#include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Our network namespace constructor/destructor lists */ static LIST_HEAD(pernet_list); static struct list_head *first_device = &pernet_list; static DEFINE_MUTEX(net_mutex); LIST_HEAD(net_namespace_list); EXPORT_SYMBOL_GPL(net_namespace_list); struct net init_net; EXPORT_SYMBOL(init_net); #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */ static void net_generic_release(struct rcu_head *rcu) { struct net_generic *ng; ng = container_of(rcu, struct net_generic, rcu); kfree(ng); } static int net_assign_generic(struct net *net, int id, void *data) { struct net_generic *ng, *old_ng; BUG_ON(!mutex_is_locked(&net_mutex)); BUG_ON(id == 0); old_ng = rcu_dereference_protected(net->gen, lockdep_is_held(&net_mutex)); ng = old_ng; if (old_ng->len >= id) goto assign; ng = kzalloc(sizeof(struct net_generic) + id * sizeof(void *), GFP_KERNEL); if (ng == NULL) return -ENOMEM; /* * Some synchronisation notes: * * The net_generic explores the net->gen array inside rcu * read section. Besides once set the net->gen->ptr[x] * pointer never changes (see rules in netns/generic.h). * * That said, we simply duplicate this array and schedule * the old copy for kfree after a grace period. */ ng->len = id; memcpy(&ng->ptr, &old_ng->ptr, old_ng->len * sizeof(void*)); rcu_assign_pointer(net->gen, ng); call_rcu(&old_ng->rcu, net_generic_release); assign: ng->ptr[id - 1] = data; return 0; } static int ops_init(const struct pernet_operations *ops, struct net *net) { int err; if (ops->id && ops->size) { void *data = kzalloc(ops->size, GFP_KERNEL); if (!data) return -ENOMEM; err = net_assign_generic(net, *ops->id, data); if (err) { kfree(data); return err; } } if (ops->init) return ops->init(net); return 0; } static void ops_free(const struct pernet_operations *ops, struct net *net) { if (ops->id && ops->size) { int id = *ops->id; kfree(net_generic(net, id)); } } static void ops_exit_list(const struct pernet_operations *ops, struct list_head *net_exit_list) { struct net *net; if (ops->exit) { list_for_each_entry(net, net_exit_list, exit_list) ops->exit(net); } if (ops->exit_batch) ops->exit_batch(net_exit_list); } static void ops_free_list(const struct pernet_operations *ops, struct list_head *net_exit_list) { struct net *net; if (ops->size && ops->id) { list_for_each_entry(net, net_exit_list, exit_list) ops_free(ops, net); } } /* * setup_net runs the initializers for the network namespace object. */ static __net_init int setup_net(struct net *net) { /* Must be called with net_mutex held */ const struct pernet_operations *ops, *saved_ops; int error = 0; LIST_HEAD(net_exit_list); atomic_set(&net->count, 1); #ifdef NETNS_REFCNT_DEBUG atomic_set(&net->use_count, 0); #endif list_for_each_entry(ops, &pernet_list, list) { error = ops_init(ops, net); if (error < 0) goto out_undo; } out: return error; out_undo: /* Walk through the list backwards calling the exit functions * for the pernet modules whose init functions did not fail. */ list_add(&net->exit_list, &net_exit_list); saved_ops = ops; list_for_each_entry_continue_reverse(ops, &pernet_list, list) ops_exit_list(ops, &net_exit_list); ops = saved_ops; list_for_each_entry_continue_reverse(ops, &pernet_list, list) ops_free_list(ops, &net_exit_list); rcu_barrier(); goto out; } static struct net_generic *net_alloc_generic(void) { struct net_generic *ng; size_t generic_size = sizeof(struct net_generic) + INITIAL_NET_GEN_PTRS * sizeof(void *); ng = kzalloc(generic_size, GFP_KERNEL); if (ng) ng->len = INITIAL_NET_GEN_PTRS; return ng; } #ifdef CONFIG_NET_NS static struct kmem_cache *net_cachep; static struct workqueue_struct *netns_wq; static struct net *net_alloc(void) { struct net *net = NULL; struct net_generic *ng; ng = net_alloc_generic(); if (!ng) goto out; net = kmem_cache_zalloc(net_cachep, GFP_KERNEL); if (!net) goto out_free; rcu_assign_pointer(net->gen, ng); out: return net; out_free: kfree(ng); goto out; } static void net_free(struct net *net) { #ifdef NETNS_REFCNT_DEBUG if (unlikely(atomic_read(&net->use_count) != 0)) { printk(KERN_EMERG "network namespace not free! Usage: %d\n", atomic_read(&net->use_count)); return; } #endif kfree(net->gen); kmem_cache_free(net_cachep, net); } static struct net *net_create(void) { struct net *net; int rv; net = net_alloc(); if (!net) return ERR_PTR(-ENOMEM); mutex_lock(&net_mutex); rv = setup_net(net); if (rv == 0) { rtnl_lock(); list_add_tail_rcu(&net->list, &net_namespace_list); rtnl_unlock(); } mutex_unlock(&net_mutex); if (rv < 0) { net_free(net); return ERR_PTR(rv); } return net; } struct net *copy_net_ns(unsigned long flags, struct net *old_net) { if (!(flags & CLONE_NEWNET)) return get_net(old_net); return net_create(); } static DEFINE_SPINLOCK(cleanup_list_lock); static LIST_HEAD(cleanup_list); /* Must hold cleanup_list_lock to touch */ static void cleanup_net(struct work_struct *work) { const struct pernet_operations *ops; struct net *net, *tmp; LIST_HEAD(net_kill_list); LIST_HEAD(net_exit_list); /* Atomically snapshot the list of namespaces to cleanup */ spin_lock_irq(&cleanup_list_lock); list_replace_init(&cleanup_list, &net_kill_list); spin_unlock_irq(&cleanup_list_lock); mutex_lock(&net_mutex); /* Don't let anyone else find us. */ rtnl_lock(); list_for_each_entry(net, &net_kill_list, cleanup_list) { list_del_rcu(&net->list); list_add_tail(&net->exit_list, &net_exit_list); } rtnl_unlock(); /* * Another CPU might be rcu-iterating the list, wait for it. * This needs to be before calling the exit() notifiers, so * the rcu_barrier() below isn't sufficient alone. */ synchronize_rcu(); /* Run all of the network namespace exit methods */ list_for_each_entry_reverse(ops, &pernet_list, list) ops_exit_list(ops, &net_exit_list); /* Free the net generic variables */ list_for_each_entry_reverse(ops, &pernet_list, list) ops_free_list(ops, &net_exit_list); mutex_unlock(&net_mutex); /* Ensure there are no outstanding rcu callbacks using this * network namespace. */ rcu_barrier(); /* Finally it is safe to free my network namespace structure */ list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) { list_del_init(&net->exit_list); net_free(net); } } static DECLARE_WORK(net_cleanup_work, cleanup_net); void __put_net(struct net *net) { /* Cleanup the network namespace in process context */ unsigned long flags; spin_lock_irqsave(&cleanup_list_lock, flags); list_add(&net->cleanup_list, &cleanup_list); spin_unlock_irqrestore(&cleanup_list_lock, flags); queue_work(netns_wq, &net_cleanup_work); } EXPORT_SYMBOL_GPL(__put_net); #else struct net *copy_net_ns(unsigned long flags, struct net *old_net) { if (flags & CLONE_NEWNET) return ERR_PTR(-EINVAL); return old_net; } #endif struct net *get_net_ns_by_pid(pid_t pid) { struct task_struct *tsk; struct net *net; /* Lookup the network namespace */ net = ERR_PTR(-ESRCH); rcu_read_lock(); tsk = find_task_by_vpid(pid); if (tsk) { struct nsproxy *nsproxy; nsproxy = task_nsproxy(tsk); if (nsproxy) net = get_net(nsproxy->net_ns); } rcu_read_unlock(); return net; } EXPORT_SYMBOL_GPL(get_net_ns_by_pid); struct net *get_net_ns_by_fd(int fd) { struct proc_inode *ei; struct file *file; struct net *net; net = ERR_PTR(-EINVAL); file = proc_ns_fget(fd); if (!file) goto out; ei = PROC_I(file->f_dentry->d_inode); if (ei->ns_ops != &netns_operations) goto out; net = get_net(ei->ns); out: if (file) fput(file); return net; } static int __init net_ns_init(void) { struct net_generic *ng; #ifdef CONFIG_NET_NS net_cachep = kmem_cache_create("net_namespace", sizeof(struct net), SMP_CACHE_BYTES, SLAB_PANIC, NULL); /* Create workqueue for cleanup */ netns_wq = create_singlethread_workqueue("netns"); if (!netns_wq) panic("Could not create netns workq"); #endif ng = net_alloc_generic(); if (!ng) panic("Could not allocate generic netns"); rcu_assign_pointer(init_net.gen, ng); mutex_lock(&net_mutex); if (setup_net(&init_net)) panic("Could not setup the initial network namespace"); rtnl_lock(); list_add_tail_rcu(&init_net.list, &net_namespace_list); rtnl_unlock(); mutex_unlock(&net_mutex); return 0; } pure_initcall(net_ns_init); #ifdef CONFIG_NET_NS static int __register_pernet_operations(struct list_head *list, struct pernet_operations *ops) { struct net *net; int error; LIST_HEAD(net_exit_list); list_add_tail(&ops->list, list); if (ops->init || (ops->id && ops->size)) { for_each_net(net) { error = ops_init(ops, net); if (error) goto out_undo; list_add_tail(&net->exit_list, &net_exit_list); } } return 0; out_undo: /* If I have an error cleanup all namespaces I initialized */ list_del(&ops->list); ops_exit_list(ops, &net_exit_list); ops_free_list(ops, &net_exit_list); return error; } static void __unregister_pernet_operations(struct pernet_operations *ops) { struct net *net; LIST_HEAD(net_exit_list); list_del(&ops->list); for_each_net(net) list_add_tail(&net->exit_list, &net_exit_list); ops_exit_list(ops, &net_exit_list); ops_free_list(ops, &net_exit_list); } #else static int __register_pernet_operations(struct list_head *list, struct pernet_operations *ops) { int err = 0; err = ops_init(ops, &init_net); if (err) ops_free(ops, &init_net); return err; } static void __unregister_pernet_operations(struct pernet_operations *ops) { LIST_HEAD(net_exit_list); list_add(&init_net.exit_list, &net_exit_list); ops_exit_list(ops, &net_exit_list); ops_free_list(ops, &net_exit_list); } #endif /* CONFIG_NET_NS */ static DEFINE_IDA(net_generic_ids); static int register_pernet_operations(struct list_head *list, struct pernet_operations *ops) { int error; if (ops->id) { again: error = ida_get_new_above(&net_generic_ids, 1, ops->id); if (error < 0) { if (error == -EAGAIN) { ida_pre_get(&net_generic_ids, GFP_KERNEL); goto again; } return error; } } error = __register_pernet_operations(list, ops); if (error) { rcu_barrier(); if (ops->id) ida_remove(&net_generic_ids, *ops->id); } return error; } static void unregister_pernet_operations(struct pernet_operations *ops) { __unregister_pernet_operations(ops); rcu_barrier(); if (ops->id) ida_remove(&net_generic_ids, *ops->id); } /** * register_pernet_subsys - register a network namespace subsystem * @ops: pernet operations structure for the subsystem * * Register a subsystem which has init and exit functions * that are called when network namespaces are created and * destroyed respectively. * * When registered all network namespace init functions are * called for every existing network namespace. Allowing kernel * modules to have a race free view of the set of network namespaces. * * When a new network namespace is created all of the init * methods are called in the order in which they were registered. * * When a network namespace is destroyed all of the exit methods * are called in the reverse of the order with which they were * registered. */ int register_pernet_subsys(struct pernet_operations *ops) { int error; mutex_lock(&net_mutex); error = register_pernet_operations(first_device, ops); mutex_unlock(&net_mutex); return error; } EXPORT_SYMBOL_GPL(register_pernet_subsys); /** * unregister_pernet_subsys - unregister a network namespace subsystem * @ops: pernet operations structure to manipulate * * Remove the pernet operations structure from the list to be * used when network namespaces are created or destroyed. In * addition run the exit method for all existing network * namespaces. */ void unregister_pernet_subsys(struct pernet_operations *ops) { mutex_lock(&net_mutex); unregister_pernet_operations(ops); mutex_unlock(&net_mutex); } EXPORT_SYMBOL_GPL(unregister_pernet_subsys); /** * register_pernet_device - register a network namespace device * @ops: pernet operations structure for the subsystem * * Register a device which has init and exit functions * that are called when network namespaces are created and * destroyed respectively. * * When registered all network namespace init functions are * called for every existing network namespace. Allowing kernel * modules to have a race free view of the set of network namespaces. * * When a new network namespace is created all of the init * methods are called in the order in which they were registered. * * When a network namespace is destroyed all of the exit methods * are called in the reverse of the order with which they were * registered. */ int register_pernet_device(struct pernet_operations *ops) { int error; mutex_lock(&net_mutex); error = register_pernet_operations(&pernet_list, ops); if (!error && (first_device == &pernet_list)) first_device = &ops->list; mutex_unlock(&net_mutex); return error; } EXPORT_SYMBOL_GPL(register_pernet_device); /** * unregister_pernet_device - unregister a network namespace netdevice * @ops: pernet operations structure to manipulate * * Remove the pernet operations structure from the list to be * used when network namespaces are created or destroyed. In * addition run the exit method for all existing network * namespaces. */ void unregister_pernet_device(struct pernet_operations *ops) { mutex_lock(&net_mutex); if (&ops->list == first_device) first_device = first_device->next; unregister_pernet_operations(ops); mutex_unlock(&net_mutex); } EXPORT_SYMBOL_GPL(unregister_pernet_device); #ifdef CONFIG_NET_NS static void *netns_get(struct task_struct *task) { struct net *net = NULL; struct nsproxy *nsproxy; rcu_read_lock(); nsproxy = task_nsproxy(task); if (nsproxy) net = get_net(nsproxy->net_ns); rcu_read_unlock(); return net; } static void netns_put(void *ns) { put_net(ns); } static int netns_install(struct nsproxy *nsproxy, void *ns) { put_net(nsproxy->net_ns); nsproxy->net_ns = get_net(ns); return 0; } const struct proc_ns_operations netns_operations = { .name = "net", .type = CLONE_NEWNET, .get = netns_get, .put = netns_put, .install = netns_install, }; #endif