/* * Copyright (C) 2013 Shaohua Li * Copyright (C) 2014 Red Hat, Inc. * Copyright (C) 2015 Arrikto, Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Define a shared-memory interface for LIO to pass SCSI commands and * data to userspace for processing. This is to allow backends that * are too complex for in-kernel support to be possible. * * It uses the UIO framework to do a lot of the device-creation and * introspection work for us. * * See the .h file for how the ring is laid out. Note that while the * command ring is defined, the particulars of the data area are * not. Offset values in the command entry point to other locations * internal to the mmap()ed area. There is separate space outside the * command ring for data buffers. This leaves maximum flexibility for * moving buffer allocations, or even page flipping or other * allocation techniques, without altering the command ring layout. * * SECURITY: * The user process must be assumed to be malicious. There's no way to * prevent it breaking the command ring protocol if it wants, but in * order to prevent other issues we must only ever read *data* from * the shared memory area, not offsets or sizes. This applies to * command ring entries as well as the mailbox. Extra code needed for * this may have a 'UAM' comment. */ #define TCMU_TIME_OUT (30 * MSEC_PER_SEC) #define CMDR_SIZE (16 * 4096) #define DATA_SIZE (257 * 4096) #define TCMU_RING_SIZE (CMDR_SIZE + DATA_SIZE) static struct device *tcmu_root_device; struct tcmu_hba { u32 host_id; }; #define TCMU_CONFIG_LEN 256 struct tcmu_dev { struct se_device se_dev; char *name; struct se_hba *hba; #define TCMU_DEV_BIT_OPEN 0 #define TCMU_DEV_BIT_BROKEN 1 unsigned long flags; struct uio_info uio_info; struct tcmu_mailbox *mb_addr; size_t dev_size; u32 cmdr_size; u32 cmdr_last_cleaned; /* Offset of data ring from start of mb */ size_t data_off; size_t data_size; /* Ring head + tail values. */ /* Must add data_off and mb_addr to get the address */ size_t data_head; size_t data_tail; wait_queue_head_t wait_cmdr; /* TODO should this be a mutex? */ spinlock_t cmdr_lock; struct idr commands; spinlock_t commands_lock; struct timer_list timeout; char dev_config[TCMU_CONFIG_LEN]; }; #define TCMU_DEV(_se_dev) container_of(_se_dev, struct tcmu_dev, se_dev) #define CMDR_OFF sizeof(struct tcmu_mailbox) struct tcmu_cmd { struct se_cmd *se_cmd; struct tcmu_dev *tcmu_dev; uint16_t cmd_id; /* Can't use se_cmd->data_length when cleaning up expired cmds, because if cmd has been completed then accessing se_cmd is off limits */ size_t data_length; unsigned long deadline; #define TCMU_CMD_BIT_EXPIRED 0 unsigned long flags; }; static struct kmem_cache *tcmu_cmd_cache; /* multicast group */ enum tcmu_multicast_groups { TCMU_MCGRP_CONFIG, }; static const struct genl_multicast_group tcmu_mcgrps[] = { [TCMU_MCGRP_CONFIG] = { .name = "config", }, }; /* Our generic netlink family */ static struct genl_family tcmu_genl_family = { .id = GENL_ID_GENERATE, .hdrsize = 0, .name = "TCM-USER", .version = 1, .maxattr = TCMU_ATTR_MAX, .mcgrps = tcmu_mcgrps, .n_mcgrps = ARRAY_SIZE(tcmu_mcgrps), .netnsok = true, }; static struct tcmu_cmd *tcmu_alloc_cmd(struct se_cmd *se_cmd) { struct se_device *se_dev = se_cmd->se_dev; struct tcmu_dev *udev = TCMU_DEV(se_dev); struct tcmu_cmd *tcmu_cmd; int cmd_id; tcmu_cmd = kmem_cache_zalloc(tcmu_cmd_cache, GFP_KERNEL); if (!tcmu_cmd) return NULL; tcmu_cmd->se_cmd = se_cmd; tcmu_cmd->tcmu_dev = udev; tcmu_cmd->data_length = se_cmd->data_length; if (se_cmd->se_cmd_flags & SCF_BIDI) { BUG_ON(!(se_cmd->t_bidi_data_sg && se_cmd->t_bidi_data_nents)); tcmu_cmd->data_length += se_cmd->t_bidi_data_sg->length; } tcmu_cmd->deadline = jiffies + msecs_to_jiffies(TCMU_TIME_OUT); idr_preload(GFP_KERNEL); spin_lock_irq(&udev->commands_lock); cmd_id = idr_alloc(&udev->commands, tcmu_cmd, 0, USHRT_MAX, GFP_NOWAIT); spin_unlock_irq(&udev->commands_lock); idr_preload_end(); if (cmd_id < 0) { kmem_cache_free(tcmu_cmd_cache, tcmu_cmd); return NULL; } tcmu_cmd->cmd_id = cmd_id; return tcmu_cmd; } static inline void tcmu_flush_dcache_range(void *vaddr, size_t size) { unsigned long offset = offset_in_page(vaddr); size = round_up(size+offset, PAGE_SIZE); vaddr -= offset; while (size) { flush_dcache_page(virt_to_page(vaddr)); size -= PAGE_SIZE; } } /* * Some ring helper functions. We don't assume size is a power of 2 so * we can't use circ_buf.h. */ static inline size_t spc_used(size_t head, size_t tail, size_t size) { int diff = head - tail; if (diff >= 0) return diff; else return size + diff; } static inline size_t spc_free(size_t head, size_t tail, size_t size) { /* Keep 1 byte unused or we can't tell full from empty */ return (size - spc_used(head, tail, size) - 1); } static inline size_t head_to_end(size_t head, size_t size) { return size - head; } static inline void new_iov(struct iovec **iov, int *iov_cnt, struct tcmu_dev *udev) { struct iovec *iovec; if (*iov_cnt != 0) (*iov)++; (*iov_cnt)++; iovec = *iov; memset(iovec, 0, sizeof(struct iovec)); /* Even iov_base is relative to mb_addr */ iovec->iov_base = (void __user *) udev->data_off + udev->data_head; } #define UPDATE_HEAD(head, used, size) smp_store_release(&head, ((head % size) + used) % size) static void alloc_and_scatter_data_area(struct tcmu_dev *udev, struct scatterlist *data_sg, unsigned int data_nents, struct iovec **iov, int *iov_cnt, bool copy_data) { int i; void *from, *to; size_t copy_bytes; struct scatterlist *sg; if (data_nents == 0) return; new_iov(iov, iov_cnt, udev); for_each_sg(data_sg, sg, data_nents, i) { copy_bytes = min_t(size_t, sg->length, head_to_end(udev->data_head, udev->data_size)); from = kmap_atomic(sg_page(sg)) + sg->offset; to = (void *) udev->mb_addr + udev->data_off + udev->data_head; if (copy_data) { memcpy(to, from, copy_bytes); tcmu_flush_dcache_range(to, copy_bytes); } (*iov)->iov_len += copy_bytes; UPDATE_HEAD(udev->data_head, copy_bytes, udev->data_size); /* Uh oh, we wrapped the buffer. Must split sg across 2 iovs. */ if (sg->length != copy_bytes) { void *from_skip = from + copy_bytes; copy_bytes = sg->length - copy_bytes; new_iov(iov, iov_cnt, udev); (*iov)->iov_len = copy_bytes; if (copy_data) { to = (void *) udev->mb_addr + udev->data_off + udev->data_head; memcpy(to, from_skip, copy_bytes); tcmu_flush_dcache_range(to, copy_bytes); } UPDATE_HEAD(udev->data_head, copy_bytes, udev->data_size); } kunmap_atomic(from - sg->offset); } } static void gather_and_free_data_area(struct tcmu_dev *udev, struct scatterlist *data_sg, unsigned int data_nents) { int i; void *from, *to; size_t copy_bytes; struct scatterlist *sg; /* It'd be easier to look at entry's iovec again, but UAM */ for_each_sg(data_sg, sg, data_nents, i) { copy_bytes = min_t(size_t, sg->length, head_to_end(udev->data_tail, udev->data_size)); to = kmap_atomic(sg_page(sg)) + sg->offset; WARN_ON(sg->length + sg->offset > PAGE_SIZE); from = (void *) udev->mb_addr + udev->data_off + udev->data_tail; tcmu_flush_dcache_range(from, copy_bytes); memcpy(to, from, copy_bytes); UPDATE_HEAD(udev->data_tail, copy_bytes, udev->data_size); /* Uh oh, wrapped the data buffer for this sg's data */ if (sg->length != copy_bytes) { void *to_skip = to + copy_bytes; from = (void *) udev->mb_addr + udev->data_off + udev->data_tail; WARN_ON(udev->data_tail); copy_bytes = sg->length - copy_bytes; tcmu_flush_dcache_range(from, copy_bytes); memcpy(to_skip, from, copy_bytes); UPDATE_HEAD(udev->data_tail, copy_bytes, udev->data_size); } kunmap_atomic(to - sg->offset); } } /* * We can't queue a command until we have space available on the cmd ring *and* * space available on the data ring. * * Called with ring lock held. */ static bool is_ring_space_avail(struct tcmu_dev *udev, size_t cmd_size, size_t data_needed) { struct tcmu_mailbox *mb = udev->mb_addr; size_t space; u32 cmd_head; size_t cmd_needed; tcmu_flush_dcache_range(mb, sizeof(*mb)); cmd_head = mb->cmd_head % udev->cmdr_size; /* UAM */ /* * If cmd end-of-ring space is too small then we need space for a NOP plus * original cmd - cmds are internally contiguous. */ if (head_to_end(cmd_head, udev->cmdr_size) >= cmd_size) cmd_needed = cmd_size; else cmd_needed = cmd_size + head_to_end(cmd_head, udev->cmdr_size); space = spc_free(cmd_head, udev->cmdr_last_cleaned, udev->cmdr_size); if (space < cmd_needed) { pr_debug("no cmd space: %u %u %u\n", cmd_head, udev->cmdr_last_cleaned, udev->cmdr_size); return false; } space = spc_free(udev->data_head, udev->data_tail, udev->data_size); if (space < data_needed) { pr_debug("no data space: %zu %zu %zu\n", udev->data_head, udev->data_tail, udev->data_size); return false; } return true; } static int tcmu_queue_cmd_ring(struct tcmu_cmd *tcmu_cmd) { struct tcmu_dev *udev = tcmu_cmd->tcmu_dev; struct se_cmd *se_cmd = tcmu_cmd->se_cmd; size_t base_command_size, command_size; struct tcmu_mailbox *mb; struct tcmu_cmd_entry *entry; struct iovec *iov; int iov_cnt; uint32_t cmd_head; uint64_t cdb_off; bool copy_to_data_area; if (test_bit(TCMU_DEV_BIT_BROKEN, &udev->flags)) return -EINVAL; /* * Must be a certain minimum size for response sense info, but * also may be larger if the iov array is large. * * 3 iovs since we can describe the whole continuous are using one * for data, one for bidi and one more in the case of wrap. */ base_command_size = max(offsetof(struct tcmu_cmd_entry, req.iov[3]), sizeof(struct tcmu_cmd_entry)); command_size = base_command_size + round_up(scsi_command_size(se_cmd->t_task_cdb), TCMU_OP_ALIGN_SIZE); WARN_ON(command_size & (TCMU_OP_ALIGN_SIZE-1)); spin_lock_irq(&udev->cmdr_lock); mb = udev->mb_addr; cmd_head = mb->cmd_head % udev->cmdr_size; /* UAM */ if ((command_size > (udev->cmdr_size / 2)) || tcmu_cmd->data_length > (udev->data_size - 1)) pr_warn("TCMU: Request of size %zu/%zu may be too big for %u/%zu " "cmd/data ring buffers\n", command_size, tcmu_cmd->data_length, udev->cmdr_size, udev->data_size); while (!is_ring_space_avail(udev, command_size, tcmu_cmd->data_length)) { int ret; DEFINE_WAIT(__wait); prepare_to_wait(&udev->wait_cmdr, &__wait, TASK_INTERRUPTIBLE); pr_debug("sleeping for ring space\n"); spin_unlock_irq(&udev->cmdr_lock); ret = schedule_timeout(msecs_to_jiffies(TCMU_TIME_OUT)); finish_wait(&udev->wait_cmdr, &__wait); if (!ret) { pr_warn("tcmu: command timed out\n"); return -ETIMEDOUT; } spin_lock_irq(&udev->cmdr_lock); /* We dropped cmdr_lock, cmd_head is stale */ cmd_head = mb->cmd_head % udev->cmdr_size; /* UAM */ } /* Insert a PAD if end-of-ring space is too small */ if (head_to_end(cmd_head, udev->cmdr_size) < command_size) { size_t pad_size = head_to_end(cmd_head, udev->cmdr_size); entry = (void *) mb + CMDR_OFF + cmd_head; tcmu_flush_dcache_range(entry, sizeof(*entry)); tcmu_hdr_set_op(&entry->hdr.len_op, TCMU_OP_PAD); tcmu_hdr_set_len(&entry->hdr.len_op, pad_size); entry->hdr.cmd_id = 0; /* not used for PAD */ entry->hdr.kflags = 0; entry->hdr.uflags = 0; UPDATE_HEAD(mb->cmd_head, pad_size, udev->cmdr_size); cmd_head = mb->cmd_head % udev->cmdr_size; /* UAM */ WARN_ON(cmd_head != 0); } entry = (void *) mb + CMDR_OFF + cmd_head; tcmu_flush_dcache_range(entry, sizeof(*entry)); tcmu_hdr_set_op(&entry->hdr.len_op, TCMU_OP_CMD); tcmu_hdr_set_len(&entry->hdr.len_op, command_size); entry->hdr.cmd_id = tcmu_cmd->cmd_id; entry->hdr.kflags = 0; entry->hdr.uflags = 0; /* * Fix up iovecs, and handle if allocation in data ring wrapped. */ iov = &entry->req.iov[0]; iov_cnt = 0; copy_to_data_area = (se_cmd->data_direction == DMA_TO_DEVICE || se_cmd->se_cmd_flags & SCF_BIDI); alloc_and_scatter_data_area(udev, se_cmd->t_data_sg, se_cmd->t_data_nents, &iov, &iov_cnt, copy_to_data_area); entry->req.iov_cnt = iov_cnt; entry->req.iov_dif_cnt = 0; /* Handle BIDI commands */ iov_cnt = 0; alloc_and_scatter_data_area(udev, se_cmd->t_bidi_data_sg, se_cmd->t_bidi_data_nents, &iov, &iov_cnt, false); entry->req.iov_bidi_cnt = iov_cnt; /* All offsets relative to mb_addr, not start of entry! */ cdb_off = CMDR_OFF + cmd_head + base_command_size; memcpy((void *) mb + cdb_off, se_cmd->t_task_cdb, scsi_command_size(se_cmd->t_task_cdb)); entry->req.cdb_off = cdb_off; tcmu_flush_dcache_range(entry, sizeof(*entry)); UPDATE_HEAD(mb->cmd_head, command_size, udev->cmdr_size); tcmu_flush_dcache_range(mb, sizeof(*mb)); spin_unlock_irq(&udev->cmdr_lock); /* TODO: only if FLUSH and FUA? */ uio_event_notify(&udev->uio_info); mod_timer(&udev->timeout, round_jiffies_up(jiffies + msecs_to_jiffies(TCMU_TIME_OUT))); return 0; } static int tcmu_queue_cmd(struct se_cmd *se_cmd) { struct se_device *se_dev = se_cmd->se_dev; struct tcmu_dev *udev = TCMU_DEV(se_dev); struct tcmu_cmd *tcmu_cmd; int ret; tcmu_cmd = tcmu_alloc_cmd(se_cmd); if (!tcmu_cmd) return -ENOMEM; ret = tcmu_queue_cmd_ring(tcmu_cmd); if (ret < 0) { pr_err("TCMU: Could not queue command\n"); spin_lock_irq(&udev->commands_lock); idr_remove(&udev->commands, tcmu_cmd->cmd_id); spin_unlock_irq(&udev->commands_lock); kmem_cache_free(tcmu_cmd_cache, tcmu_cmd); } return ret; } static void tcmu_handle_completion(struct tcmu_cmd *cmd, struct tcmu_cmd_entry *entry) { struct se_cmd *se_cmd = cmd->se_cmd; struct tcmu_dev *udev = cmd->tcmu_dev; if (test_bit(TCMU_CMD_BIT_EXPIRED, &cmd->flags)) { /* cmd has been completed already from timeout, just reclaim data ring space */ UPDATE_HEAD(udev->data_tail, cmd->data_length, udev->data_size); return; } if (entry->hdr.uflags & TCMU_UFLAG_UNKNOWN_OP) { UPDATE_HEAD(udev->data_tail, cmd->data_length, udev->data_size); pr_warn("TCMU: Userspace set UNKNOWN_OP flag on se_cmd %p\n", cmd->se_cmd); entry->rsp.scsi_status = SAM_STAT_CHECK_CONDITION; } else if (entry->rsp.scsi_status == SAM_STAT_CHECK_CONDITION) { memcpy(se_cmd->sense_buffer, entry->rsp.sense_buffer, se_cmd->scsi_sense_length); UPDATE_HEAD(udev->data_tail, cmd->data_length, udev->data_size); } else if (se_cmd->se_cmd_flags & SCF_BIDI) { /* Discard data_out buffer */ UPDATE_HEAD(udev->data_tail, (size_t)se_cmd->t_data_sg->length, udev->data_size); /* Get Data-In buffer */ gather_and_free_data_area(udev, se_cmd->t_bidi_data_sg, se_cmd->t_bidi_data_nents); } else if (se_cmd->data_direction == DMA_FROM_DEVICE) { gather_and_free_data_area(udev, se_cmd->t_data_sg, se_cmd->t_data_nents); } else if (se_cmd->data_direction == DMA_TO_DEVICE) { UPDATE_HEAD(udev->data_tail, cmd->data_length, udev->data_size); } else if (se_cmd->data_direction != DMA_NONE) { pr_warn("TCMU: data direction was %d!\n", se_cmd->data_direction); } target_complete_cmd(cmd->se_cmd, entry->rsp.scsi_status); cmd->se_cmd = NULL; kmem_cache_free(tcmu_cmd_cache, cmd); } static unsigned int tcmu_handle_completions(struct tcmu_dev *udev) { struct tcmu_mailbox *mb; unsigned long flags; int handled = 0; if (test_bit(TCMU_DEV_BIT_BROKEN, &udev->flags)) { pr_err("ring broken, not handling completions\n"); return 0; } spin_lock_irqsave(&udev->cmdr_lock, flags); mb = udev->mb_addr; tcmu_flush_dcache_range(mb, sizeof(*mb)); while (udev->cmdr_last_cleaned != ACCESS_ONCE(mb->cmd_tail)) { struct tcmu_cmd_entry *entry = (void *) mb + CMDR_OFF + udev->cmdr_last_cleaned; struct tcmu_cmd *cmd; tcmu_flush_dcache_range(entry, sizeof(*entry)); if (tcmu_hdr_get_op(entry->hdr.len_op) == TCMU_OP_PAD) { UPDATE_HEAD(udev->cmdr_last_cleaned, tcmu_hdr_get_len(entry->hdr.len_op), udev->cmdr_size); continue; } WARN_ON(tcmu_hdr_get_op(entry->hdr.len_op) != TCMU_OP_CMD); spin_lock(&udev->commands_lock); cmd = idr_find(&udev->commands, entry->hdr.cmd_id); if (cmd) idr_remove(&udev->commands, cmd->cmd_id); spin_unlock(&udev->commands_lock); if (!cmd) { pr_err("cmd_id not found, ring is broken\n"); set_bit(TCMU_DEV_BIT_BROKEN, &udev->flags); break; } tcmu_handle_completion(cmd, entry); UPDATE_HEAD(udev->cmdr_last_cleaned, tcmu_hdr_get_len(entry->hdr.len_op), udev->cmdr_size); handled++; } if (mb->cmd_tail == mb->cmd_head) del_timer(&udev->timeout); /* no more pending cmds */ spin_unlock_irqrestore(&udev->cmdr_lock, flags); wake_up(&udev->wait_cmdr); return handled; } static int tcmu_check_expired_cmd(int id, void *p, void *data) { struct tcmu_cmd *cmd = p; if (test_bit(TCMU_CMD_BIT_EXPIRED, &cmd->flags)) return 0; if (!time_after(jiffies, cmd->deadline)) return 0; set_bit(TCMU_CMD_BIT_EXPIRED, &cmd->flags); target_complete_cmd(cmd->se_cmd, SAM_STAT_CHECK_CONDITION); cmd->se_cmd = NULL; kmem_cache_free(tcmu_cmd_cache, cmd); return 0; } static void tcmu_device_timedout(unsigned long data) { struct tcmu_dev *udev = (struct tcmu_dev *)data; unsigned long flags; int handled; handled = tcmu_handle_completions(udev); pr_warn("%d completions handled from timeout\n", handled); spin_lock_irqsave(&udev->commands_lock, flags); idr_for_each(&udev->commands, tcmu_check_expired_cmd, NULL); spin_unlock_irqrestore(&udev->commands_lock, flags); /* * We don't need to wakeup threads on wait_cmdr since they have their * own timeout. */ } static int tcmu_attach_hba(struct se_hba *hba, u32 host_id) { struct tcmu_hba *tcmu_hba; tcmu_hba = kzalloc(sizeof(struct tcmu_hba), GFP_KERNEL); if (!tcmu_hba) return -ENOMEM; tcmu_hba->host_id = host_id; hba->hba_ptr = tcmu_hba; return 0; } static void tcmu_detach_hba(struct se_hba *hba) { kfree(hba->hba_ptr); hba->hba_ptr = NULL; } static struct se_device *tcmu_alloc_device(struct se_hba *hba, const char *name) { struct tcmu_dev *udev; udev = kzalloc(sizeof(struct tcmu_dev), GFP_KERNEL); if (!udev) return NULL; udev->name = kstrdup(name, GFP_KERNEL); if (!udev->name) { kfree(udev); return NULL; } udev->hba = hba; init_waitqueue_head(&udev->wait_cmdr); spin_lock_init(&udev->cmdr_lock); idr_init(&udev->commands); spin_lock_init(&udev->commands_lock); setup_timer(&udev->timeout, tcmu_device_timedout, (unsigned long)udev); return &udev->se_dev; } static int tcmu_irqcontrol(struct uio_info *info, s32 irq_on) { struct tcmu_dev *tcmu_dev = container_of(info, struct tcmu_dev, uio_info); tcmu_handle_completions(tcmu_dev); return 0; } /* * mmap code from uio.c. Copied here because we want to hook mmap() * and this stuff must come along. */ static int tcmu_find_mem_index(struct vm_area_struct *vma) { struct tcmu_dev *udev = vma->vm_private_data; struct uio_info *info = &udev->uio_info; if (vma->vm_pgoff < MAX_UIO_MAPS) { if (info->mem[vma->vm_pgoff].size == 0) return -1; return (int)vma->vm_pgoff; } return -1; } static int tcmu_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) { struct tcmu_dev *udev = vma->vm_private_data; struct uio_info *info = &udev->uio_info; struct page *page; unsigned long offset; void *addr; int mi = tcmu_find_mem_index(vma); if (mi < 0) return VM_FAULT_SIGBUS; /* * We need to subtract mi because userspace uses offset = N*PAGE_SIZE * to use mem[N]. */ offset = (vmf->pgoff - mi) << PAGE_SHIFT; addr = (void *)(unsigned long)info->mem[mi].addr + offset; if (info->mem[mi].memtype == UIO_MEM_LOGICAL) page = virt_to_page(addr); else page = vmalloc_to_page(addr); get_page(page); vmf->page = page; return 0; } static const struct vm_operations_struct tcmu_vm_ops = { .fault = tcmu_vma_fault, }; static int tcmu_mmap(struct uio_info *info, struct vm_area_struct *vma) { struct tcmu_dev *udev = container_of(info, struct tcmu_dev, uio_info); vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; vma->vm_ops = &tcmu_vm_ops; vma->vm_private_data = udev; /* Ensure the mmap is exactly the right size */ if (vma_pages(vma) != (TCMU_RING_SIZE >> PAGE_SHIFT)) return -EINVAL; return 0; } static int tcmu_open(struct uio_info *info, struct inode *inode) { struct tcmu_dev *udev = container_of(info, struct tcmu_dev, uio_info); /* O_EXCL not supported for char devs, so fake it? */ if (test_and_set_bit(TCMU_DEV_BIT_OPEN, &udev->flags)) return -EBUSY; pr_debug("open\n"); return 0; } static int tcmu_release(struct uio_info *info, struct inode *inode) { struct tcmu_dev *udev = container_of(info, struct tcmu_dev, uio_info); clear_bit(TCMU_DEV_BIT_OPEN, &udev->flags); pr_debug("close\n"); return 0; } static int tcmu_netlink_event(enum tcmu_genl_cmd cmd, const char *name, int minor) { struct sk_buff *skb; void *msg_header; int ret = -ENOMEM; skb = genlmsg_new(NLMSG_GOODSIZE, GFP_KERNEL); if (!skb) return ret; msg_header = genlmsg_put(skb, 0, 0, &tcmu_genl_family, 0, cmd); if (!msg_header) goto free_skb; ret = nla_put_string(skb, TCMU_ATTR_DEVICE, name); if (ret < 0) goto free_skb; ret = nla_put_u32(skb, TCMU_ATTR_MINOR, minor); if (ret < 0) goto free_skb; genlmsg_end(skb, msg_header); ret = genlmsg_multicast_allns(&tcmu_genl_family, skb, 0, TCMU_MCGRP_CONFIG, GFP_KERNEL); /* We don't care if no one is listening */ if (ret == -ESRCH) ret = 0; return ret; free_skb: nlmsg_free(skb); return ret; } static int tcmu_configure_device(struct se_device *dev) { struct tcmu_dev *udev = TCMU_DEV(dev); struct tcmu_hba *hba = udev->hba->hba_ptr; struct uio_info *info; struct tcmu_mailbox *mb; size_t size; size_t used; int ret = 0; char *str; info = &udev->uio_info; size = snprintf(NULL, 0, "tcm-user/%u/%s/%s", hba->host_id, udev->name, udev->dev_config); size += 1; /* for \0 */ str = kmalloc(size, GFP_KERNEL); if (!str) return -ENOMEM; used = snprintf(str, size, "tcm-user/%u/%s", hba->host_id, udev->name); if (udev->dev_config[0]) snprintf(str + used, size - used, "/%s", udev->dev_config); info->name = str; udev->mb_addr = vzalloc(TCMU_RING_SIZE); if (!udev->mb_addr) { ret = -ENOMEM; goto err_vzalloc; } /* mailbox fits in first part of CMDR space */ udev->cmdr_size = CMDR_SIZE - CMDR_OFF; udev->data_off = CMDR_SIZE; udev->data_size = TCMU_RING_SIZE - CMDR_SIZE; mb = udev->mb_addr; mb->version = TCMU_MAILBOX_VERSION; mb->cmdr_off = CMDR_OFF; mb->cmdr_size = udev->cmdr_size; WARN_ON(!PAGE_ALIGNED(udev->data_off)); WARN_ON(udev->data_size % PAGE_SIZE); info->version = __stringify(TCMU_MAILBOX_VERSION); info->mem[0].name = "tcm-user command & data buffer"; info->mem[0].addr = (phys_addr_t)(uintptr_t)udev->mb_addr; info->mem[0].size = TCMU_RING_SIZE; info->mem[0].memtype = UIO_MEM_VIRTUAL; info->irqcontrol = tcmu_irqcontrol; info->irq = UIO_IRQ_CUSTOM; info->mmap = tcmu_mmap; info->open = tcmu_open; info->release = tcmu_release; ret = uio_register_device(tcmu_root_device, info); if (ret) goto err_register; /* User can set hw_block_size before enable the device */ if (dev->dev_attrib.hw_block_size == 0) dev->dev_attrib.hw_block_size = 512; /* Other attributes can be configured in userspace */ dev->dev_attrib.hw_max_sectors = 128; dev->dev_attrib.hw_queue_depth = 128; ret = tcmu_netlink_event(TCMU_CMD_ADDED_DEVICE, udev->uio_info.name, udev->uio_info.uio_dev->minor); if (ret) goto err_netlink; return 0; err_netlink: uio_unregister_device(&udev->uio_info); err_register: vfree(udev->mb_addr); err_vzalloc: kfree(info->name); return ret; } static int tcmu_check_pending_cmd(int id, void *p, void *data) { struct tcmu_cmd *cmd = p; if (test_bit(TCMU_CMD_BIT_EXPIRED, &cmd->flags)) return 0; return -EINVAL; } static void tcmu_dev_call_rcu(struct rcu_head *p) { struct se_device *dev = container_of(p, struct se_device, rcu_head); struct tcmu_dev *udev = TCMU_DEV(dev); kfree(udev); } static void tcmu_free_device(struct se_device *dev) { struct tcmu_dev *udev = TCMU_DEV(dev); int i; del_timer_sync(&udev->timeout); vfree(udev->mb_addr); /* Upper layer should drain all requests before calling this */ spin_lock_irq(&udev->commands_lock); i = idr_for_each(&udev->commands, tcmu_check_pending_cmd, NULL); idr_destroy(&udev->commands); spin_unlock_irq(&udev->commands_lock); WARN_ON(i); /* Device was configured */ if (udev->uio_info.uio_dev) { tcmu_netlink_event(TCMU_CMD_REMOVED_DEVICE, udev->uio_info.name, udev->uio_info.uio_dev->minor); uio_unregister_device(&udev->uio_info); kfree(udev->uio_info.name); kfree(udev->name); } call_rcu(&dev->rcu_head, tcmu_dev_call_rcu); } enum { Opt_dev_config, Opt_dev_size, Opt_hw_block_size, Opt_err, }; static match_table_t tokens = { {Opt_dev_config, "dev_config=%s"}, {Opt_dev_size, "dev_size=%u"}, {Opt_hw_block_size, "hw_block_size=%u"}, {Opt_err, NULL} }; static ssize_t tcmu_set_configfs_dev_params(struct se_device *dev, const char *page, ssize_t count) { struct tcmu_dev *udev = TCMU_DEV(dev); char *orig, *ptr, *opts, *arg_p; substring_t args[MAX_OPT_ARGS]; int ret = 0, token; unsigned long tmp_ul; opts = kstrdup(page, GFP_KERNEL); if (!opts) return -ENOMEM; orig = opts; while ((ptr = strsep(&opts, ",\n")) != NULL) { if (!*ptr) continue; token = match_token(ptr, tokens, args); switch (token) { case Opt_dev_config: if (match_strlcpy(udev->dev_config, &args[0], TCMU_CONFIG_LEN) == 0) { ret = -EINVAL; break; } pr_debug("TCMU: Referencing Path: %s\n", udev->dev_config); break; case Opt_dev_size: arg_p = match_strdup(&args[0]); if (!arg_p) { ret = -ENOMEM; break; } ret = kstrtoul(arg_p, 0, (unsigned long *) &udev->dev_size); kfree(arg_p); if (ret < 0) pr_err("kstrtoul() failed for dev_size=\n"); break; case Opt_hw_block_size: arg_p = match_strdup(&args[0]); if (!arg_p) { ret = -ENOMEM; break; } ret = kstrtoul(arg_p, 0, &tmp_ul); kfree(arg_p); if (ret < 0) { pr_err("kstrtoul() failed for hw_block_size=\n"); break; } if (!tmp_ul) { pr_err("hw_block_size must be nonzero\n"); break; } dev->dev_attrib.hw_block_size = tmp_ul; break; default: break; } } kfree(orig); return (!ret) ? count : ret; } static ssize_t tcmu_show_configfs_dev_params(struct se_device *dev, char *b) { struct tcmu_dev *udev = TCMU_DEV(dev); ssize_t bl = 0; bl = sprintf(b + bl, "Config: %s ", udev->dev_config[0] ? udev->dev_config : "NULL"); bl += sprintf(b + bl, "Size: %zu\n", udev->dev_size); return bl; } static sector_t tcmu_get_blocks(struct se_device *dev) { struct tcmu_dev *udev = TCMU_DEV(dev); return div_u64(udev->dev_size - dev->dev_attrib.block_size, dev->dev_attrib.block_size); } static sense_reason_t tcmu_pass_op(struct se_cmd *se_cmd) { int ret = tcmu_queue_cmd(se_cmd); if (ret != 0) return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; else return TCM_NO_SENSE; } static sense_reason_t tcmu_parse_cdb(struct se_cmd *cmd) { return passthrough_parse_cdb(cmd, tcmu_pass_op); } static const struct target_backend_ops tcmu_ops = { .name = "user", .owner = THIS_MODULE, .transport_flags = TRANSPORT_FLAG_PASSTHROUGH, .attach_hba = tcmu_attach_hba, .detach_hba = tcmu_detach_hba, .alloc_device = tcmu_alloc_device, .configure_device = tcmu_configure_device, .free_device = tcmu_free_device, .parse_cdb = tcmu_parse_cdb, .set_configfs_dev_params = tcmu_set_configfs_dev_params, .show_configfs_dev_params = tcmu_show_configfs_dev_params, .get_device_type = sbc_get_device_type, .get_blocks = tcmu_get_blocks, .tb_dev_attrib_attrs = passthrough_attrib_attrs, }; static int __init tcmu_module_init(void) { int ret; BUILD_BUG_ON((sizeof(struct tcmu_cmd_entry) % TCMU_OP_ALIGN_SIZE) != 0); tcmu_cmd_cache = kmem_cache_create("tcmu_cmd_cache", sizeof(struct tcmu_cmd), __alignof__(struct tcmu_cmd), 0, NULL); if (!tcmu_cmd_cache) return -ENOMEM; tcmu_root_device = root_device_register("tcm_user"); if (IS_ERR(tcmu_root_device)) { ret = PTR_ERR(tcmu_root_device); goto out_free_cache; } ret = genl_register_family(&tcmu_genl_family); if (ret < 0) { goto out_unreg_device; } ret = transport_backend_register(&tcmu_ops); if (ret) goto out_unreg_genl; return 0; out_unreg_genl: genl_unregister_family(&tcmu_genl_family); out_unreg_device: root_device_unregister(tcmu_root_device); out_free_cache: kmem_cache_destroy(tcmu_cmd_cache); return ret; } static void __exit tcmu_module_exit(void) { target_backend_unregister(&tcmu_ops); genl_unregister_family(&tcmu_genl_family); root_device_unregister(tcmu_root_device); kmem_cache_destroy(tcmu_cmd_cache); } MODULE_DESCRIPTION("TCM USER subsystem plugin"); MODULE_AUTHOR("Shaohua Li "); MODULE_AUTHOR("Andy Grover "); MODULE_LICENSE("GPL"); module_init(tcmu_module_init); module_exit(tcmu_module_exit);