/* zd_usb.c * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include #include #include #include "zd_def.h" #include "zd_netdev.h" #include "zd_mac.h" #include "zd_usb.h" #include "zd_util.h" static struct usb_device_id usb_ids[] = { /* ZD1211 */ { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 }, { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 }, { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 }, { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 }, { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 }, { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 }, { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 }, { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 }, { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 }, { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 }, { USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 }, { USB_DEVICE(0x0b05, 0x170c), .driver_info = DEVICE_ZD1211 }, { USB_DEVICE(0x1435, 0x0711), .driver_info = DEVICE_ZD1211 }, { USB_DEVICE(0x0586, 0x3409), .driver_info = DEVICE_ZD1211 }, { USB_DEVICE(0x0b3b, 0x1630), .driver_info = DEVICE_ZD1211 }, /* ZD1211B */ { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B }, { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B }, { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B }, { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B }, /* "Driverless" devices that need ejecting */ { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER }, {} }; MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip."); MODULE_AUTHOR("Ulrich Kunitz"); MODULE_AUTHOR("Daniel Drake"); MODULE_VERSION("1.0"); MODULE_DEVICE_TABLE(usb, usb_ids); #define FW_ZD1211_PREFIX "zd1211/zd1211_" #define FW_ZD1211B_PREFIX "zd1211/zd1211b_" /* register address handling */ #ifdef DEBUG static int check_addr(struct zd_usb *usb, zd_addr_t addr) { u32 base = ZD_ADDR_BASE(addr); u32 offset = ZD_OFFSET(addr); if ((u32)addr & ADDR_ZERO_MASK) goto invalid_address; switch (base) { case USB_BASE: break; case CR_BASE: if (offset > CR_MAX_OFFSET) { dev_dbg(zd_usb_dev(usb), "CR offset %#010x larger than" " CR_MAX_OFFSET %#10x\n", offset, CR_MAX_OFFSET); goto invalid_address; } if (offset & 1) { dev_dbg(zd_usb_dev(usb), "CR offset %#010x is not a multiple of 2\n", offset); goto invalid_address; } break; case E2P_BASE: if (offset > E2P_MAX_OFFSET) { dev_dbg(zd_usb_dev(usb), "E2P offset %#010x larger than" " E2P_MAX_OFFSET %#010x\n", offset, E2P_MAX_OFFSET); goto invalid_address; } break; case FW_BASE: if (!usb->fw_base_offset) { dev_dbg(zd_usb_dev(usb), "ERROR: fw base offset has not been set\n"); return -EAGAIN; } if (offset > FW_MAX_OFFSET) { dev_dbg(zd_usb_dev(usb), "FW offset %#10x is larger than" " FW_MAX_OFFSET %#010x\n", offset, FW_MAX_OFFSET); goto invalid_address; } break; default: dev_dbg(zd_usb_dev(usb), "address has unsupported base %#010x\n", addr); goto invalid_address; } return 0; invalid_address: dev_dbg(zd_usb_dev(usb), "ERROR: invalid address: %#010x\n", addr); return -EINVAL; } #endif /* DEBUG */ static u16 usb_addr(struct zd_usb *usb, zd_addr_t addr) { u32 base; u16 offset; base = ZD_ADDR_BASE(addr); offset = ZD_OFFSET(addr); ZD_ASSERT(check_addr(usb, addr) == 0); switch (base) { case CR_BASE: offset += CR_BASE_OFFSET; break; case E2P_BASE: offset += E2P_BASE_OFFSET; break; case FW_BASE: offset += usb->fw_base_offset; break; } return offset; } /* USB device initialization */ static int request_fw_file( const struct firmware **fw, const char *name, struct device *device) { int r; dev_dbg_f(device, "fw name %s\n", name); r = request_firmware(fw, name, device); if (r) dev_err(device, "Could not load firmware file %s. Error number %d\n", name, r); return r; } static inline u16 get_bcdDevice(const struct usb_device *udev) { return le16_to_cpu(udev->descriptor.bcdDevice); } enum upload_code_flags { REBOOT = 1, }; /* Ensures that MAX_TRANSFER_SIZE is even. */ #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1) static int upload_code(struct usb_device *udev, const u8 *data, size_t size, u16 code_offset, int flags) { u8 *p; int r; /* USB request blocks need "kmalloced" buffers. */ p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL); if (!p) { dev_err(&udev->dev, "out of memory\n"); r = -ENOMEM; goto error; } size &= ~1; while (size > 0) { size_t transfer_size = size <= MAX_TRANSFER_SIZE ? size : MAX_TRANSFER_SIZE; dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size); memcpy(p, data, transfer_size); r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), USB_REQ_FIRMWARE_DOWNLOAD, USB_DIR_OUT | USB_TYPE_VENDOR, code_offset, 0, p, transfer_size, 1000 /* ms */); if (r < 0) { dev_err(&udev->dev, "USB control request for firmware upload" " failed. Error number %d\n", r); goto error; } transfer_size = r & ~1; size -= transfer_size; data += transfer_size; code_offset += transfer_size/sizeof(u16); } if (flags & REBOOT) { u8 ret; r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0), USB_REQ_FIRMWARE_CONFIRM, USB_DIR_IN | USB_TYPE_VENDOR, 0, 0, &ret, sizeof(ret), 5000 /* ms */); if (r != sizeof(ret)) { dev_err(&udev->dev, "control request firmeware confirmation failed." " Return value %d\n", r); if (r >= 0) r = -ENODEV; goto error; } if (ret & 0x80) { dev_err(&udev->dev, "Internal error while downloading." " Firmware confirm return value %#04x\n", (unsigned int)ret); r = -ENODEV; goto error; } dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n", (unsigned int)ret); } r = 0; error: kfree(p); return r; } static u16 get_word(const void *data, u16 offset) { const __le16 *p = data; return le16_to_cpu(p[offset]); } static char *get_fw_name(char *buffer, size_t size, u8 device_type, const char* postfix) { scnprintf(buffer, size, "%s%s", device_type == DEVICE_ZD1211B ? FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX, postfix); return buffer; } static int handle_version_mismatch(struct usb_device *udev, u8 device_type, const struct firmware *ub_fw) { const struct firmware *ur_fw = NULL; int offset; int r = 0; char fw_name[128]; r = request_fw_file(&ur_fw, get_fw_name(fw_name, sizeof(fw_name), device_type, "ur"), &udev->dev); if (r) goto error; r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START_OFFSET, REBOOT); if (r) goto error; offset = ((EEPROM_REGS_OFFSET + EEPROM_REGS_SIZE) * sizeof(u16)); r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset, E2P_BASE_OFFSET + EEPROM_REGS_SIZE, REBOOT); /* At this point, the vendor driver downloads the whole firmware * image, hacks around with version IDs, and uploads it again, * completely overwriting the boot code. We do not do this here as * it is not required on any tested devices, and it is suspected to * cause problems. */ error: release_firmware(ur_fw); return r; } static int upload_firmware(struct usb_device *udev, u8 device_type) { int r; u16 fw_bcdDevice; u16 bcdDevice; const struct firmware *ub_fw = NULL; const struct firmware *uph_fw = NULL; char fw_name[128]; bcdDevice = get_bcdDevice(udev); r = request_fw_file(&ub_fw, get_fw_name(fw_name, sizeof(fw_name), device_type, "ub"), &udev->dev); if (r) goto error; fw_bcdDevice = get_word(ub_fw->data, EEPROM_REGS_OFFSET); if (fw_bcdDevice != bcdDevice) { dev_info(&udev->dev, "firmware version %#06x and device bootcode version " "%#06x differ\n", fw_bcdDevice, bcdDevice); if (bcdDevice <= 0x4313) dev_warn(&udev->dev, "device has old bootcode, please " "report success or failure\n"); r = handle_version_mismatch(udev, device_type, ub_fw); if (r) goto error; } else { dev_dbg_f(&udev->dev, "firmware device id %#06x is equal to the " "actual device id\n", fw_bcdDevice); } r = request_fw_file(&uph_fw, get_fw_name(fw_name, sizeof(fw_name), device_type, "uphr"), &udev->dev); if (r) goto error; r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START_OFFSET, REBOOT); if (r) { dev_err(&udev->dev, "Could not upload firmware code uph. Error number %d\n", r); } /* FALL-THROUGH */ error: release_firmware(ub_fw); release_firmware(uph_fw); return r; } #define urb_dev(urb) (&(urb)->dev->dev) static inline void handle_regs_int(struct urb *urb) { struct zd_usb *usb = urb->context; struct zd_usb_interrupt *intr = &usb->intr; int len; ZD_ASSERT(in_interrupt()); spin_lock(&intr->lock); if (intr->read_regs_enabled) { intr->read_regs.length = len = urb->actual_length; if (len > sizeof(intr->read_regs.buffer)) len = sizeof(intr->read_regs.buffer); memcpy(intr->read_regs.buffer, urb->transfer_buffer, len); intr->read_regs_enabled = 0; complete(&intr->read_regs.completion); goto out; } dev_dbg_f(urb_dev(urb), "regs interrupt ignored\n"); out: spin_unlock(&intr->lock); } static inline void handle_retry_failed_int(struct urb *urb) { dev_dbg_f(urb_dev(urb), "retry failed interrupt\n"); } static void int_urb_complete(struct urb *urb) { int r; struct usb_int_header *hdr; switch (urb->status) { case 0: break; case -ESHUTDOWN: case -EINVAL: case -ENODEV: case -ENOENT: case -ECONNRESET: case -EPIPE: goto kfree; default: goto resubmit; } if (urb->actual_length < sizeof(hdr)) { dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb); goto resubmit; } hdr = urb->transfer_buffer; if (hdr->type != USB_INT_TYPE) { dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb); goto resubmit; } switch (hdr->id) { case USB_INT_ID_REGS: handle_regs_int(urb); break; case USB_INT_ID_RETRY_FAILED: handle_retry_failed_int(urb); break; default: dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb, (unsigned int)hdr->id); goto resubmit; } resubmit: r = usb_submit_urb(urb, GFP_ATOMIC); if (r) { dev_dbg_f(urb_dev(urb), "resubmit urb %p\n", urb); goto kfree; } return; kfree: kfree(urb->transfer_buffer); } static inline int int_urb_interval(struct usb_device *udev) { switch (udev->speed) { case USB_SPEED_HIGH: return 4; case USB_SPEED_LOW: return 10; case USB_SPEED_FULL: default: return 1; } } static inline int usb_int_enabled(struct zd_usb *usb) { unsigned long flags; struct zd_usb_interrupt *intr = &usb->intr; struct urb *urb; spin_lock_irqsave(&intr->lock, flags); urb = intr->urb; spin_unlock_irqrestore(&intr->lock, flags); return urb != NULL; } int zd_usb_enable_int(struct zd_usb *usb) { int r; struct usb_device *udev; struct zd_usb_interrupt *intr = &usb->intr; void *transfer_buffer = NULL; struct urb *urb; dev_dbg_f(zd_usb_dev(usb), "\n"); urb = usb_alloc_urb(0, GFP_NOFS); if (!urb) { r = -ENOMEM; goto out; } ZD_ASSERT(!irqs_disabled()); spin_lock_irq(&intr->lock); if (intr->urb) { spin_unlock_irq(&intr->lock); r = 0; goto error_free_urb; } intr->urb = urb; spin_unlock_irq(&intr->lock); /* TODO: make it a DMA buffer */ r = -ENOMEM; transfer_buffer = kmalloc(USB_MAX_EP_INT_BUFFER, GFP_NOFS); if (!transfer_buffer) { dev_dbg_f(zd_usb_dev(usb), "couldn't allocate transfer_buffer\n"); goto error_set_urb_null; } udev = zd_usb_to_usbdev(usb); usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN), transfer_buffer, USB_MAX_EP_INT_BUFFER, int_urb_complete, usb, intr->interval); dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb); r = usb_submit_urb(urb, GFP_NOFS); if (r) { dev_dbg_f(zd_usb_dev(usb), "Couldn't submit urb. Error number %d\n", r); goto error; } return 0; error: kfree(transfer_buffer); error_set_urb_null: spin_lock_irq(&intr->lock); intr->urb = NULL; spin_unlock_irq(&intr->lock); error_free_urb: usb_free_urb(urb); out: return r; } void zd_usb_disable_int(struct zd_usb *usb) { unsigned long flags; struct zd_usb_interrupt *intr = &usb->intr; struct urb *urb; spin_lock_irqsave(&intr->lock, flags); urb = intr->urb; if (!urb) { spin_unlock_irqrestore(&intr->lock, flags); return; } intr->urb = NULL; spin_unlock_irqrestore(&intr->lock, flags); usb_kill_urb(urb); dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb); usb_free_urb(urb); } static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer, unsigned int length) { int i; struct zd_mac *mac = zd_usb_to_mac(usb); const struct rx_length_info *length_info; if (length < sizeof(struct rx_length_info)) { /* It's not a complete packet anyhow. */ return; } length_info = (struct rx_length_info *) (buffer + length - sizeof(struct rx_length_info)); /* It might be that three frames are merged into a single URB * transaction. We have to check for the length info tag. * * While testing we discovered that length_info might be unaligned, * because if USB transactions are merged, the last packet will not * be padded. Unaligned access might also happen if the length_info * structure is not present. */ if (get_unaligned(&length_info->tag) == cpu_to_le16(RX_LENGTH_INFO_TAG)) { unsigned int l, k, n; for (i = 0, l = 0;; i++) { k = le16_to_cpu(get_unaligned(&length_info->length[i])); n = l+k; if (n > length) return; zd_mac_rx(mac, buffer+l, k); if (i >= 2) return; l = (n+3) & ~3; } } else { zd_mac_rx(mac, buffer, length); } } static void rx_urb_complete(struct urb *urb) { struct zd_usb *usb; struct zd_usb_rx *rx; const u8 *buffer; unsigned int length; switch (urb->status) { case 0: break; case -ESHUTDOWN: case -EINVAL: case -ENODEV: case -ENOENT: case -ECONNRESET: case -EPIPE: return; default: dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status); goto resubmit; } buffer = urb->transfer_buffer; length = urb->actual_length; usb = urb->context; rx = &usb->rx; if (length%rx->usb_packet_size > rx->usb_packet_size-4) { /* If there is an old first fragment, we don't care. */ dev_dbg_f(urb_dev(urb), "*** first fragment ***\n"); ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment)); spin_lock(&rx->lock); memcpy(rx->fragment, buffer, length); rx->fragment_length = length; spin_unlock(&rx->lock); goto resubmit; } spin_lock(&rx->lock); if (rx->fragment_length > 0) { /* We are on a second fragment, we believe */ ZD_ASSERT(length + rx->fragment_length <= ARRAY_SIZE(rx->fragment)); dev_dbg_f(urb_dev(urb), "*** second fragment ***\n"); memcpy(rx->fragment+rx->fragment_length, buffer, length); handle_rx_packet(usb, rx->fragment, rx->fragment_length + length); rx->fragment_length = 0; spin_unlock(&rx->lock); } else { spin_unlock(&rx->lock); handle_rx_packet(usb, buffer, length); } resubmit: usb_submit_urb(urb, GFP_ATOMIC); } static struct urb *alloc_urb(struct zd_usb *usb) { struct usb_device *udev = zd_usb_to_usbdev(usb); struct urb *urb; void *buffer; urb = usb_alloc_urb(0, GFP_NOFS); if (!urb) return NULL; buffer = usb_buffer_alloc(udev, USB_MAX_RX_SIZE, GFP_NOFS, &urb->transfer_dma); if (!buffer) { usb_free_urb(urb); return NULL; } usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN), buffer, USB_MAX_RX_SIZE, rx_urb_complete, usb); urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; return urb; } static void free_urb(struct urb *urb) { if (!urb) return; usb_buffer_free(urb->dev, urb->transfer_buffer_length, urb->transfer_buffer, urb->transfer_dma); usb_free_urb(urb); } int zd_usb_enable_rx(struct zd_usb *usb) { int i, r; struct zd_usb_rx *rx = &usb->rx; struct urb **urbs; dev_dbg_f(zd_usb_dev(usb), "\n"); r = -ENOMEM; urbs = kcalloc(URBS_COUNT, sizeof(struct urb *), GFP_NOFS); if (!urbs) goto error; for (i = 0; i < URBS_COUNT; i++) { urbs[i] = alloc_urb(usb); if (!urbs[i]) goto error; } ZD_ASSERT(!irqs_disabled()); spin_lock_irq(&rx->lock); if (rx->urbs) { spin_unlock_irq(&rx->lock); r = 0; goto error; } rx->urbs = urbs; rx->urbs_count = URBS_COUNT; spin_unlock_irq(&rx->lock); for (i = 0; i < URBS_COUNT; i++) { r = usb_submit_urb(urbs[i], GFP_NOFS); if (r) goto error_submit; } return 0; error_submit: for (i = 0; i < URBS_COUNT; i++) { usb_kill_urb(urbs[i]); } spin_lock_irq(&rx->lock); rx->urbs = NULL; rx->urbs_count = 0; spin_unlock_irq(&rx->lock); error: if (urbs) { for (i = 0; i < URBS_COUNT; i++) free_urb(urbs[i]); } return r; } void zd_usb_disable_rx(struct zd_usb *usb) { int i; unsigned long flags; struct urb **urbs; unsigned int count; struct zd_usb_rx *rx = &usb->rx; spin_lock_irqsave(&rx->lock, flags); urbs = rx->urbs; count = rx->urbs_count; spin_unlock_irqrestore(&rx->lock, flags); if (!urbs) return; for (i = 0; i < count; i++) { usb_kill_urb(urbs[i]); free_urb(urbs[i]); } kfree(urbs); spin_lock_irqsave(&rx->lock, flags); rx->urbs = NULL; rx->urbs_count = 0; spin_unlock_irqrestore(&rx->lock, flags); } static void tx_urb_complete(struct urb *urb) { int r; switch (urb->status) { case 0: break; case -ESHUTDOWN: case -EINVAL: case -ENODEV: case -ENOENT: case -ECONNRESET: case -EPIPE: dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status); break; default: dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status); goto resubmit; } free_urb: usb_buffer_free(urb->dev, urb->transfer_buffer_length, urb->transfer_buffer, urb->transfer_dma); usb_free_urb(urb); return; resubmit: r = usb_submit_urb(urb, GFP_ATOMIC); if (r) { dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r); goto free_urb; } } /* Puts the frame on the USB endpoint. It doesn't wait for * completion. The frame must contain the control set. */ int zd_usb_tx(struct zd_usb *usb, const u8 *frame, unsigned int length) { int r; struct usb_device *udev = zd_usb_to_usbdev(usb); struct urb *urb; void *buffer; urb = usb_alloc_urb(0, GFP_ATOMIC); if (!urb) { r = -ENOMEM; goto out; } buffer = usb_buffer_alloc(zd_usb_to_usbdev(usb), length, GFP_ATOMIC, &urb->transfer_dma); if (!buffer) { r = -ENOMEM; goto error_free_urb; } memcpy(buffer, frame, length); usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT), buffer, length, tx_urb_complete, NULL); urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; r = usb_submit_urb(urb, GFP_ATOMIC); if (r) goto error; return 0; error: usb_buffer_free(zd_usb_to_usbdev(usb), length, buffer, urb->transfer_dma); error_free_urb: usb_free_urb(urb); out: return r; } static inline void init_usb_interrupt(struct zd_usb *usb) { struct zd_usb_interrupt *intr = &usb->intr; spin_lock_init(&intr->lock); intr->interval = int_urb_interval(zd_usb_to_usbdev(usb)); init_completion(&intr->read_regs.completion); intr->read_regs.cr_int_addr = cpu_to_le16(usb_addr(usb, CR_INTERRUPT)); } static inline void init_usb_rx(struct zd_usb *usb) { struct zd_usb_rx *rx = &usb->rx; spin_lock_init(&rx->lock); if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) { rx->usb_packet_size = 512; } else { rx->usb_packet_size = 64; } ZD_ASSERT(rx->fragment_length == 0); } static inline void init_usb_tx(struct zd_usb *usb) { /* FIXME: at this point we will allocate a fixed number of urb's for * use in a cyclic scheme */ } void zd_usb_init(struct zd_usb *usb, struct net_device *netdev, struct usb_interface *intf) { memset(usb, 0, sizeof(*usb)); usb->intf = usb_get_intf(intf); usb_set_intfdata(usb->intf, netdev); init_usb_interrupt(usb); init_usb_tx(usb); init_usb_rx(usb); } int zd_usb_init_hw(struct zd_usb *usb) { int r; struct zd_chip *chip = zd_usb_to_chip(usb); ZD_ASSERT(mutex_is_locked(&chip->mutex)); r = zd_ioread16_locked(chip, &usb->fw_base_offset, USB_REG((u16)FW_BASE_ADDR_OFFSET)); if (r) return r; dev_dbg_f(zd_usb_dev(usb), "fw_base_offset: %#06hx\n", usb->fw_base_offset); return 0; } void zd_usb_clear(struct zd_usb *usb) { usb_set_intfdata(usb->intf, NULL); usb_put_intf(usb->intf); ZD_MEMCLEAR(usb, sizeof(*usb)); /* FIXME: usb_interrupt, usb_tx, usb_rx? */ } static const char *speed(enum usb_device_speed speed) { switch (speed) { case USB_SPEED_LOW: return "low"; case USB_SPEED_FULL: return "full"; case USB_SPEED_HIGH: return "high"; default: return "unknown speed"; } } static int scnprint_id(struct usb_device *udev, char *buffer, size_t size) { return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s", le16_to_cpu(udev->descriptor.idVendor), le16_to_cpu(udev->descriptor.idProduct), get_bcdDevice(udev), speed(udev->speed)); } int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size) { struct usb_device *udev = interface_to_usbdev(usb->intf); return scnprint_id(udev, buffer, size); } #ifdef DEBUG static void print_id(struct usb_device *udev) { char buffer[40]; scnprint_id(udev, buffer, sizeof(buffer)); buffer[sizeof(buffer)-1] = 0; dev_dbg_f(&udev->dev, "%s\n", buffer); } #else #define print_id(udev) do { } while (0) #endif static int eject_installer(struct usb_interface *intf) { struct usb_device *udev = interface_to_usbdev(intf); struct usb_host_interface *iface_desc = &intf->altsetting[0]; struct usb_endpoint_descriptor *endpoint; unsigned char *cmd; u8 bulk_out_ep; int r; /* Find bulk out endpoint */ endpoint = &iface_desc->endpoint[1].desc; if ((endpoint->bEndpointAddress & USB_TYPE_MASK) == USB_DIR_OUT && (endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == USB_ENDPOINT_XFER_BULK) { bulk_out_ep = endpoint->bEndpointAddress; } else { dev_err(&udev->dev, "zd1211rw: Could not find bulk out endpoint\n"); return -ENODEV; } cmd = kzalloc(31, GFP_KERNEL); if (cmd == NULL) return -ENODEV; /* USB bulk command block */ cmd[0] = 0x55; /* bulk command signature */ cmd[1] = 0x53; /* bulk command signature */ cmd[2] = 0x42; /* bulk command signature */ cmd[3] = 0x43; /* bulk command signature */ cmd[14] = 6; /* command length */ cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */ cmd[19] = 0x2; /* eject disc */ dev_info(&udev->dev, "Ejecting virtual installer media...\n"); r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep), cmd, 31, NULL, 2000); kfree(cmd); if (r) return r; /* At this point, the device disconnects and reconnects with the real * ID numbers. */ usb_set_intfdata(intf, NULL); return 0; } static int probe(struct usb_interface *intf, const struct usb_device_id *id) { int r; struct usb_device *udev = interface_to_usbdev(intf); struct net_device *netdev = NULL; print_id(udev); if (id->driver_info & DEVICE_INSTALLER) return eject_installer(intf); switch (udev->speed) { case USB_SPEED_LOW: case USB_SPEED_FULL: case USB_SPEED_HIGH: break; default: dev_dbg_f(&intf->dev, "Unknown USB speed\n"); r = -ENODEV; goto error; } netdev = zd_netdev_alloc(intf); if (netdev == NULL) { r = -ENOMEM; goto error; } r = upload_firmware(udev, id->driver_info); if (r) { dev_err(&intf->dev, "couldn't load firmware. Error number %d\n", r); goto error; } r = usb_reset_configuration(udev); if (r) { dev_dbg_f(&intf->dev, "couldn't reset configuration. Error number %d\n", r); goto error; } /* At this point the interrupt endpoint is not generally enabled. We * save the USB bandwidth until the network device is opened. But * notify that the initialization of the MAC will require the * interrupts to be temporary enabled. */ r = zd_mac_init_hw(zd_netdev_mac(netdev), id->driver_info); if (r) { dev_dbg_f(&intf->dev, "couldn't initialize mac. Error number %d\n", r); goto error; } r = register_netdev(netdev); if (r) { dev_dbg_f(&intf->dev, "couldn't register netdev. Error number %d\n", r); goto error; } dev_dbg_f(&intf->dev, "successful\n"); dev_info(&intf->dev,"%s\n", netdev->name); return 0; error: usb_reset_device(interface_to_usbdev(intf)); zd_netdev_free(netdev); return r; } static void disconnect(struct usb_interface *intf) { struct net_device *netdev = zd_intf_to_netdev(intf); struct zd_mac *mac = zd_netdev_mac(netdev); struct zd_usb *usb = &mac->chip.usb; /* Either something really bad happened, or we're just dealing with * a DEVICE_INSTALLER. */ if (netdev == NULL) return; dev_dbg_f(zd_usb_dev(usb), "\n"); zd_netdev_disconnect(netdev); /* Just in case something has gone wrong! */ zd_usb_disable_rx(usb); zd_usb_disable_int(usb); /* If the disconnect has been caused by a removal of the * driver module, the reset allows reloading of the driver. If the * reset will not be executed here, the upload of the firmware in the * probe function caused by the reloading of the driver will fail. */ usb_reset_device(interface_to_usbdev(intf)); zd_netdev_free(netdev); dev_dbg(&intf->dev, "disconnected\n"); } static struct usb_driver driver = { .name = "zd1211rw", .id_table = usb_ids, .probe = probe, .disconnect = disconnect, }; struct workqueue_struct *zd_workqueue; static int __init usb_init(void) { int r; pr_debug("usb_init()\n"); zd_workqueue = create_singlethread_workqueue(driver.name); if (zd_workqueue == NULL) { printk(KERN_ERR "%s: couldn't create workqueue\n", driver.name); return -ENOMEM; } r = usb_register(&driver); if (r) { printk(KERN_ERR "usb_register() failed. Error number %d\n", r); return r; } pr_debug("zd1211rw initialized\n"); return 0; } static void __exit usb_exit(void) { pr_debug("usb_exit()\n"); usb_deregister(&driver); destroy_workqueue(zd_workqueue); } module_init(usb_init); module_exit(usb_exit); static int usb_int_regs_length(unsigned int count) { return sizeof(struct usb_int_regs) + count * sizeof(struct reg_data); } static void prepare_read_regs_int(struct zd_usb *usb) { struct zd_usb_interrupt *intr = &usb->intr; spin_lock_irq(&intr->lock); intr->read_regs_enabled = 1; INIT_COMPLETION(intr->read_regs.completion); spin_unlock_irq(&intr->lock); } static void disable_read_regs_int(struct zd_usb *usb) { struct zd_usb_interrupt *intr = &usb->intr; spin_lock_irq(&intr->lock); intr->read_regs_enabled = 0; spin_unlock_irq(&intr->lock); } static int get_results(struct zd_usb *usb, u16 *values, struct usb_req_read_regs *req, unsigned int count) { int r; int i; struct zd_usb_interrupt *intr = &usb->intr; struct read_regs_int *rr = &intr->read_regs; struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer; spin_lock_irq(&intr->lock); r = -EIO; /* The created block size seems to be larger than expected. * However results appear to be correct. */ if (rr->length < usb_int_regs_length(count)) { dev_dbg_f(zd_usb_dev(usb), "error: actual length %d less than expected %d\n", rr->length, usb_int_regs_length(count)); goto error_unlock; } if (rr->length > sizeof(rr->buffer)) { dev_dbg_f(zd_usb_dev(usb), "error: actual length %d exceeds buffer size %zu\n", rr->length, sizeof(rr->buffer)); goto error_unlock; } for (i = 0; i < count; i++) { struct reg_data *rd = ®s->regs[i]; if (rd->addr != req->addr[i]) { dev_dbg_f(zd_usb_dev(usb), "rd[%d] addr %#06hx expected %#06hx\n", i, le16_to_cpu(rd->addr), le16_to_cpu(req->addr[i])); goto error_unlock; } values[i] = le16_to_cpu(rd->value); } r = 0; error_unlock: spin_unlock_irq(&intr->lock); return r; } int zd_usb_ioread16v(struct zd_usb *usb, u16 *values, const zd_addr_t *addresses, unsigned int count) { int r; int i, req_len, actual_req_len; struct usb_device *udev; struct usb_req_read_regs *req = NULL; unsigned long timeout; if (count < 1) { dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n"); return -EINVAL; } if (count > USB_MAX_IOREAD16_COUNT) { dev_dbg_f(zd_usb_dev(usb), "error: count %u exceeds possible max %u\n", count, USB_MAX_IOREAD16_COUNT); return -EINVAL; } if (in_atomic()) { dev_dbg_f(zd_usb_dev(usb), "error: io in atomic context not supported\n"); return -EWOULDBLOCK; } if (!usb_int_enabled(usb)) { dev_dbg_f(zd_usb_dev(usb), "error: usb interrupt not enabled\n"); return -EWOULDBLOCK; } req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16); req = kmalloc(req_len, GFP_NOFS); if (!req) return -ENOMEM; req->id = cpu_to_le16(USB_REQ_READ_REGS); for (i = 0; i < count; i++) req->addr[i] = cpu_to_le16(usb_addr(usb, addresses[i])); udev = zd_usb_to_usbdev(usb); prepare_read_regs_int(usb); r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT), req, req_len, &actual_req_len, 1000 /* ms */); if (r) { dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg(). Error number %d\n", r); goto error; } if (req_len != actual_req_len) { dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()\n" " req_len %d != actual_req_len %d\n", req_len, actual_req_len); r = -EIO; goto error; } timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion, msecs_to_jiffies(1000)); if (!timeout) { disable_read_regs_int(usb); dev_dbg_f(zd_usb_dev(usb), "read timed out\n"); r = -ETIMEDOUT; goto error; } r = get_results(usb, values, req, count); error: kfree(req); return r; } int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs, unsigned int count) { int r; struct usb_device *udev; struct usb_req_write_regs *req = NULL; int i, req_len, actual_req_len; if (count == 0) return 0; if (count > USB_MAX_IOWRITE16_COUNT) { dev_dbg_f(zd_usb_dev(usb), "error: count %u exceeds possible max %u\n", count, USB_MAX_IOWRITE16_COUNT); return -EINVAL; } if (in_atomic()) { dev_dbg_f(zd_usb_dev(usb), "error: io in atomic context not supported\n"); return -EWOULDBLOCK; } req_len = sizeof(struct usb_req_write_regs) + count * sizeof(struct reg_data); req = kmalloc(req_len, GFP_NOFS); if (!req) return -ENOMEM; req->id = cpu_to_le16(USB_REQ_WRITE_REGS); for (i = 0; i < count; i++) { struct reg_data *rw = &req->reg_writes[i]; rw->addr = cpu_to_le16(usb_addr(usb, ioreqs[i].addr)); rw->value = cpu_to_le16(ioreqs[i].value); } udev = zd_usb_to_usbdev(usb); r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT), req, req_len, &actual_req_len, 1000 /* ms */); if (r) { dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg(). Error number %d\n", r); goto error; } if (req_len != actual_req_len) { dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()" " req_len %d != actual_req_len %d\n", req_len, actual_req_len); r = -EIO; goto error; } /* FALL-THROUGH with r == 0 */ error: kfree(req); return r; } int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits) { int r; struct usb_device *udev; struct usb_req_rfwrite *req = NULL; int i, req_len, actual_req_len; u16 bit_value_template; if (in_atomic()) { dev_dbg_f(zd_usb_dev(usb), "error: io in atomic context not supported\n"); return -EWOULDBLOCK; } if (bits < USB_MIN_RFWRITE_BIT_COUNT) { dev_dbg_f(zd_usb_dev(usb), "error: bits %d are smaller than" " USB_MIN_RFWRITE_BIT_COUNT %d\n", bits, USB_MIN_RFWRITE_BIT_COUNT); return -EINVAL; } if (bits > USB_MAX_RFWRITE_BIT_COUNT) { dev_dbg_f(zd_usb_dev(usb), "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n", bits, USB_MAX_RFWRITE_BIT_COUNT); return -EINVAL; } #ifdef DEBUG if (value & (~0UL << bits)) { dev_dbg_f(zd_usb_dev(usb), "error: value %#09x has bits >= %d set\n", value, bits); return -EINVAL; } #endif /* DEBUG */ dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits); r = zd_usb_ioread16(usb, &bit_value_template, CR203); if (r) { dev_dbg_f(zd_usb_dev(usb), "error %d: Couldn't read CR203\n", r); goto out; } bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA); req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16); req = kmalloc(req_len, GFP_NOFS); if (!req) return -ENOMEM; req->id = cpu_to_le16(USB_REQ_WRITE_RF); /* 1: 3683a, but not used in ZYDAS driver */ req->value = cpu_to_le16(2); req->bits = cpu_to_le16(bits); for (i = 0; i < bits; i++) { u16 bv = bit_value_template; if (value & (1 << (bits-1-i))) bv |= RF_DATA; req->bit_values[i] = cpu_to_le16(bv); } udev = zd_usb_to_usbdev(usb); r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT), req, req_len, &actual_req_len, 1000 /* ms */); if (r) { dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg(). Error number %d\n", r); goto out; } if (req_len != actual_req_len) { dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()" " req_len %d != actual_req_len %d\n", req_len, actual_req_len); r = -EIO; goto out; } /* FALL-THROUGH with r == 0 */ out: kfree(req); return r; }