/* * Copyright (C) 2010 OKI SEMICONDUCTOR CO., LTD. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/errno.h> #include <linux/i2c.h> #include <linux/fs.h> #include <linux/io.h> #include <linux/types.h> #include <linux/interrupt.h> #include <linux/jiffies.h> #include <linux/pci.h> #include <linux/mutex.h> #include <linux/ktime.h> #include <linux/slab.h> #define PCH_EVENT_SET 0 /* I2C Interrupt Event Set Status */ #define PCH_EVENT_NONE 1 /* I2C Interrupt Event Clear Status */ #define PCH_MAX_CLK 100000 /* Maximum Clock speed in MHz */ #define PCH_BUFFER_MODE_ENABLE 0x0002 /* flag for Buffer mode enable */ #define PCH_EEPROM_SW_RST_MODE_ENABLE 0x0008 /* EEPROM SW RST enable flag */ #define PCH_I2CSADR 0x00 /* I2C slave address register */ #define PCH_I2CCTL 0x04 /* I2C control register */ #define PCH_I2CSR 0x08 /* I2C status register */ #define PCH_I2CDR 0x0C /* I2C data register */ #define PCH_I2CMON 0x10 /* I2C bus monitor register */ #define PCH_I2CBC 0x14 /* I2C bus transfer rate setup counter */ #define PCH_I2CMOD 0x18 /* I2C mode register */ #define PCH_I2CBUFSLV 0x1C /* I2C buffer mode slave address register */ #define PCH_I2CBUFSUB 0x20 /* I2C buffer mode subaddress register */ #define PCH_I2CBUFFOR 0x24 /* I2C buffer mode format register */ #define PCH_I2CBUFCTL 0x28 /* I2C buffer mode control register */ #define PCH_I2CBUFMSK 0x2C /* I2C buffer mode interrupt mask register */ #define PCH_I2CBUFSTA 0x30 /* I2C buffer mode status register */ #define PCH_I2CBUFLEV 0x34 /* I2C buffer mode level register */ #define PCH_I2CESRFOR 0x38 /* EEPROM software reset mode format register */ #define PCH_I2CESRCTL 0x3C /* EEPROM software reset mode ctrl register */ #define PCH_I2CESRMSK 0x40 /* EEPROM software reset mode */ #define PCH_I2CESRSTA 0x44 /* EEPROM software reset mode status register */ #define PCH_I2CTMR 0x48 /* I2C timer register */ #define PCH_I2CSRST 0xFC /* I2C reset register */ #define PCH_I2CNF 0xF8 /* I2C noise filter register */ #define BUS_IDLE_TIMEOUT 20 #define PCH_I2CCTL_I2CMEN 0x0080 #define TEN_BIT_ADDR_DEFAULT 0xF000 #define TEN_BIT_ADDR_MASK 0xF0 #define PCH_START 0x0020 #define PCH_ESR_START 0x0001 #define PCH_BUFF_START 0x1 #define PCH_REPSTART 0x0004 #define PCH_ACK 0x0008 #define PCH_GETACK 0x0001 #define CLR_REG 0x0 #define I2C_RD 0x1 #define I2CMCF_BIT 0x0080 #define I2CMIF_BIT 0x0002 #define I2CMAL_BIT 0x0010 #define I2CBMFI_BIT 0x0001 #define I2CBMAL_BIT 0x0002 #define I2CBMNA_BIT 0x0004 #define I2CBMTO_BIT 0x0008 #define I2CBMIS_BIT 0x0010 #define I2CESRFI_BIT 0X0001 #define I2CESRTO_BIT 0x0002 #define I2CESRFIIE_BIT 0x1 #define I2CESRTOIE_BIT 0x2 #define I2CBMDZ_BIT 0x0040 #define I2CBMAG_BIT 0x0020 #define I2CMBB_BIT 0x0020 #define BUFFER_MODE_MASK (I2CBMFI_BIT | I2CBMAL_BIT | I2CBMNA_BIT | \ I2CBMTO_BIT | I2CBMIS_BIT) #define I2C_ADDR_MSK 0xFF #define I2C_MSB_2B_MSK 0x300 #define FAST_MODE_CLK 400 #define FAST_MODE_EN 0x0001 #define SUB_ADDR_LEN_MAX 4 #define BUF_LEN_MAX 32 #define PCH_BUFFER_MODE 0x1 #define EEPROM_SW_RST_MODE 0x0002 #define NORMAL_INTR_ENBL 0x0300 #define EEPROM_RST_INTR_ENBL (I2CESRFIIE_BIT | I2CESRTOIE_BIT) #define EEPROM_RST_INTR_DISBL 0x0 #define BUFFER_MODE_INTR_ENBL 0x001F #define BUFFER_MODE_INTR_DISBL 0x0 #define NORMAL_MODE 0x0 #define BUFFER_MODE 0x1 #define EEPROM_SR_MODE 0x2 #define I2C_TX_MODE 0x0010 #define PCH_BUF_TX 0xFFF7 #define PCH_BUF_RD 0x0008 #define I2C_ERROR_MASK (I2CESRTO_EVENT | I2CBMIS_EVENT | I2CBMTO_EVENT | \ I2CBMNA_EVENT | I2CBMAL_EVENT | I2CMAL_EVENT) #define I2CMAL_EVENT 0x0001 #define I2CMCF_EVENT 0x0002 #define I2CBMFI_EVENT 0x0004 #define I2CBMAL_EVENT 0x0008 #define I2CBMNA_EVENT 0x0010 #define I2CBMTO_EVENT 0x0020 #define I2CBMIS_EVENT 0x0040 #define I2CESRFI_EVENT 0x0080 #define I2CESRTO_EVENT 0x0100 #define PCI_DEVICE_ID_PCH_I2C 0x8817 #define pch_dbg(adap, fmt, arg...) \ dev_dbg(adap->pch_adapter.dev.parent, "%s :" fmt, __func__, ##arg) #define pch_err(adap, fmt, arg...) \ dev_err(adap->pch_adapter.dev.parent, "%s :" fmt, __func__, ##arg) #define pch_pci_err(pdev, fmt, arg...) \ dev_err(&pdev->dev, "%s :" fmt, __func__, ##arg) #define pch_pci_dbg(pdev, fmt, arg...) \ dev_dbg(&pdev->dev, "%s :" fmt, __func__, ##arg) /* Set the number of I2C instance max Intel EG20T PCH : 1ch OKI SEMICONDUCTOR ML7213 IOH : 2ch */ #define PCH_I2C_MAX_DEV 2 /** * struct i2c_algo_pch_data - for I2C driver functionalities * @pch_adapter: stores the reference to i2c_adapter structure * @p_adapter_info: stores the reference to adapter_info structure * @pch_base_address: specifies the remapped base address * @pch_buff_mode_en: specifies if buffer mode is enabled * @pch_event_flag: specifies occurrence of interrupt events * @pch_i2c_xfer_in_progress: specifies whether the transfer is completed */ struct i2c_algo_pch_data { struct i2c_adapter pch_adapter; struct adapter_info *p_adapter_info; void __iomem *pch_base_address; int pch_buff_mode_en; u32 pch_event_flag; bool pch_i2c_xfer_in_progress; }; /** * struct adapter_info - This structure holds the adapter information for the PCH i2c controller * @pch_data: stores a list of i2c_algo_pch_data * @pch_i2c_suspended: specifies whether the system is suspended or not * perhaps with more lines and words. * @ch_num: specifies the number of i2c instance * * pch_data has as many elements as maximum I2C channels */ struct adapter_info { struct i2c_algo_pch_data pch_data[PCH_I2C_MAX_DEV]; bool pch_i2c_suspended; int ch_num; }; static int pch_i2c_speed = 100; /* I2C bus speed in Kbps */ static int pch_clk = 50000; /* specifies I2C clock speed in KHz */ static wait_queue_head_t pch_event; static DEFINE_MUTEX(pch_mutex); /* Definition for ML7213 by OKI SEMICONDUCTOR */ #define PCI_VENDOR_ID_ROHM 0x10DB #define PCI_DEVICE_ID_ML7213_I2C 0x802D #define PCI_DEVICE_ID_ML7223_I2C 0x8010 static struct pci_device_id __devinitdata pch_pcidev_id[] = { { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_PCH_I2C), 1, }, { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_I2C), 2, }, { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_I2C), 1, }, {0,} }; static irqreturn_t pch_i2c_handler(int irq, void *pData); static inline void pch_setbit(void __iomem *addr, u32 offset, u32 bitmask) { u32 val; val = ioread32(addr + offset); val |= bitmask; iowrite32(val, addr + offset); } static inline void pch_clrbit(void __iomem *addr, u32 offset, u32 bitmask) { u32 val; val = ioread32(addr + offset); val &= (~bitmask); iowrite32(val, addr + offset); } /** * pch_i2c_init() - hardware initialization of I2C module * @adap: Pointer to struct i2c_algo_pch_data. */ static void pch_i2c_init(struct i2c_algo_pch_data *adap) { void __iomem *p = adap->pch_base_address; u32 pch_i2cbc; u32 pch_i2ctmr; u32 reg_value; /* reset I2C controller */ iowrite32(0x01, p + PCH_I2CSRST); msleep(20); iowrite32(0x0, p + PCH_I2CSRST); /* Initialize I2C registers */ iowrite32(0x21, p + PCH_I2CNF); pch_setbit(adap->pch_base_address, PCH_I2CCTL, PCH_I2CCTL_I2CMEN); if (pch_i2c_speed != 400) pch_i2c_speed = 100; reg_value = PCH_I2CCTL_I2CMEN; if (pch_i2c_speed == FAST_MODE_CLK) { reg_value |= FAST_MODE_EN; pch_dbg(adap, "Fast mode enabled\n"); } if (pch_clk > PCH_MAX_CLK) pch_clk = 62500; pch_i2cbc = (pch_clk + (pch_i2c_speed * 4)) / pch_i2c_speed * 8; /* Set transfer speed in I2CBC */ iowrite32(pch_i2cbc, p + PCH_I2CBC); pch_i2ctmr = (pch_clk) / 8; iowrite32(pch_i2ctmr, p + PCH_I2CTMR); reg_value |= NORMAL_INTR_ENBL; /* Enable interrupts in normal mode */ iowrite32(reg_value, p + PCH_I2CCTL); pch_dbg(adap, "I2CCTL=%x pch_i2cbc=%x pch_i2ctmr=%x Enable interrupts\n", ioread32(p + PCH_I2CCTL), pch_i2cbc, pch_i2ctmr); init_waitqueue_head(&pch_event); } static inline bool ktime_lt(const ktime_t cmp1, const ktime_t cmp2) { return cmp1.tv64 < cmp2.tv64; } /** * pch_i2c_wait_for_bus_idle() - check the status of bus. * @adap: Pointer to struct i2c_algo_pch_data. * @timeout: waiting time counter (us). */ static s32 pch_i2c_wait_for_bus_idle(struct i2c_algo_pch_data *adap, s32 timeout) { void __iomem *p = adap->pch_base_address; /* MAX timeout value is timeout*1000*1000nsec */ ktime_t ns_val = ktime_add_ns(ktime_get(), timeout*1000*1000); do { if ((ioread32(p + PCH_I2CSR) & I2CMBB_BIT) == 0) break; msleep(20); } while (ktime_lt(ktime_get(), ns_val)); pch_dbg(adap, "I2CSR = %x\n", ioread32(p + PCH_I2CSR)); if (timeout == 0) { pch_err(adap, "%s: Timeout Error.return%d\n", __func__, -ETIME); return -ETIME; } return 0; } /** * pch_i2c_start() - Generate I2C start condition in normal mode. * @adap: Pointer to struct i2c_algo_pch_data. * * Generate I2C start condition in normal mode by setting I2CCTL.I2CMSTA to 1. */ static void pch_i2c_start(struct i2c_algo_pch_data *adap) { void __iomem *p = adap->pch_base_address; pch_dbg(adap, "I2CCTL = %x\n", ioread32(p + PCH_I2CCTL)); pch_setbit(adap->pch_base_address, PCH_I2CCTL, PCH_START); } /** * pch_i2c_wait_for_xfer_complete() - initiates a wait for the tx complete event * @adap: Pointer to struct i2c_algo_pch_data. */ static s32 pch_i2c_wait_for_xfer_complete(struct i2c_algo_pch_data *adap) { s32 ret; ret = wait_event_timeout(pch_event, (adap->pch_event_flag != 0), msecs_to_jiffies(50)); if (ret < 0) { pch_err(adap, "timeout: %x\n", adap->pch_event_flag); return ret; } if (ret == 0) { pch_err(adap, "timeout: %x\n", adap->pch_event_flag); return -ETIMEDOUT; } if (adap->pch_event_flag & I2C_ERROR_MASK) { pch_err(adap, "error bits set: %x\n", adap->pch_event_flag); return -EIO; } adap->pch_event_flag = 0; return 0; } /** * pch_i2c_getack() - to confirm ACK/NACK * @adap: Pointer to struct i2c_algo_pch_data. */ static s32 pch_i2c_getack(struct i2c_algo_pch_data *adap) { u32 reg_val; void __iomem *p = adap->pch_base_address; reg_val = ioread32(p + PCH_I2CSR) & PCH_GETACK; if (reg_val != 0) { pch_err(adap, "return%d\n", -EPROTO); return -EPROTO; } return 0; } /** * pch_i2c_stop() - generate stop condition in normal mode. * @adap: Pointer to struct i2c_algo_pch_data. */ static void pch_i2c_stop(struct i2c_algo_pch_data *adap) { void __iomem *p = adap->pch_base_address; pch_dbg(adap, "I2CCTL = %x\n", ioread32(p + PCH_I2CCTL)); /* clear the start bit */ pch_clrbit(adap->pch_base_address, PCH_I2CCTL, PCH_START); } /** * pch_i2c_repstart() - generate repeated start condition in normal mode * @adap: Pointer to struct i2c_algo_pch_data. */ static void pch_i2c_repstart(struct i2c_algo_pch_data *adap) { void __iomem *p = adap->pch_base_address; pch_dbg(adap, "I2CCTL = %x\n", ioread32(p + PCH_I2CCTL)); pch_setbit(adap->pch_base_address, PCH_I2CCTL, PCH_REPSTART); } /** * pch_i2c_writebytes() - write data to I2C bus in normal mode * @i2c_adap: Pointer to the struct i2c_adapter. * @last: specifies whether last message or not. * In the case of compound mode it will be 1 for last message, * otherwise 0. * @first: specifies whether first message or not. * 1 for first message otherwise 0. */ static s32 pch_i2c_writebytes(struct i2c_adapter *i2c_adap, struct i2c_msg *msgs, u32 last, u32 first) { struct i2c_algo_pch_data *adap = i2c_adap->algo_data; u8 *buf; u32 length; u32 addr; u32 addr_2_msb; u32 addr_8_lsb; s32 wrcount; void __iomem *p = adap->pch_base_address; length = msgs->len; buf = msgs->buf; addr = msgs->addr; /* enable master tx */ pch_setbit(adap->pch_base_address, PCH_I2CCTL, I2C_TX_MODE); pch_dbg(adap, "I2CCTL = %x msgs->len = %d\n", ioread32(p + PCH_I2CCTL), length); if (first) { if (pch_i2c_wait_for_bus_idle(adap, BUS_IDLE_TIMEOUT) == -ETIME) return -ETIME; } if (msgs->flags & I2C_M_TEN) { addr_2_msb = ((addr & I2C_MSB_2B_MSK) >> 7); iowrite32(addr_2_msb | TEN_BIT_ADDR_MASK, p + PCH_I2CDR); if (first) pch_i2c_start(adap); if (pch_i2c_wait_for_xfer_complete(adap) == 0 && pch_i2c_getack(adap) == 0) { addr_8_lsb = (addr & I2C_ADDR_MSK); iowrite32(addr_8_lsb, p + PCH_I2CDR); } else { pch_i2c_stop(adap); return -ETIME; } } else { /* set 7 bit slave address and R/W bit as 0 */ iowrite32(addr << 1, p + PCH_I2CDR); if (first) pch_i2c_start(adap); } if ((pch_i2c_wait_for_xfer_complete(adap) == 0) && (pch_i2c_getack(adap) == 0)) { for (wrcount = 0; wrcount < length; ++wrcount) { /* write buffer value to I2C data register */ iowrite32(buf[wrcount], p + PCH_I2CDR); pch_dbg(adap, "writing %x to Data register\n", buf[wrcount]); if (pch_i2c_wait_for_xfer_complete(adap) != 0) return -ETIME; if (pch_i2c_getack(adap)) return -EIO; } /* check if this is the last message */ if (last) pch_i2c_stop(adap); else pch_i2c_repstart(adap); } else { pch_i2c_stop(adap); return -EIO; } pch_dbg(adap, "return=%d\n", wrcount); return wrcount; } /** * pch_i2c_sendack() - send ACK * @adap: Pointer to struct i2c_algo_pch_data. */ static void pch_i2c_sendack(struct i2c_algo_pch_data *adap) { void __iomem *p = adap->pch_base_address; pch_dbg(adap, "I2CCTL = %x\n", ioread32(p + PCH_I2CCTL)); pch_clrbit(adap->pch_base_address, PCH_I2CCTL, PCH_ACK); } /** * pch_i2c_sendnack() - send NACK * @adap: Pointer to struct i2c_algo_pch_data. */ static void pch_i2c_sendnack(struct i2c_algo_pch_data *adap) { void __iomem *p = adap->pch_base_address; pch_dbg(adap, "I2CCTL = %x\n", ioread32(p + PCH_I2CCTL)); pch_setbit(adap->pch_base_address, PCH_I2CCTL, PCH_ACK); } /** * pch_i2c_readbytes() - read data from I2C bus in normal mode. * @i2c_adap: Pointer to the struct i2c_adapter. * @msgs: Pointer to i2c_msg structure. * @last: specifies whether last message or not. * @first: specifies whether first message or not. */ static s32 pch_i2c_readbytes(struct i2c_adapter *i2c_adap, struct i2c_msg *msgs, u32 last, u32 first) { struct i2c_algo_pch_data *adap = i2c_adap->algo_data; u8 *buf; u32 count; u32 length; u32 addr; u32 addr_2_msb; void __iomem *p = adap->pch_base_address; length = msgs->len; buf = msgs->buf; addr = msgs->addr; /* enable master reception */ pch_clrbit(adap->pch_base_address, PCH_I2CCTL, I2C_TX_MODE); if (first) { if (pch_i2c_wait_for_bus_idle(adap, BUS_IDLE_TIMEOUT) == -ETIME) return -ETIME; } if (msgs->flags & I2C_M_TEN) { addr_2_msb = (((addr & I2C_MSB_2B_MSK) >> 7) | (I2C_RD)); iowrite32(addr_2_msb | TEN_BIT_ADDR_MASK, p + PCH_I2CDR); } else { /* 7 address bits + R/W bit */ addr = (((addr) << 1) | (I2C_RD)); iowrite32(addr, p + PCH_I2CDR); } /* check if it is the first message */ if (first) pch_i2c_start(adap); if ((pch_i2c_wait_for_xfer_complete(adap) == 0) && (pch_i2c_getack(adap) == 0)) { pch_dbg(adap, "return %d\n", 0); if (length == 0) { pch_i2c_stop(adap); ioread32(p + PCH_I2CDR); /* Dummy read needs */ count = length; } else { int read_index; int loop; pch_i2c_sendack(adap); /* Dummy read */ for (loop = 1, read_index = 0; loop < length; loop++) { buf[read_index] = ioread32(p + PCH_I2CDR); if (loop != 1) read_index++; if (pch_i2c_wait_for_xfer_complete(adap) != 0) { pch_i2c_stop(adap); return -ETIME; } } /* end for */ pch_i2c_sendnack(adap); buf[read_index] = ioread32(p + PCH_I2CDR); if (length != 1) read_index++; if (pch_i2c_wait_for_xfer_complete(adap) == 0) { if (last) pch_i2c_stop(adap); else pch_i2c_repstart(adap); buf[read_index++] = ioread32(p + PCH_I2CDR); count = read_index; } else { count = -ETIME; } } } else { count = -ETIME; pch_i2c_stop(adap); } return count; } /** * pch_i2c_cb() - Interrupt handler Call back function * @adap: Pointer to struct i2c_algo_pch_data. */ static void pch_i2c_cb(struct i2c_algo_pch_data *adap) { u32 sts; void __iomem *p = adap->pch_base_address; sts = ioread32(p + PCH_I2CSR); sts &= (I2CMAL_BIT | I2CMCF_BIT | I2CMIF_BIT); if (sts & I2CMAL_BIT) adap->pch_event_flag |= I2CMAL_EVENT; if (sts & I2CMCF_BIT) adap->pch_event_flag |= I2CMCF_EVENT; /* clear the applicable bits */ pch_clrbit(adap->pch_base_address, PCH_I2CSR, sts); pch_dbg(adap, "PCH_I2CSR = %x\n", ioread32(p + PCH_I2CSR)); wake_up(&pch_event); } /** * pch_i2c_handler() - interrupt handler for the PCH I2C controller * @irq: irq number. * @pData: cookie passed back to the handler function. */ static irqreturn_t pch_i2c_handler(int irq, void *pData) { u32 reg_val; int flag; int i; struct adapter_info *adap_info = pData; void __iomem *p; u32 mode; for (i = 0, flag = 0; i < adap_info->ch_num; i++) { p = adap_info->pch_data[i].pch_base_address; mode = ioread32(p + PCH_I2CMOD); mode &= BUFFER_MODE | EEPROM_SR_MODE; if (mode != NORMAL_MODE) { pch_err(adap_info->pch_data, "I2C-%d mode(%d) is not supported\n", mode, i); continue; } reg_val = ioread32(p + PCH_I2CSR); if (reg_val & (I2CMAL_BIT | I2CMCF_BIT | I2CMIF_BIT)) { pch_i2c_cb(&adap_info->pch_data[i]); flag = 1; } } return flag ? IRQ_HANDLED : IRQ_NONE; } /** * pch_i2c_xfer() - Reading adnd writing data through I2C bus * @i2c_adap: Pointer to the struct i2c_adapter. * @msgs: Pointer to i2c_msg structure. * @num: number of messages. */ static s32 pch_i2c_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg *msgs, s32 num) { struct i2c_msg *pmsg; u32 i = 0; u32 status; u32 msglen; u32 subaddrlen; s32 ret; struct i2c_algo_pch_data *adap = i2c_adap->algo_data; ret = mutex_lock_interruptible(&pch_mutex); if (ret) return -ERESTARTSYS; if (adap->p_adapter_info->pch_i2c_suspended) { mutex_unlock(&pch_mutex); return -EBUSY; } pch_dbg(adap, "adap->p_adapter_info->pch_i2c_suspended is %d\n", adap->p_adapter_info->pch_i2c_suspended); /* transfer not completed */ adap->pch_i2c_xfer_in_progress = true; pmsg = &msgs[0]; pmsg->flags |= adap->pch_buff_mode_en; status = pmsg->flags; pch_dbg(adap, "After invoking I2C_MODE_SEL :flag= 0x%x\n", status); /* calculate sub address length and message length */ /* these are applicable only for buffer mode */ subaddrlen = pmsg->buf[0]; /* calculate actual message length excluding * the sub address fields */ msglen = (pmsg->len) - (subaddrlen + 1); if (status & (I2C_M_RD)) { pch_dbg(adap, "invoking pch_i2c_readbytes\n"); ret = pch_i2c_readbytes(i2c_adap, pmsg, (i + 1 == num), (i == 0)); } else { pch_dbg(adap, "invoking pch_i2c_writebytes\n"); ret = pch_i2c_writebytes(i2c_adap, pmsg, (i + 1 == num), (i == 0)); } adap->pch_i2c_xfer_in_progress = false; /* transfer completed */ mutex_unlock(&pch_mutex); return ret; } /** * pch_i2c_func() - return the functionality of the I2C driver * @adap: Pointer to struct i2c_algo_pch_data. */ static u32 pch_i2c_func(struct i2c_adapter *adap) { return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_10BIT_ADDR; } static struct i2c_algorithm pch_algorithm = { .master_xfer = pch_i2c_xfer, .functionality = pch_i2c_func }; /** * pch_i2c_disbl_int() - Disable PCH I2C interrupts * @adap: Pointer to struct i2c_algo_pch_data. */ static void pch_i2c_disbl_int(struct i2c_algo_pch_data *adap) { void __iomem *p = adap->pch_base_address; pch_clrbit(adap->pch_base_address, PCH_I2CCTL, NORMAL_INTR_ENBL); iowrite32(EEPROM_RST_INTR_DISBL, p + PCH_I2CESRMSK); iowrite32(BUFFER_MODE_INTR_DISBL, p + PCH_I2CBUFMSK); } static int __devinit pch_i2c_probe(struct pci_dev *pdev, const struct pci_device_id *id) { void __iomem *base_addr; int ret; int i, j; struct adapter_info *adap_info; struct i2c_adapter *pch_adap; pch_pci_dbg(pdev, "Entered.\n"); adap_info = kzalloc((sizeof(struct adapter_info)), GFP_KERNEL); if (adap_info == NULL) { pch_pci_err(pdev, "Memory allocation FAILED\n"); return -ENOMEM; } ret = pci_enable_device(pdev); if (ret) { pch_pci_err(pdev, "pci_enable_device FAILED\n"); goto err_pci_enable; } ret = pci_request_regions(pdev, KBUILD_MODNAME); if (ret) { pch_pci_err(pdev, "pci_request_regions FAILED\n"); goto err_pci_req; } base_addr = pci_iomap(pdev, 1, 0); if (base_addr == NULL) { pch_pci_err(pdev, "pci_iomap FAILED\n"); ret = -ENOMEM; goto err_pci_iomap; } /* Set the number of I2C channel instance */ adap_info->ch_num = id->driver_data; for (i = 0; i < adap_info->ch_num; i++) { pch_adap = &adap_info->pch_data[i].pch_adapter; adap_info->pch_i2c_suspended = false; adap_info->pch_data[i].p_adapter_info = adap_info; pch_adap->owner = THIS_MODULE; pch_adap->class = I2C_CLASS_HWMON; strcpy(pch_adap->name, KBUILD_MODNAME); pch_adap->algo = &pch_algorithm; pch_adap->algo_data = &adap_info->pch_data[i]; /* base_addr + offset; */ adap_info->pch_data[i].pch_base_address = base_addr + 0x100 * i; pch_adap->dev.parent = &pdev->dev; ret = i2c_add_adapter(pch_adap); if (ret) { pch_pci_err(pdev, "i2c_add_adapter[ch:%d] FAILED\n", i); goto err_i2c_add_adapter; } pch_i2c_init(&adap_info->pch_data[i]); } ret = request_irq(pdev->irq, pch_i2c_handler, IRQF_SHARED, KBUILD_MODNAME, adap_info); if (ret) { pch_pci_err(pdev, "request_irq FAILED\n"); goto err_i2c_add_adapter; } pci_set_drvdata(pdev, adap_info); pch_pci_dbg(pdev, "returns %d.\n", ret); return 0; err_i2c_add_adapter: for (j = 0; j < i; j++) i2c_del_adapter(&adap_info->pch_data[j].pch_adapter); pci_iounmap(pdev, base_addr); err_pci_iomap: pci_release_regions(pdev); err_pci_req: pci_disable_device(pdev); err_pci_enable: kfree(adap_info); return ret; } static void __devexit pch_i2c_remove(struct pci_dev *pdev) { int i; struct adapter_info *adap_info = pci_get_drvdata(pdev); free_irq(pdev->irq, adap_info); for (i = 0; i < adap_info->ch_num; i++) { pch_i2c_disbl_int(&adap_info->pch_data[i]); i2c_del_adapter(&adap_info->pch_data[i].pch_adapter); } if (adap_info->pch_data[0].pch_base_address) pci_iounmap(pdev, adap_info->pch_data[0].pch_base_address); for (i = 0; i < adap_info->ch_num; i++) adap_info->pch_data[i].pch_base_address = 0; pci_set_drvdata(pdev, NULL); pci_release_regions(pdev); pci_disable_device(pdev); kfree(adap_info); } #ifdef CONFIG_PM static int pch_i2c_suspend(struct pci_dev *pdev, pm_message_t state) { int ret; int i; struct adapter_info *adap_info = pci_get_drvdata(pdev); void __iomem *p = adap_info->pch_data[0].pch_base_address; adap_info->pch_i2c_suspended = true; for (i = 0; i < adap_info->ch_num; i++) { while ((adap_info->pch_data[i].pch_i2c_xfer_in_progress)) { /* Wait until all channel transfers are completed */ msleep(20); } } /* Disable the i2c interrupts */ for (i = 0; i < adap_info->ch_num; i++) pch_i2c_disbl_int(&adap_info->pch_data[i]); pch_pci_dbg(pdev, "I2CSR = %x I2CBUFSTA = %x I2CESRSTA = %x " "invoked function pch_i2c_disbl_int successfully\n", ioread32(p + PCH_I2CSR), ioread32(p + PCH_I2CBUFSTA), ioread32(p + PCH_I2CESRSTA)); ret = pci_save_state(pdev); if (ret) { pch_pci_err(pdev, "pci_save_state\n"); return ret; } pci_enable_wake(pdev, PCI_D3hot, 0); pci_disable_device(pdev); pci_set_power_state(pdev, pci_choose_state(pdev, state)); return 0; } static int pch_i2c_resume(struct pci_dev *pdev) { int i; struct adapter_info *adap_info = pci_get_drvdata(pdev); pci_set_power_state(pdev, PCI_D0); pci_restore_state(pdev); if (pci_enable_device(pdev) < 0) { pch_pci_err(pdev, "pch_i2c_resume:pci_enable_device FAILED\n"); return -EIO; } pci_enable_wake(pdev, PCI_D3hot, 0); for (i = 0; i < adap_info->ch_num; i++) pch_i2c_init(&adap_info->pch_data[i]); adap_info->pch_i2c_suspended = false; return 0; } #else #define pch_i2c_suspend NULL #define pch_i2c_resume NULL #endif static struct pci_driver pch_pcidriver = { .name = KBUILD_MODNAME, .id_table = pch_pcidev_id, .probe = pch_i2c_probe, .remove = __devexit_p(pch_i2c_remove), .suspend = pch_i2c_suspend, .resume = pch_i2c_resume }; static int __init pch_pci_init(void) { return pci_register_driver(&pch_pcidriver); } module_init(pch_pci_init); static void __exit pch_pci_exit(void) { pci_unregister_driver(&pch_pcidriver); } module_exit(pch_pci_exit); MODULE_DESCRIPTION("Intel EG20T PCH/OKI SEMICONDUCTOR ML7213 IOH I2C Driver"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Tomoya MORINAGA. <tomoya-linux@dsn.okisemi.com>"); module_param(pch_i2c_speed, int, (S_IRUSR | S_IWUSR)); module_param(pch_clk, int, (S_IRUSR | S_IWUSR));