#ifndef _LINUX_CGROUP_H #define _LINUX_CGROUP_H /* * cgroup interface * * Copyright (C) 2003 BULL SA * Copyright (C) 2004-2006 Silicon Graphics, Inc. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_CGROUPS struct cgroup_root; struct cgroup_subsys; struct cgroup; extern int cgroup_init_early(void); extern int cgroup_init(void); extern void cgroup_fork(struct task_struct *p); extern void cgroup_post_fork(struct task_struct *p); extern void cgroup_exit(struct task_struct *p); extern int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry); extern int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, struct pid *pid, struct task_struct *tsk); /* define the enumeration of all cgroup subsystems */ #define SUBSYS(_x) _x ## _cgrp_id, enum cgroup_subsys_id { #include CGROUP_SUBSYS_COUNT, }; #undef SUBSYS /* * Per-subsystem/per-cgroup state maintained by the system. This is the * fundamental structural building block that controllers deal with. * * Fields marked with "PI:" are public and immutable and may be accessed * directly without synchronization. */ struct cgroup_subsys_state { /* PI: the cgroup that this css is attached to */ struct cgroup *cgroup; /* PI: the cgroup subsystem that this css is attached to */ struct cgroup_subsys *ss; /* reference count - access via css_[try]get() and css_put() */ struct percpu_ref refcnt; /* PI: the parent css */ struct cgroup_subsys_state *parent; /* siblings list anchored at the parent's ->children */ struct list_head sibling; struct list_head children; /* * PI: Subsys-unique ID. 0 is unused and root is always 1. The * matching css can be looked up using css_from_id(). */ int id; unsigned int flags; /* * Monotonically increasing unique serial number which defines a * uniform order among all csses. It's guaranteed that all * ->children lists are in the ascending order of ->serial_nr and * used to allow interrupting and resuming iterations. */ u64 serial_nr; /* percpu_ref killing and RCU release */ struct rcu_head rcu_head; struct work_struct destroy_work; }; /* bits in struct cgroup_subsys_state flags field */ enum { CSS_NO_REF = (1 << 0), /* no reference counting for this css */ CSS_ONLINE = (1 << 1), /* between ->css_online() and ->css_offline() */ CSS_RELEASED = (1 << 2), /* refcnt reached zero, released */ }; /** * css_get - obtain a reference on the specified css * @css: target css * * The caller must already have a reference. */ static inline void css_get(struct cgroup_subsys_state *css) { if (!(css->flags & CSS_NO_REF)) percpu_ref_get(&css->refcnt); } /** * css_tryget - try to obtain a reference on the specified css * @css: target css * * Obtain a reference on @css unless it already has reached zero and is * being released. This function doesn't care whether @css is on or * offline. The caller naturally needs to ensure that @css is accessible * but doesn't have to be holding a reference on it - IOW, RCU protected * access is good enough for this function. Returns %true if a reference * count was successfully obtained; %false otherwise. */ static inline bool css_tryget(struct cgroup_subsys_state *css) { if (!(css->flags & CSS_NO_REF)) return percpu_ref_tryget(&css->refcnt); return true; } /** * css_tryget_online - try to obtain a reference on the specified css if online * @css: target css * * Obtain a reference on @css if it's online. The caller naturally needs * to ensure that @css is accessible but doesn't have to be holding a * reference on it - IOW, RCU protected access is good enough for this * function. Returns %true if a reference count was successfully obtained; * %false otherwise. */ static inline bool css_tryget_online(struct cgroup_subsys_state *css) { if (!(css->flags & CSS_NO_REF)) return percpu_ref_tryget_live(&css->refcnt); return true; } /** * css_put - put a css reference * @css: target css * * Put a reference obtained via css_get() and css_tryget_online(). */ static inline void css_put(struct cgroup_subsys_state *css) { if (!(css->flags & CSS_NO_REF)) percpu_ref_put(&css->refcnt); } /* bits in struct cgroup flags field */ enum { /* Control Group requires release notifications to userspace */ CGRP_NOTIFY_ON_RELEASE, /* * Clone the parent's configuration when creating a new child * cpuset cgroup. For historical reasons, this option can be * specified at mount time and thus is implemented here. */ CGRP_CPUSET_CLONE_CHILDREN, }; struct cgroup { /* self css with NULL ->ss, points back to this cgroup */ struct cgroup_subsys_state self; unsigned long flags; /* "unsigned long" so bitops work */ /* * idr allocated in-hierarchy ID. * * ID 0 is not used, the ID of the root cgroup is always 1, and a * new cgroup will be assigned with a smallest available ID. * * Allocating/Removing ID must be protected by cgroup_mutex. */ int id; /* * If this cgroup contains any tasks, it contributes one to * populated_cnt. All children with non-zero popuplated_cnt of * their own contribute one. The count is zero iff there's no task * in this cgroup or its subtree. */ int populated_cnt; struct kernfs_node *kn; /* cgroup kernfs entry */ struct kernfs_node *populated_kn; /* kn for "cgroup.subtree_populated" */ /* * The bitmask of subsystems enabled on the child cgroups. * ->subtree_control is the one configured through * "cgroup.subtree_control" while ->child_subsys_mask is the * effective one which may have more subsystems enabled. * Controller knobs are made available iff it's enabled in * ->subtree_control. */ unsigned int subtree_control; unsigned int child_subsys_mask; /* Private pointers for each registered subsystem */ struct cgroup_subsys_state __rcu *subsys[CGROUP_SUBSYS_COUNT]; struct cgroup_root *root; /* * List of cgrp_cset_links pointing at css_sets with tasks in this * cgroup. Protected by css_set_lock. */ struct list_head cset_links; /* * On the default hierarchy, a css_set for a cgroup with some * susbsys disabled will point to css's which are associated with * the closest ancestor which has the subsys enabled. The * following lists all css_sets which point to this cgroup's css * for the given subsystem. */ struct list_head e_csets[CGROUP_SUBSYS_COUNT]; /* * list of pidlists, up to two for each namespace (one for procs, one * for tasks); created on demand. */ struct list_head pidlists; struct mutex pidlist_mutex; /* used to wait for offlining of csses */ wait_queue_head_t offline_waitq; /* used to schedule release agent */ struct work_struct release_agent_work; }; #define MAX_CGROUP_ROOT_NAMELEN 64 /* cgroup_root->flags */ enum { CGRP_ROOT_SANE_BEHAVIOR = (1 << 0), /* __DEVEL__sane_behavior specified */ CGRP_ROOT_NOPREFIX = (1 << 1), /* mounted subsystems have no named prefix */ CGRP_ROOT_XATTR = (1 << 2), /* supports extended attributes */ }; /* * A cgroup_root represents the root of a cgroup hierarchy, and may be * associated with a kernfs_root to form an active hierarchy. This is * internal to cgroup core. Don't access directly from controllers. */ struct cgroup_root { struct kernfs_root *kf_root; /* The bitmask of subsystems attached to this hierarchy */ unsigned int subsys_mask; /* Unique id for this hierarchy. */ int hierarchy_id; /* The root cgroup. Root is destroyed on its release. */ struct cgroup cgrp; /* Number of cgroups in the hierarchy, used only for /proc/cgroups */ atomic_t nr_cgrps; /* A list running through the active hierarchies */ struct list_head root_list; /* Hierarchy-specific flags */ unsigned int flags; /* IDs for cgroups in this hierarchy */ struct idr cgroup_idr; /* The path to use for release notifications. */ char release_agent_path[PATH_MAX]; /* The name for this hierarchy - may be empty */ char name[MAX_CGROUP_ROOT_NAMELEN]; }; /* * A css_set is a structure holding pointers to a set of * cgroup_subsys_state objects. This saves space in the task struct * object and speeds up fork()/exit(), since a single inc/dec and a * list_add()/del() can bump the reference count on the entire cgroup * set for a task. */ struct css_set { /* Reference count */ atomic_t refcount; /* * List running through all cgroup groups in the same hash * slot. Protected by css_set_lock */ struct hlist_node hlist; /* * Lists running through all tasks using this cgroup group. * mg_tasks lists tasks which belong to this cset but are in the * process of being migrated out or in. Protected by * css_set_rwsem, but, during migration, once tasks are moved to * mg_tasks, it can be read safely while holding cgroup_mutex. */ struct list_head tasks; struct list_head mg_tasks; /* * List of cgrp_cset_links pointing at cgroups referenced from this * css_set. Protected by css_set_lock. */ struct list_head cgrp_links; /* the default cgroup associated with this css_set */ struct cgroup *dfl_cgrp; /* * Set of subsystem states, one for each subsystem. This array is * immutable after creation apart from the init_css_set during * subsystem registration (at boot time). */ struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT]; /* * List of csets participating in the on-going migration either as * source or destination. Protected by cgroup_mutex. */ struct list_head mg_preload_node; struct list_head mg_node; /* * If this cset is acting as the source of migration the following * two fields are set. mg_src_cgrp is the source cgroup of the * on-going migration and mg_dst_cset is the destination cset the * target tasks on this cset should be migrated to. Protected by * cgroup_mutex. */ struct cgroup *mg_src_cgrp; struct css_set *mg_dst_cset; /* * On the default hierarhcy, ->subsys[ssid] may point to a css * attached to an ancestor instead of the cgroup this css_set is * associated with. The following node is anchored at * ->subsys[ssid]->cgroup->e_csets[ssid] and provides a way to * iterate through all css's attached to a given cgroup. */ struct list_head e_cset_node[CGROUP_SUBSYS_COUNT]; /* For RCU-protected deletion */ struct rcu_head rcu_head; }; /* * struct cftype: handler definitions for cgroup control files * * When reading/writing to a file: * - the cgroup to use is file->f_dentry->d_parent->d_fsdata * - the 'cftype' of the file is file->f_dentry->d_fsdata */ /* cftype->flags */ enum { CFTYPE_ONLY_ON_ROOT = (1 << 0), /* only create on root cgrp */ CFTYPE_NOT_ON_ROOT = (1 << 1), /* don't create on root cgrp */ CFTYPE_NO_PREFIX = (1 << 3), /* (DON'T USE FOR NEW FILES) no subsys prefix */ /* internal flags, do not use outside cgroup core proper */ __CFTYPE_ONLY_ON_DFL = (1 << 16), /* only on default hierarchy */ __CFTYPE_NOT_ON_DFL = (1 << 17), /* not on default hierarchy */ }; #define MAX_CFTYPE_NAME 64 struct cftype { /* * By convention, the name should begin with the name of the * subsystem, followed by a period. Zero length string indicates * end of cftype array. */ char name[MAX_CFTYPE_NAME]; int private; /* * If not 0, file mode is set to this value, otherwise it will * be figured out automatically */ umode_t mode; /* * The maximum length of string, excluding trailing nul, that can * be passed to write. If < PAGE_SIZE-1, PAGE_SIZE-1 is assumed. */ size_t max_write_len; /* CFTYPE_* flags */ unsigned int flags; /* * Fields used for internal bookkeeping. Initialized automatically * during registration. */ struct cgroup_subsys *ss; /* NULL for cgroup core files */ struct list_head node; /* anchored at ss->cfts */ struct kernfs_ops *kf_ops; /* * read_u64() is a shortcut for the common case of returning a * single integer. Use it in place of read() */ u64 (*read_u64)(struct cgroup_subsys_state *css, struct cftype *cft); /* * read_s64() is a signed version of read_u64() */ s64 (*read_s64)(struct cgroup_subsys_state *css, struct cftype *cft); /* generic seq_file read interface */ int (*seq_show)(struct seq_file *sf, void *v); /* optional ops, implement all or none */ void *(*seq_start)(struct seq_file *sf, loff_t *ppos); void *(*seq_next)(struct seq_file *sf, void *v, loff_t *ppos); void (*seq_stop)(struct seq_file *sf, void *v); /* * write_u64() is a shortcut for the common case of accepting * a single integer (as parsed by simple_strtoull) from * userspace. Use in place of write(); return 0 or error. */ int (*write_u64)(struct cgroup_subsys_state *css, struct cftype *cft, u64 val); /* * write_s64() is a signed version of write_u64() */ int (*write_s64)(struct cgroup_subsys_state *css, struct cftype *cft, s64 val); /* * write() is the generic write callback which maps directly to * kernfs write operation and overrides all other operations. * Maximum write size is determined by ->max_write_len. Use * of_css/cft() to access the associated css and cft. */ ssize_t (*write)(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off); #ifdef CONFIG_DEBUG_LOCK_ALLOC struct lock_class_key lockdep_key; #endif }; extern struct cgroup_root cgrp_dfl_root; extern struct css_set init_css_set; /** * cgroup_on_dfl - test whether a cgroup is on the default hierarchy * @cgrp: the cgroup of interest * * The default hierarchy is the v2 interface of cgroup and this function * can be used to test whether a cgroup is on the default hierarchy for * cases where a subsystem should behave differnetly depending on the * interface version. * * The set of behaviors which change on the default hierarchy are still * being determined and the mount option is prefixed with __DEVEL__. * * List of changed behaviors: * * - Mount options "noprefix", "xattr", "clone_children", "release_agent" * and "name" are disallowed. * * - When mounting an existing superblock, mount options should match. * * - Remount is disallowed. * * - rename(2) is disallowed. * * - "tasks" is removed. Everything should be at process granularity. Use * "cgroup.procs" instead. * * - "cgroup.procs" is not sorted. pids will be unique unless they got * recycled inbetween reads. * * - "release_agent" and "notify_on_release" are removed. Replacement * notification mechanism will be implemented. * * - "cgroup.clone_children" is removed. * * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup * and its descendants contain no task; otherwise, 1. The file also * generates kernfs notification which can be monitored through poll and * [di]notify when the value of the file changes. * * - cpuset: tasks will be kept in empty cpusets when hotplug happens and * take masks of ancestors with non-empty cpus/mems, instead of being * moved to an ancestor. * * - cpuset: a task can be moved into an empty cpuset, and again it takes * masks of ancestors. * * - memcg: use_hierarchy is on by default and the cgroup file for the flag * is not created. * * - blkcg: blk-throttle becomes properly hierarchical. * * - debug: disallowed on the default hierarchy. */ static inline bool cgroup_on_dfl(const struct cgroup *cgrp) { return cgrp->root == &cgrp_dfl_root; } /* no synchronization, the result can only be used as a hint */ static inline bool cgroup_has_tasks(struct cgroup *cgrp) { return !list_empty(&cgrp->cset_links); } /* returns ino associated with a cgroup */ static inline ino_t cgroup_ino(struct cgroup *cgrp) { return cgrp->kn->ino; } /* cft/css accessors for cftype->write() operation */ static inline struct cftype *of_cft(struct kernfs_open_file *of) { return of->kn->priv; } struct cgroup_subsys_state *of_css(struct kernfs_open_file *of); /* cft/css accessors for cftype->seq_*() operations */ static inline struct cftype *seq_cft(struct seq_file *seq) { return of_cft(seq->private); } static inline struct cgroup_subsys_state *seq_css(struct seq_file *seq) { return of_css(seq->private); } /* * Name / path handling functions. All are thin wrappers around the kernfs * counterparts and can be called under any context. */ static inline int cgroup_name(struct cgroup *cgrp, char *buf, size_t buflen) { return kernfs_name(cgrp->kn, buf, buflen); } static inline char * __must_check cgroup_path(struct cgroup *cgrp, char *buf, size_t buflen) { return kernfs_path(cgrp->kn, buf, buflen); } static inline void pr_cont_cgroup_name(struct cgroup *cgrp) { pr_cont_kernfs_name(cgrp->kn); } static inline void pr_cont_cgroup_path(struct cgroup *cgrp) { pr_cont_kernfs_path(cgrp->kn); } char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen); int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts); int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts); int cgroup_rm_cftypes(struct cftype *cfts); bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor); /* * Control Group taskset, used to pass around set of tasks to cgroup_subsys * methods. */ struct cgroup_taskset; struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset); struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset); /** * cgroup_taskset_for_each - iterate cgroup_taskset * @task: the loop cursor * @tset: taskset to iterate */ #define cgroup_taskset_for_each(task, tset) \ for ((task) = cgroup_taskset_first((tset)); (task); \ (task) = cgroup_taskset_next((tset))) /* * Control Group subsystem type. * See Documentation/cgroups/cgroups.txt for details */ struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state *parent_css); int (*css_online)(struct cgroup_subsys_state *css); void (*css_offline)(struct cgroup_subsys_state *css); void (*css_released)(struct cgroup_subsys_state *css); void (*css_free)(struct cgroup_subsys_state *css); void (*css_reset)(struct cgroup_subsys_state *css); void (*css_e_css_changed)(struct cgroup_subsys_state *css); int (*can_attach)(struct cgroup_subsys_state *css, struct cgroup_taskset *tset); void (*cancel_attach)(struct cgroup_subsys_state *css, struct cgroup_taskset *tset); void (*attach)(struct cgroup_subsys_state *css, struct cgroup_taskset *tset); void (*fork)(struct task_struct *task); void (*exit)(struct cgroup_subsys_state *css, struct cgroup_subsys_state *old_css, struct task_struct *task); void (*bind)(struct cgroup_subsys_state *root_css); int disabled; int early_init; /* * If %false, this subsystem is properly hierarchical - * configuration, resource accounting and restriction on a parent * cgroup cover those of its children. If %true, hierarchy support * is broken in some ways - some subsystems ignore hierarchy * completely while others are only implemented half-way. * * It's now disallowed to create nested cgroups if the subsystem is * broken and cgroup core will emit a warning message on such * cases. Eventually, all subsystems will be made properly * hierarchical and this will go away. */ bool broken_hierarchy; bool warned_broken_hierarchy; /* the following two fields are initialized automtically during boot */ int id; #define MAX_CGROUP_TYPE_NAMELEN 32 const char *name; /* link to parent, protected by cgroup_lock() */ struct cgroup_root *root; /* idr for css->id */ struct idr css_idr; /* * List of cftypes. Each entry is the first entry of an array * terminated by zero length name. */ struct list_head cfts; /* * Base cftypes which are automatically registered. The two can * point to the same array. */ struct cftype *dfl_cftypes; /* for the default hierarchy */ struct cftype *legacy_cftypes; /* for the legacy hierarchies */ /* * A subsystem may depend on other subsystems. When such subsystem * is enabled on a cgroup, the depended-upon subsystems are enabled * together if available. Subsystems enabled due to dependency are * not visible to userland until explicitly enabled. The following * specifies the mask of subsystems that this one depends on. */ unsigned int depends_on; }; #define SUBSYS(_x) extern struct cgroup_subsys _x ## _cgrp_subsys; #include #undef SUBSYS /** * task_css_set_check - obtain a task's css_set with extra access conditions * @task: the task to obtain css_set for * @__c: extra condition expression to be passed to rcu_dereference_check() * * A task's css_set is RCU protected, initialized and exited while holding * task_lock(), and can only be modified while holding both cgroup_mutex * and task_lock() while the task is alive. This macro verifies that the * caller is inside proper critical section and returns @task's css_set. * * The caller can also specify additional allowed conditions via @__c, such * as locks used during the cgroup_subsys::attach() methods. */ #ifdef CONFIG_PROVE_RCU extern struct mutex cgroup_mutex; extern struct rw_semaphore css_set_rwsem; #define task_css_set_check(task, __c) \ rcu_dereference_check((task)->cgroups, \ lockdep_is_held(&cgroup_mutex) || \ lockdep_is_held(&css_set_rwsem) || \ ((task)->flags & PF_EXITING) || (__c)) #else #define task_css_set_check(task, __c) \ rcu_dereference((task)->cgroups) #endif /** * task_css_check - obtain css for (task, subsys) w/ extra access conds * @task: the target task * @subsys_id: the target subsystem ID * @__c: extra condition expression to be passed to rcu_dereference_check() * * Return the cgroup_subsys_state for the (@task, @subsys_id) pair. The * synchronization rules are the same as task_css_set_check(). */ #define task_css_check(task, subsys_id, __c) \ task_css_set_check((task), (__c))->subsys[(subsys_id)] /** * task_css_set - obtain a task's css_set * @task: the task to obtain css_set for * * See task_css_set_check(). */ static inline struct css_set *task_css_set(struct task_struct *task) { return task_css_set_check(task, false); } /** * task_css - obtain css for (task, subsys) * @task: the target task * @subsys_id: the target subsystem ID * * See task_css_check(). */ static inline struct cgroup_subsys_state *task_css(struct task_struct *task, int subsys_id) { return task_css_check(task, subsys_id, false); } /** * task_css_is_root - test whether a task belongs to the root css * @task: the target task * @subsys_id: the target subsystem ID * * Test whether @task belongs to the root css on the specified subsystem. * May be invoked in any context. */ static inline bool task_css_is_root(struct task_struct *task, int subsys_id) { return task_css_check(task, subsys_id, true) == init_css_set.subsys[subsys_id]; } static inline struct cgroup *task_cgroup(struct task_struct *task, int subsys_id) { return task_css(task, subsys_id)->cgroup; } struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, struct cgroup_subsys_state *parent); struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss); /** * css_for_each_child - iterate through children of a css * @pos: the css * to use as the loop cursor * @parent: css whose children to walk * * Walk @parent's children. Must be called under rcu_read_lock(). * * If a subsystem synchronizes ->css_online() and the start of iteration, a * css which finished ->css_online() is guaranteed to be visible in the * future iterations and will stay visible until the last reference is put. * A css which hasn't finished ->css_online() or already finished * ->css_offline() may show up during traversal. It's each subsystem's * responsibility to synchronize against on/offlining. * * It is allowed to temporarily drop RCU read lock during iteration. The * caller is responsible for ensuring that @pos remains accessible until * the start of the next iteration by, for example, bumping the css refcnt. */ #define css_for_each_child(pos, parent) \ for ((pos) = css_next_child(NULL, (parent)); (pos); \ (pos) = css_next_child((pos), (parent))) struct cgroup_subsys_state * css_next_descendant_pre(struct cgroup_subsys_state *pos, struct cgroup_subsys_state *css); struct cgroup_subsys_state * css_rightmost_descendant(struct cgroup_subsys_state *pos); /** * css_for_each_descendant_pre - pre-order walk of a css's descendants * @pos: the css * to use as the loop cursor * @root: css whose descendants to walk * * Walk @root's descendants. @root is included in the iteration and the * first node to be visited. Must be called under rcu_read_lock(). * * If a subsystem synchronizes ->css_online() and the start of iteration, a * css which finished ->css_online() is guaranteed to be visible in the * future iterations and will stay visible until the last reference is put. * A css which hasn't finished ->css_online() or already finished * ->css_offline() may show up during traversal. It's each subsystem's * responsibility to synchronize against on/offlining. * * For example, the following guarantees that a descendant can't escape * state updates of its ancestors. * * my_online(@css) * { * Lock @css's parent and @css; * Inherit state from the parent; * Unlock both. * } * * my_update_state(@css) * { * css_for_each_descendant_pre(@pos, @css) { * Lock @pos; * if (@pos == @css) * Update @css's state; * else * Verify @pos is alive and inherit state from its parent; * Unlock @pos; * } * } * * As long as the inheriting step, including checking the parent state, is * enclosed inside @pos locking, double-locking the parent isn't necessary * while inheriting. The state update to the parent is guaranteed to be * visible by walking order and, as long as inheriting operations to the * same @pos are atomic to each other, multiple updates racing each other * still result in the correct state. It's guaranateed that at least one * inheritance happens for any css after the latest update to its parent. * * If checking parent's state requires locking the parent, each inheriting * iteration should lock and unlock both @pos->parent and @pos. * * Alternatively, a subsystem may choose to use a single global lock to * synchronize ->css_online() and ->css_offline() against tree-walking * operations. * * It is allowed to temporarily drop RCU read lock during iteration. The * caller is responsible for ensuring that @pos remains accessible until * the start of the next iteration by, for example, bumping the css refcnt. */ #define css_for_each_descendant_pre(pos, css) \ for ((pos) = css_next_descendant_pre(NULL, (css)); (pos); \ (pos) = css_next_descendant_pre((pos), (css))) struct cgroup_subsys_state * css_next_descendant_post(struct cgroup_subsys_state *pos, struct cgroup_subsys_state *css); /** * css_for_each_descendant_post - post-order walk of a css's descendants * @pos: the css * to use as the loop cursor * @css: css whose descendants to walk * * Similar to css_for_each_descendant_pre() but performs post-order * traversal instead. @root is included in the iteration and the last * node to be visited. * * If a subsystem synchronizes ->css_online() and the start of iteration, a * css which finished ->css_online() is guaranteed to be visible in the * future iterations and will stay visible until the last reference is put. * A css which hasn't finished ->css_online() or already finished * ->css_offline() may show up during traversal. It's each subsystem's * responsibility to synchronize against on/offlining. * * Note that the walk visibility guarantee example described in pre-order * walk doesn't apply the same to post-order walks. */ #define css_for_each_descendant_post(pos, css) \ for ((pos) = css_next_descendant_post(NULL, (css)); (pos); \ (pos) = css_next_descendant_post((pos), (css))) bool css_has_online_children(struct cgroup_subsys_state *css); /* A css_task_iter should be treated as an opaque object */ struct css_task_iter { struct cgroup_subsys *ss; struct list_head *cset_pos; struct list_head *cset_head; struct list_head *task_pos; struct list_head *tasks_head; struct list_head *mg_tasks_head; }; void css_task_iter_start(struct cgroup_subsys_state *css, struct css_task_iter *it); struct task_struct *css_task_iter_next(struct css_task_iter *it); void css_task_iter_end(struct css_task_iter *it); int cgroup_attach_task_all(struct task_struct *from, struct task_struct *); int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from); struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgroup, struct cgroup_subsys *ss); struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, struct cgroup_subsys *ss); #else /* !CONFIG_CGROUPS */ static inline int cgroup_init_early(void) { return 0; } static inline int cgroup_init(void) { return 0; } static inline void cgroup_fork(struct task_struct *p) {} static inline void cgroup_post_fork(struct task_struct *p) {} static inline void cgroup_exit(struct task_struct *p) {} static inline int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) { return -EINVAL; } /* No cgroups - nothing to do */ static inline int cgroup_attach_task_all(struct task_struct *from, struct task_struct *t) { return 0; } #endif /* !CONFIG_CGROUPS */ #endif /* _LINUX_CGROUP_H */