/* * User-space Probes (UProbes) for x86 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * Copyright (C) IBM Corporation, 2008-2011 * Authors: * Srikar Dronamraju * Jim Keniston */ #include #include #include #include #include #include /* Post-execution fixups. */ /* No fixup needed */ #define UPROBE_FIX_NONE 0x0 /* Adjust IP back to vicinity of actual insn */ #define UPROBE_FIX_IP 0x1 /* Adjust the return address of a call insn */ #define UPROBE_FIX_CALL 0x2 #define UPROBE_FIX_RIP_AX 0x8000 #define UPROBE_FIX_RIP_CX 0x4000 /* Adaptations for mhiramat x86 decoder v14. */ #define OPCODE1(insn) ((insn)->opcode.bytes[0]) #define OPCODE2(insn) ((insn)->opcode.bytes[1]) #define OPCODE3(insn) ((insn)->opcode.bytes[2]) #define MODRM_REG(insn) X86_MODRM_REG(insn->modrm.value) #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ << (row % 32)) /* * Good-instruction tables for 32-bit apps. This is non-const and volatile * to keep gcc from statically optimizing it out, as variable_test_bit makes * some versions of gcc to think only *(unsigned long*) is used. */ static volatile u32 good_insns_32[256 / 32] = { /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ /* ---------------------------------------------- */ W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 00 */ W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */ W(0x20, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* 20 */ W(0x30, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) , /* 30 */ W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */ W(0x60, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */ W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */ W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */ W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */ W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */ W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */ W(0xd0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */ W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */ W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */ /* ---------------------------------------------- */ /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ }; /* Using this for both 64-bit and 32-bit apps */ static volatile u32 good_2byte_insns[256 / 32] = { /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ /* ---------------------------------------------- */ W(0x00, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) | /* 00 */ W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* 10 */ W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */ W(0x30, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */ W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */ W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */ W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */ W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */ W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ W(0xa0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */ W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* b0 */ W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ W(0xd0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */ W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */ W(0xf0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0) /* f0 */ /* ---------------------------------------------- */ /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ }; #ifdef CONFIG_X86_64 /* Good-instruction tables for 64-bit apps */ static volatile u32 good_insns_64[256 / 32] = { /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ /* ---------------------------------------------- */ W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 00 */ W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */ W(0x20, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 20 */ W(0x30, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 30 */ W(0x40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 40 */ W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */ W(0x60, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */ W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */ W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */ W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */ W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */ W(0xc0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */ W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */ W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */ W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */ /* ---------------------------------------------- */ /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ }; #endif #undef W /* * opcodes we'll probably never support: * * 6c-6d, e4-e5, ec-ed - in * 6e-6f, e6-e7, ee-ef - out * cc, cd - int3, int * cf - iret * d6 - illegal instruction * f1 - int1/icebp * f4 - hlt * fa, fb - cli, sti * 0f - lar, lsl, syscall, clts, sysret, sysenter, sysexit, invd, wbinvd, ud2 * * invalid opcodes in 64-bit mode: * * 06, 0e, 16, 1e, 27, 2f, 37, 3f, 60-62, 82, c4-c5, d4-d5 * 63 - we support this opcode in x86_64 but not in i386. * * opcodes we may need to refine support for: * * 0f - 2-byte instructions: For many of these instructions, the validity * depends on the prefix and/or the reg field. On such instructions, we * just consider the opcode combination valid if it corresponds to any * valid instruction. * * 8f - Group 1 - only reg = 0 is OK * c6-c7 - Group 11 - only reg = 0 is OK * d9-df - fpu insns with some illegal encodings * f2, f3 - repnz, repz prefixes. These are also the first byte for * certain floating-point instructions, such as addsd. * * fe - Group 4 - only reg = 0 or 1 is OK * ff - Group 5 - only reg = 0-6 is OK * * others -- Do we need to support these? * * 0f - (floating-point?) prefetch instructions * 07, 17, 1f - pop es, pop ss, pop ds * 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes -- * but 64 and 65 (fs: and gs:) seem to be used, so we support them * 67 - addr16 prefix * ce - into * f0 - lock prefix */ /* * TODO: * - Where necessary, examine the modrm byte and allow only valid instructions * in the different Groups and fpu instructions. */ static bool is_prefix_bad(struct insn *insn) { int i; for (i = 0; i < insn->prefixes.nbytes; i++) { switch (insn->prefixes.bytes[i]) { case 0x26: /* INAT_PFX_ES */ case 0x2E: /* INAT_PFX_CS */ case 0x36: /* INAT_PFX_DS */ case 0x3E: /* INAT_PFX_SS */ case 0xF0: /* INAT_PFX_LOCK */ return true; } } return false; } static int validate_insn_32bits(struct arch_uprobe *auprobe, struct insn *insn) { insn_init(insn, auprobe->insn, false); /* Skip good instruction prefixes; reject "bad" ones. */ insn_get_opcode(insn); if (is_prefix_bad(insn)) return -ENOTSUPP; if (test_bit(OPCODE1(insn), (unsigned long *)good_insns_32)) return 0; if (insn->opcode.nbytes == 2) { if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns)) return 0; } return -ENOTSUPP; } /* * Figure out which fixups post_xol() will need to perform, and annotate * arch_uprobe->fixups accordingly. To start with, * arch_uprobe->fixups is either zero or it reflects rip-related * fixups. */ static void prepare_fixups(struct arch_uprobe *auprobe, struct insn *insn) { bool fix_ip = true, fix_call = false; /* defaults */ int reg; insn_get_opcode(insn); /* should be a nop */ switch (OPCODE1(insn)) { case 0xc3: /* ret/lret */ case 0xcb: case 0xc2: case 0xca: /* ip is correct */ fix_ip = false; break; case 0xe8: /* call relative - Fix return addr */ fix_call = true; break; case 0x9a: /* call absolute - Fix return addr, not ip */ fix_call = true; fix_ip = false; break; case 0xff: insn_get_modrm(insn); reg = MODRM_REG(insn); if (reg == 2 || reg == 3) { /* call or lcall, indirect */ /* Fix return addr; ip is correct. */ fix_call = true; fix_ip = false; } else if (reg == 4 || reg == 5) { /* jmp or ljmp, indirect */ /* ip is correct. */ fix_ip = false; } break; case 0xea: /* jmp absolute -- ip is correct */ fix_ip = false; break; default: break; } if (fix_ip) auprobe->fixups |= UPROBE_FIX_IP; if (fix_call) auprobe->fixups |= UPROBE_FIX_CALL; } #ifdef CONFIG_X86_64 /* * If arch_uprobe->insn doesn't use rip-relative addressing, return * immediately. Otherwise, rewrite the instruction so that it accesses * its memory operand indirectly through a scratch register. Set * arch_uprobe->fixups and arch_uprobe->rip_rela_target_address * accordingly. (The contents of the scratch register will be saved * before we single-step the modified instruction, and restored * afterward.) * * We do this because a rip-relative instruction can access only a * relatively small area (+/- 2 GB from the instruction), and the XOL * area typically lies beyond that area. At least for instructions * that store to memory, we can't execute the original instruction * and "fix things up" later, because the misdirected store could be * disastrous. * * Some useful facts about rip-relative instructions: * * - There's always a modrm byte. * - There's never a SIB byte. * - The displacement is always 4 bytes. */ static void handle_riprel_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn) { u8 *cursor; u8 reg; if (mm->context.ia32_compat) return; auprobe->rip_rela_target_address = 0x0; if (!insn_rip_relative(insn)) return; /* * insn_rip_relative() would have decoded rex_prefix, modrm. * Clear REX.b bit (extension of MODRM.rm field): * we want to encode rax/rcx, not r8/r9. */ if (insn->rex_prefix.nbytes) { cursor = auprobe->insn + insn_offset_rex_prefix(insn); *cursor &= 0xfe; /* Clearing REX.B bit */ } /* * Point cursor at the modrm byte. The next 4 bytes are the * displacement. Beyond the displacement, for some instructions, * is the immediate operand. */ cursor = auprobe->insn + insn_offset_modrm(insn); insn_get_length(insn); /* * Convert from rip-relative addressing to indirect addressing * via a scratch register. Change the r/m field from 0x5 (%rip) * to 0x0 (%rax) or 0x1 (%rcx), and squeeze out the offset field. */ reg = MODRM_REG(insn); if (reg == 0) { /* * The register operand (if any) is either the A register * (%rax, %eax, etc.) or (if the 0x4 bit is set in the * REX prefix) %r8. In any case, we know the C register * is NOT the register operand, so we use %rcx (register * #1) for the scratch register. */ auprobe->fixups = UPROBE_FIX_RIP_CX; /* Change modrm from 00 000 101 to 00 000 001. */ *cursor = 0x1; } else { /* Use %rax (register #0) for the scratch register. */ auprobe->fixups = UPROBE_FIX_RIP_AX; /* Change modrm from 00 xxx 101 to 00 xxx 000 */ *cursor = (reg << 3); } /* Target address = address of next instruction + (signed) offset */ auprobe->rip_rela_target_address = (long)insn->length + insn->displacement.value; /* Displacement field is gone; slide immediate field (if any) over. */ if (insn->immediate.nbytes) { cursor++; memmove(cursor, cursor + insn->displacement.nbytes, insn->immediate.nbytes); } return; } static int validate_insn_64bits(struct arch_uprobe *auprobe, struct insn *insn) { insn_init(insn, auprobe->insn, true); /* Skip good instruction prefixes; reject "bad" ones. */ insn_get_opcode(insn); if (is_prefix_bad(insn)) return -ENOTSUPP; if (test_bit(OPCODE1(insn), (unsigned long *)good_insns_64)) return 0; if (insn->opcode.nbytes == 2) { if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns)) return 0; } return -ENOTSUPP; } static int validate_insn_bits(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn) { if (mm->context.ia32_compat) return validate_insn_32bits(auprobe, insn); return validate_insn_64bits(auprobe, insn); } #else /* 32-bit: */ static void handle_riprel_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn) { /* No RIP-relative addressing on 32-bit */ } static int validate_insn_bits(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn) { return validate_insn_32bits(auprobe, insn); } #endif /* CONFIG_X86_64 */ /** * arch_uprobes_analyze_insn - instruction analysis including validity and fixups. * @mm: the probed address space. * @arch_uprobe: the probepoint information. * Return 0 on success or a -ve number on error. */ int arch_uprobes_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm) { int ret; struct insn insn; auprobe->fixups = 0; ret = validate_insn_bits(auprobe, mm, &insn); if (ret != 0) return ret; handle_riprel_insn(auprobe, mm, &insn); prepare_fixups(auprobe, &insn); return 0; }