { union _cpuid4_leaf_eax eax; union _cpuid4_leaf_ebx ebx; union _cpuid4_leaf_ecx ecx; unsigned edx; if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) { amd_cpuid4(index, &eax, &ebx, &ecx); amd_check_l3_disable(index, this_leaf); } else { cpuid_count(4, index, &eax.full, &ebx.full, &ecx.full, &edx); } if (eax.split.type == CACHE_TYPE_NULL) return -EIO; /* better error ? */ this_leaf->eax = eax; this_leaf->ebx = ebx; this_leaf->ecx = ecx; this_leaf->size = (ecx.split.number_of_sets + 1) * (ebx.split.coherency_line_size + 1) * (ebx.split.physical_line_partition + 1) * (ebx.split.ways_of_associativity + 1); return 0; } static int __cpuinit find_num_cache_leaves(void) { unsigned int eax, ebx, ecx, edx; union _cpuid4_leaf_eax cache_eax; int i = -1; do { ++i; /* Do cpuid(4) loop to find out num_cache_leaves */ cpuid_count(4, i, &eax, &ebx, &ecx, &edx); cache_eax.full = eax; } while (cache_eax.split.type != CACHE_TYPE_NULL); return i; } unsigned int __cpuinit init_intel_cacheinfo(struct cpuinfo_x86 *c) { /* Cache sizes */ unsigned int trace = 0, l1i = 0, l1d = 0, l2 = 0, l3 = 0; unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */ unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */ unsigned int l2_id = 0, l3_id = 0, num_threads_sharing, index_msb; #ifdef CONFIG_X86_HT unsigned int cpu = c->cpu_index; #endif if (c->cpuid_level > 3) { static int is_initialized; if (is_initialized == 0) { /* Init num_cache_leaves from boot CPU */ num_cache_leaves = find_num_cache_leaves(); is_initialized++; } /* * Whenever possible use cpuid(4), deterministic cache * parameters cpuid leaf to find the cache details */ for (i = 0; i < num_cache_leaves; i++) { struct _cpuid4_info_regs this_leaf; int retval; retval = cpuid4_cache_lookup_regs(i, &this_leaf); if (retval >= 0) { switch (this_leaf.eax.split.level) { case 1: if (this_leaf.eax.split.type == CACHE_TYPE_DATA) new_l1d = this_leaf.size/1024; else if (this_leaf.eax.split.type == CACHE_TYPE_INST) new_l1i = this_leaf.size/1024; break; case 2: new_l2 = this_leaf.size/1024; num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing; index_msb = get_count_order(num_threads_sharing); l2_id = c->apicid >> index_msb; break; case 3: new_l3 = this_leaf.size/1024; num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing; index_msb = get_count_order( num_threads_sharing); l3_id = c->apicid >> index_msb; break; default: break; } } } } /* * Don't use cpuid2 if cpuid4 is supported. For P4, we use cpuid2 for * trace cache */ if ((num_cache_leaves == 0 || c->x86 == 15) && c->cpuid_level > 1) { /* supports eax=2 call */ int j, n; unsigned int regs[4]; unsigned char *dp = (unsigned char *)regs; int only_trace = 0; if (num_cache_leaves != 0 && c->x86 == 15) only_trace = 1; /* Number of times to iterate */ n = cpuid_eax(2) & 0xFF; for (i = 0 ; i < n ; i++) { cpuid(2, ®s[0], ®s[1], ®s[2], ®s[3]); /* If bit 31 is set, this is an unknown format */ for (j = 0 ; j < 3 ; j++) if (regs[j] & (1 << 31)) regs[j] = 0; /* Byte 0 is level count, not a descriptor */ for (j = 1 ; j < 16 ; j++) { unsigned char des = dp[j]; unsigned char k = 0; /* look up this descriptor in the table */ while (cache_table[k].descriptor != 0) { if (cache_table[k].descriptor == des) { if (only_trace && cache_table[k].cache_type != LVL_TRACE) break; switch (cache_table[k].cache_type) { case LVL_1_INST: l1i += cache_table[k].size; break; case LVL_1_DATA: l1d += cache_table[k].size; break; case LVL_2: l2 += cache_table[k].size; break; case LVL_3: l3 += cache_table[k].size; break; case LVL_TRACE: trace += cache_table[k].size; break; } break; } k++; } } } } if (new_l1d) l1d = new_l1d; if (new_l1i) l1i = new_l1i; if (new_l2) { l2 = new_l2; #ifdef CONFIG_X86_HT per_cpu(cpu_llc_id, cpu) = l2_id; #endif } if (new_l3) { l3 = new_l3; #ifdef CONFIG_X86_HT per_cpu(cpu_llc_id, cpu) = l3_id; #endif } c->x86_cache_size = l3 ? l3 : (l2 ? l2 : (l1i+l1d)); return l2; } #ifdef CONFIG_SYSFS /* pointer to _cpuid4_info array (for each cache leaf) */ static DEFINE_PER_CPU(struct _cpuid4_info *, ici_cpuid4_info); #define CPUID4_INFO_IDX(x, y) (&((per_cpu(ici_cpuid4_info, x))[y])) #ifdef CONFIG_SMP static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu, int index) { struct _cpuid4_info *this_leaf, *sibling_leaf; unsigned long num_threads_sharing; int index_msb, i, sibling; struct cpuinfo_x86 *c = &cpu_data(cpu); if ((index == 3) && (c->x86_vendor == X86_VENDOR_AMD)) { for_each_cpu(i, c->llc_shared_map) { if (!per_cpu(ici_cpuid4_info, i)) continue; this_leaf = CPUID4_INFO_IDX(i, index); for_each_cpu(sibling, c->llc_shared_map) { if (!cpu_online(sibling)) continue; set_bit(sibling, this_leaf->shared_cpu_map); } } return; } this_leaf = CPUID4_INFO_IDX(cpu, index); num_threads_sharing = 1 + this_leaf->eax.split.num_threads_sharing; if (num_threads_sharing == 1) cpumask_set_cpu(cpu, to_cpumask(this_leaf->shared_cpu_map)); else { index_msb = get_count_order(num_threads_sharing); for_each_online_cpu(i) { if (cpu_data(i).apicid >> index_msb == c->apicid >> index_msb) { cpumask_set_cpu(i, to_cpumask(this_leaf->shared_cpu_map)); if (i != cpu && per_cpu(ici_cpuid4_info, i)) { sibling_leaf = CPUID4_INFO_IDX(i, index); cpumask_set_cpu(cpu, to_cpumask( sibling_leaf->shared_cpu_map)); } } } } } static void __cpuinit cache_remove_shared_cpu_map(unsigned int cpu, int index) { struct _cpuid4_info *this_leaf, *sibling_leaf; int sibling; this_leaf = CPUID4_INFO_IDX(cpu, index); for_each_cpu(sibling, to_cpumask(this_leaf->shared_cpu_map)) { sibling_leaf = CPUID4_INFO_IDX(sibling, index); cpumask_clear_cpu(cpu, to_cpumask(sibling_leaf->shared_cpu_map)); } } #else static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu, int index) { } static void __cpuinit cache_remove_shared_cpu_map(unsigned int cpu, int index) { } #endif static void __cpuinit free_cache_attributes(unsigned int cpu) { int i; for (i = 0; i < num_cache_leaves; i++) cache_remove_shared_cpu_map(cpu, i); kfree(per_cpu(ici_cpuid4_info, cpu)); per_cpu(ici_cpuid4_info, cpu) = NULL; } static int __cpuinit cpuid4_cache_lookup(int index, struct _cpuid4_info *this_leaf) { struct _cpuid4_info_regs *leaf_regs = (struct _cpuid4_info_regs *)this_leaf; return cpuid4_cache_lookup_regs(index, leaf_regs); } static void __cpuinit get_cpu_leaves(void *_retval) { int j, *retval = _retval, cpu = smp_processor_id(); /* Do cpuid and store the results */ for (j = 0; j < num_cache_leaves; j++) { struct _cpuid4_info *this_leaf; this_leaf = CPUID4_INFO_IDX(cpu, j); *retval = cpuid4_cache_lookup(j, this_leaf); if (unlikely(*retval < 0)) { int i; for (i = 0; i < j; i++) cache_remove_shared_cpu_map(cpu, i); break; } cache_shared_cpu_map_setup(cpu, j); } } static int __cpuinit detect_cache_attributes(unsigned int cpu) { int retval; if (num_cache_leaves == 0) return -ENOENT; per_cpu(ici_cpuid4_info, cpu) = kzalloc( sizeof(struct _cpuid4_info) * num_cache_leaves, GFP_KERNEL); if (per_cpu(ici_cpuid4_info, cpu) == NULL) return -ENOMEM; smp_call_function_single(cpu, get_cpu_leaves, &retval, true); if (retval) { kfree(per_cpu(ici_cpuid4_info, cpu)); per_cpu(ici_cpuid4_info, cpu) = NULL; } return retval; } #include #include extern struct sysdev_class cpu_sysdev_class; /* from drivers/base/cpu.c */ /* pointer to kobject for cpuX/cache */ static DEFINE_PER_CPU(struct kobject *, ici_cache_kobject); struct _index_kobject { struct kobject kobj; unsigned int cpu; unsigned short index; }; /* pointer to array of kobjects for cpuX/cache/indexY */ static DEFINE_PER_CPU(struct _index_kobject *, ici_index_kobject); #define INDEX_KOBJECT_PTR(x, y) (&((per_cpu(ici_index_kobject, x))[y])) #define show_one_plus(file_name, object, val) \ static ssize_t show_##file_name \ (struct _cpuid4_info *this_leaf, char *buf) \ { \ return sprintf(buf, "%lu\n", (unsigned long)this_leaf->object + val); \ } show_one_plus(level, eax.split.level, 0); show_one_plus(coherency_line_size, ebx.split.coherency_line_size, 1); show_one_plus(physical_line_partition, ebx.split.physical_line_partition, 1); show_one_plus(ways_of_associativity, ebx.split.ways_of_associativity, 1); show_one_plus(number_of_sets, ecx.split.number_of_sets, 1); static ssize_t show_size(struct _cpuid4_info *this_leaf, char *buf) { return sprintf(buf, "%luK\n", this_leaf->size / 1024); } static ssize_t show_shared_cpu_map_func(struct _cpuid4_info *this_leaf, int type, char *buf) { ptrdiff_t len = PTR_ALIGN(buf + PAGE_SIZE - 1, PAGE_SIZE) - buf; int n = 0; if (len > 1) { const struct cpumask *mask; mask = to_cpumask(this_leaf->shared_cpu_map); n = type ? cpulist_scnprintf(buf, len-2, mask) : cpumask_scnprintf(buf, len-2, mask); buf[n++] = '\n'; buf[n] = '\0'; } return n; } static inline ssize_t show_shared_cpu_map(struct _cpuid4_info *leaf, char *buf) { return show_shared_cpu_map_func(leaf, 0, buf); } static inline ssize_t show_shared_cpu_list(struct _cpuid4_info *leaf, char *buf) { return show_shared_cpu_map_func(leaf, 1, buf); } static ssize_t show_type(struct _cpuid4_info *this_leaf, char *buf) { switch (this_leaf->eax.split.type) { case CACHE_TYPE_DATA: return sprintf(buf, "Data\n"); case CACHE_TYPE_INST: return sprintf(buf, "Instruction\n"); case CACHE_TYPE_UNIFIED: return sprintf(buf, "Unified\n"); default: return sprintf(buf, "Unknown\n"); } } #define to_object(k) container_of(k, struct _index_kobject, kobj) #define to_attr(a) container_of(a, struct _cache_attr, attr) #define define_one_ro(_name) \ static struct _cache_attr _name = \ __ATTR(_name, 0444, show_##_name, NULL) define_one_ro(level); define_one_ro(type); define_one_ro(coherency_line_size); define_one_ro(physical_line_partition); define_one_ro(ways_of_associativity); define_one_ro(number_of_sets); define_one_ro(size); define_one_ro(shared_cpu_map); define_one_ro(shared_cpu_list); #define DEFAULT_SYSFS_CACHE_ATTRS \ &type.attr, \ &level.attr, \ &coherency_line_size.attr, \ &physical_line_partition.attr, \ &ways_of_associativity.attr, \ &number_of_sets.attr, \ &size.attr, \ &shared_cpu_map.attr, \ &shared_cpu_list.attr static struct attribute *default_attrs[] = { DEFAULT_SYSFS_CACHE_ATTRS, NULL }; static struct attribute *default_l3_attrs[] = { DEFAULT_SYSFS_CACHE_ATTRS, #ifdef CONFIG_CPU_SUP_AMD &cache_disable_0.attr, &cache_disable_1.attr, #endif NULL }; static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) { struct _cache_attr *fattr = to_attr(attr); struct _index_kobject *this_leaf = to_object(kobj); ssize_t ret; ret = fattr->show ? fattr->show(CPUID4_INFO_IDX(this_leaf->cpu, this_leaf->index), buf) : 0; return ret; } static ssize_t store(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { struct _cache_attr *fattr = to_attr(attr); struct _index_kobject *this_leaf = to_object(kobj); ssize_t ret; ret = fattr->store ? fattr->store(CPUID4_INFO_IDX(this_leaf->cpu, this_leaf->index), buf, count) : 0; return ret; } static const struct sysfs_ops sysfs_ops = { .show = show, .store = store, }; static struct kobj_type ktype_cache = { .sysfs_ops = &sysfs_ops, .default_attrs = default_attrs, }; static struct kobj_type ktype_percpu_entry = { .sysfs_ops = &sysfs_ops, }; static void __cpuinit cpuid4_cache_sysfs_exit(unsigned int cpu) { kfree(per_cpu(ici_cache_kobject, cpu)); kfree(per_cpu(ici_index_kobject, cpu)); per_cpu(ici_cache_kobject, cpu) = NULL; per_cpu(ici_index_kobject, cpu) = NULL; free_cache_attributes(cpu); } static int __cpuinit cpuid4_cache_sysfs_init(unsigned int cpu) { int err; if (num_cache_leaves == 0) return -ENOENT; err = detect_cache_attributes(cpu); if (err) return err; /* Allocate all required memory */ per_cpu(ici_cache_kobject, cpu) = kzalloc(sizeof(struct kobject), GFP_KERNEL); if (unlikely(per_cpu(ici_cache_kobject, cpu) == NULL)) goto err_out; per_cpu(ici_index_kobject, cpu) = kzalloc( sizeof(struct _index_kobject) * num_cache_leaves, GFP_KERNEL); if (unlikely(per_cpu(ici_index_kobject, cpu) == NULL)) goto err_out; return 0; err_out: cpuid4_cache_sysfs_exit(cpu); return -ENOMEM; } static DECLARE_BITMAP(cache_dev_map, NR_CPUS); /* Add/Remove cache interface for CPU device */ static int __cpuinit cache_add_dev(struct sys_device * sys_dev) { unsigned int cpu = sys_dev->id; unsigned long i, j; struct _index_kobject *this_object; struct _cpuid4_info *this_leaf; int retval; retval = cpuid4_cache_sysfs_init(cpu); if (unlikely(retval < 0)) return retval; retval = kobject_init_and_add(per_cpu(ici_cache_kobject, cpu), &ktype_percpu_entry, &sys_dev->kobj, "%s", "cache"); if (retval < 0) { cpuid4_cache_sysfs_exit(cpu); return retval; } for (i = 0; i < num_cache_leaves; i++) { this_object = INDEX_KOBJECT_PTR(cpu, i); this_object->cpu = cpu; this_object->index = i; this_leaf = CPUID4_INFO_IDX(cpu, i); if (this_leaf->can_disable) ktype_cache.default_attrs = default_l3_attrs; else ktype_cache.default_attrs = default_attrs; retval = kobject_init_and_add(&(this_object->kobj), &ktype_cache, per_cpu(ici_cache_kobject, cpu), "index%1lu", i); if (unlikely(retval)) { for (j = 0; j < i; j++) kobject_put(&(INDEX_KOBJECT_PTR(cpu, j)->kobj)); kobject_put(per_cpu(ici_cache_kobject, cpu)); cpuid4_cache_sysfs_exit(cpu); return retval; } kobject_uevent(&(this_object->kobj), KOBJ_ADD); } cpumask_set_cpu(cpu, to_cpumask(cache_dev_map)); kobject_uevent(per_cpu(ici_cache_kobject, cpu), KOBJ_ADD); return 0; } static void __cpuinit cache_remove_dev(struct sys_device * sys_dev) { unsigned int cpu = sys_dev->id; unsigned long i; if (per_cpu(ici_cpuid4_info, cpu) == NULL) return; if (!cpumask_test_cpu(cpu, to_cpumask(cache_dev_map))) return; cpumask_clear_cpu(cpu, to_cpumask(cache_dev_map)); for (i = 0; i < num_cache_leaves; i++) kobject_put(&(INDEX_KOBJECT_PTR(cpu, i)->kobj)); kobject_put(per_cpu(ici_cache_kobject, cpu)); cpuid4_cache_sysfs_exit(cpu); } static int __cpuinit cacheinfo_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu) { unsigned int cpu = (unsigned long)hcpu; struct sys_device *sys_dev; sys_dev = get_cpu_sysdev(cpu); switch (action) { case CPU_ONLINE: case CPU_ONLINE_FROZEN: cache_add_dev(sys_dev); break; case CPU_DEAD: case CPU_DEAD_FROZEN: cache_remove_dev(sys_dev); break; } return NOTIFY_OK; } static struct notifier_block __cpuinitdata cacheinfo_cpu_notifier = { .notifier_call = cacheinfo_cpu_callback, }; static int __cpuinit cache_sysfs_init(void) { int i; if (num_cache_leaves == 0) return 0; for_each_online_cpu(i) { int err; struct sys_device *sys_dev = get_cpu_sysdev(i); err = cache_add_dev(sys_dev); if (err) return err; } register_hotcpu_notifier(&cacheinfo_cpu_notifier); return 0; } device_initcall(cache_sysfs_init); #endif