/* * Copyright (C) 2012 Texas Instruments * Author: Rob Clark * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #include "drm_flip_work.h" #include #include #include "tilcdc_drv.h" #include "tilcdc_regs.h" #define TILCDC_VBLANK_SAFETY_THRESHOLD_US 1000 struct tilcdc_crtc { struct drm_crtc base; struct drm_plane primary; const struct tilcdc_panel_info *info; struct drm_pending_vblank_event *event; bool enabled; wait_queue_head_t frame_done_wq; bool frame_done; spinlock_t irq_lock; ktime_t last_vblank; struct drm_framebuffer *curr_fb; struct drm_framebuffer *next_fb; /* for deferred fb unref's: */ struct drm_flip_work unref_work; /* Only set if an external encoder is connected */ bool simulate_vesa_sync; int sync_lost_count; bool frame_intact; }; #define to_tilcdc_crtc(x) container_of(x, struct tilcdc_crtc, base) static void unref_worker(struct drm_flip_work *work, void *val) { struct tilcdc_crtc *tilcdc_crtc = container_of(work, struct tilcdc_crtc, unref_work); struct drm_device *dev = tilcdc_crtc->base.dev; mutex_lock(&dev->mode_config.mutex); drm_framebuffer_unreference(val); mutex_unlock(&dev->mode_config.mutex); } static void set_scanout(struct drm_crtc *crtc, struct drm_framebuffer *fb) { struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc); struct drm_device *dev = crtc->dev; struct drm_gem_cma_object *gem; unsigned int depth, bpp; dma_addr_t start, end; u64 dma_base_and_ceiling; drm_fb_get_bpp_depth(fb->pixel_format, &depth, &bpp); gem = drm_fb_cma_get_gem_obj(fb, 0); start = gem->paddr + fb->offsets[0] + crtc->y * fb->pitches[0] + crtc->x * bpp / 8; end = start + (crtc->mode.vdisplay * fb->pitches[0]); /* Write LCDC_DMA_FB_BASE_ADDR_0_REG and LCDC_DMA_FB_CEILING_ADDR_0_REG * with a single insruction, if available. This should make it more * unlikely that LCDC would fetch the DMA addresses in the middle of * an update. */ dma_base_and_ceiling = (u64)(end - 1) << 32 | start; tilcdc_write64(dev, LCDC_DMA_FB_BASE_ADDR_0_REG, dma_base_and_ceiling); if (tilcdc_crtc->curr_fb) drm_flip_work_queue(&tilcdc_crtc->unref_work, tilcdc_crtc->curr_fb); tilcdc_crtc->curr_fb = fb; } static void tilcdc_crtc_enable_irqs(struct drm_device *dev) { struct tilcdc_drm_private *priv = dev->dev_private; tilcdc_clear_irqstatus(dev, 0xffffffff); if (priv->rev == 1) { tilcdc_set(dev, LCDC_RASTER_CTRL_REG, LCDC_V1_UNDERFLOW_INT_ENA); tilcdc_set(dev, LCDC_DMA_CTRL_REG, LCDC_V1_END_OF_FRAME_INT_ENA); } else { tilcdc_write(dev, LCDC_INT_ENABLE_SET_REG, LCDC_V2_UNDERFLOW_INT_ENA | LCDC_V2_END_OF_FRAME0_INT_ENA | LCDC_FRAME_DONE | LCDC_SYNC_LOST); } } static void tilcdc_crtc_disable_irqs(struct drm_device *dev) { struct tilcdc_drm_private *priv = dev->dev_private; /* disable irqs that we might have enabled: */ if (priv->rev == 1) { tilcdc_clear(dev, LCDC_RASTER_CTRL_REG, LCDC_V1_UNDERFLOW_INT_ENA | LCDC_V1_PL_INT_ENA); tilcdc_clear(dev, LCDC_DMA_CTRL_REG, LCDC_V1_END_OF_FRAME_INT_ENA); } else { tilcdc_write(dev, LCDC_INT_ENABLE_CLR_REG, LCDC_V2_UNDERFLOW_INT_ENA | LCDC_V2_PL_INT_ENA | LCDC_V2_END_OF_FRAME0_INT_ENA | LCDC_FRAME_DONE | LCDC_SYNC_LOST); } } static void reset(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct tilcdc_drm_private *priv = dev->dev_private; if (priv->rev != 2) return; tilcdc_set(dev, LCDC_CLK_RESET_REG, LCDC_CLK_MAIN_RESET); usleep_range(250, 1000); tilcdc_clear(dev, LCDC_CLK_RESET_REG, LCDC_CLK_MAIN_RESET); } static void tilcdc_crtc_enable(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc); if (tilcdc_crtc->enabled) return; pm_runtime_get_sync(dev->dev); reset(crtc); tilcdc_crtc_enable_irqs(dev); tilcdc_clear(dev, LCDC_DMA_CTRL_REG, LCDC_DUAL_FRAME_BUFFER_ENABLE); tilcdc_set(dev, LCDC_RASTER_CTRL_REG, LCDC_PALETTE_LOAD_MODE(DATA_ONLY)); tilcdc_set(dev, LCDC_RASTER_CTRL_REG, LCDC_RASTER_ENABLE); drm_crtc_vblank_on(crtc); tilcdc_crtc->enabled = true; } void tilcdc_crtc_disable(struct drm_crtc *crtc) { struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc); struct drm_device *dev = crtc->dev; struct tilcdc_drm_private *priv = dev->dev_private; if (!tilcdc_crtc->enabled) return; tilcdc_crtc->frame_done = false; tilcdc_clear(dev, LCDC_RASTER_CTRL_REG, LCDC_RASTER_ENABLE); /* * if necessary wait for framedone irq which will still come * before putting things to sleep.. */ if (priv->rev == 2) { int ret = wait_event_timeout(tilcdc_crtc->frame_done_wq, tilcdc_crtc->frame_done, msecs_to_jiffies(500)); if (ret == 0) dev_err(dev->dev, "%s: timeout waiting for framedone\n", __func__); } drm_crtc_vblank_off(crtc); tilcdc_crtc_disable_irqs(dev); pm_runtime_put_sync(dev->dev); if (tilcdc_crtc->next_fb) { drm_flip_work_queue(&tilcdc_crtc->unref_work, tilcdc_crtc->next_fb); tilcdc_crtc->next_fb = NULL; } if (tilcdc_crtc->curr_fb) { drm_flip_work_queue(&tilcdc_crtc->unref_work, tilcdc_crtc->curr_fb); tilcdc_crtc->curr_fb = NULL; } drm_flip_work_commit(&tilcdc_crtc->unref_work, priv->wq); tilcdc_crtc->last_vblank = ktime_set(0, 0); tilcdc_crtc->enabled = false; } static bool tilcdc_crtc_is_on(struct drm_crtc *crtc) { return crtc->state && crtc->state->enable && crtc->state->active; } static void tilcdc_crtc_destroy(struct drm_crtc *crtc) { struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc); tilcdc_crtc_disable(crtc); of_node_put(crtc->port); drm_crtc_cleanup(crtc); drm_flip_work_cleanup(&tilcdc_crtc->unref_work); } int tilcdc_crtc_update_fb(struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_pending_vblank_event *event) { struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc); struct drm_device *dev = crtc->dev; unsigned long flags; if (tilcdc_crtc->event) { dev_err(dev->dev, "already pending page flip!\n"); return -EBUSY; } drm_framebuffer_reference(fb); crtc->primary->fb = fb; spin_lock_irqsave(&tilcdc_crtc->irq_lock, flags); if (crtc->hwmode.vrefresh && ktime_to_ns(tilcdc_crtc->last_vblank)) { ktime_t next_vblank; s64 tdiff; next_vblank = ktime_add_us(tilcdc_crtc->last_vblank, 1000000 / crtc->hwmode.vrefresh); tdiff = ktime_to_us(ktime_sub(next_vblank, ktime_get())); if (tdiff < TILCDC_VBLANK_SAFETY_THRESHOLD_US) tilcdc_crtc->next_fb = fb; } if (tilcdc_crtc->next_fb != fb) set_scanout(crtc, fb); tilcdc_crtc->event = event; spin_unlock_irqrestore(&tilcdc_crtc->irq_lock, flags); return 0; } static bool tilcdc_crtc_mode_fixup(struct drm_crtc *crtc, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc); if (!tilcdc_crtc->simulate_vesa_sync) return true; /* * tilcdc does not generate VESA-compliant sync but aligns * VS on the second edge of HS instead of first edge. * We use adjusted_mode, to fixup sync by aligning both rising * edges and add HSKEW offset to fix the sync. */ adjusted_mode->hskew = mode->hsync_end - mode->hsync_start; adjusted_mode->flags |= DRM_MODE_FLAG_HSKEW; if (mode->flags & DRM_MODE_FLAG_NHSYNC) { adjusted_mode->flags |= DRM_MODE_FLAG_PHSYNC; adjusted_mode->flags &= ~DRM_MODE_FLAG_NHSYNC; } else { adjusted_mode->flags |= DRM_MODE_FLAG_NHSYNC; adjusted_mode->flags &= ~DRM_MODE_FLAG_PHSYNC; } return true; } static void tilcdc_crtc_mode_set_nofb(struct drm_crtc *crtc) { struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc); struct drm_device *dev = crtc->dev; struct tilcdc_drm_private *priv = dev->dev_private; const struct tilcdc_panel_info *info = tilcdc_crtc->info; uint32_t reg, hbp, hfp, hsw, vbp, vfp, vsw; struct drm_display_mode *mode = &crtc->state->adjusted_mode; struct drm_framebuffer *fb = crtc->primary->state->fb; if (WARN_ON(!info)) return; if (WARN_ON(!fb)) return; /* Configure the Burst Size and fifo threshold of DMA: */ reg = tilcdc_read(dev, LCDC_DMA_CTRL_REG) & ~0x00000770; switch (info->dma_burst_sz) { case 1: reg |= LCDC_DMA_BURST_SIZE(LCDC_DMA_BURST_1); break; case 2: reg |= LCDC_DMA_BURST_SIZE(LCDC_DMA_BURST_2); break; case 4: reg |= LCDC_DMA_BURST_SIZE(LCDC_DMA_BURST_4); break; case 8: reg |= LCDC_DMA_BURST_SIZE(LCDC_DMA_BURST_8); break; case 16: reg |= LCDC_DMA_BURST_SIZE(LCDC_DMA_BURST_16); break; default: dev_err(dev->dev, "invalid burst size\n"); return; } reg |= (info->fifo_th << 8); tilcdc_write(dev, LCDC_DMA_CTRL_REG, reg); /* Configure timings: */ hbp = mode->htotal - mode->hsync_end; hfp = mode->hsync_start - mode->hdisplay; hsw = mode->hsync_end - mode->hsync_start; vbp = mode->vtotal - mode->vsync_end; vfp = mode->vsync_start - mode->vdisplay; vsw = mode->vsync_end - mode->vsync_start; DBG("%dx%d, hbp=%u, hfp=%u, hsw=%u, vbp=%u, vfp=%u, vsw=%u", mode->hdisplay, mode->vdisplay, hbp, hfp, hsw, vbp, vfp, vsw); /* Set AC Bias Period and Number of Transitions per Interrupt: */ reg = tilcdc_read(dev, LCDC_RASTER_TIMING_2_REG) & ~0x000fff00; reg |= LCDC_AC_BIAS_FREQUENCY(info->ac_bias) | LCDC_AC_BIAS_TRANSITIONS_PER_INT(info->ac_bias_intrpt); /* * subtract one from hfp, hbp, hsw because the hardware uses * a value of 0 as 1 */ if (priv->rev == 2) { /* clear bits we're going to set */ reg &= ~0x78000033; reg |= ((hfp-1) & 0x300) >> 8; reg |= ((hbp-1) & 0x300) >> 4; reg |= ((hsw-1) & 0x3c0) << 21; } tilcdc_write(dev, LCDC_RASTER_TIMING_2_REG, reg); reg = (((mode->hdisplay >> 4) - 1) << 4) | (((hbp-1) & 0xff) << 24) | (((hfp-1) & 0xff) << 16) | (((hsw-1) & 0x3f) << 10); if (priv->rev == 2) reg |= (((mode->hdisplay >> 4) - 1) & 0x40) >> 3; tilcdc_write(dev, LCDC_RASTER_TIMING_0_REG, reg); reg = ((mode->vdisplay - 1) & 0x3ff) | ((vbp & 0xff) << 24) | ((vfp & 0xff) << 16) | (((vsw-1) & 0x3f) << 10); tilcdc_write(dev, LCDC_RASTER_TIMING_1_REG, reg); /* * be sure to set Bit 10 for the V2 LCDC controller, * otherwise limited to 1024 pixels width, stopping * 1920x1080 being supported. */ if (priv->rev == 2) { if ((mode->vdisplay - 1) & 0x400) { tilcdc_set(dev, LCDC_RASTER_TIMING_2_REG, LCDC_LPP_B10); } else { tilcdc_clear(dev, LCDC_RASTER_TIMING_2_REG, LCDC_LPP_B10); } } /* Configure display type: */ reg = tilcdc_read(dev, LCDC_RASTER_CTRL_REG) & ~(LCDC_TFT_MODE | LCDC_MONO_8BIT_MODE | LCDC_MONOCHROME_MODE | LCDC_V2_TFT_24BPP_MODE | LCDC_V2_TFT_24BPP_UNPACK | 0x000ff000 /* Palette Loading Delay bits */); reg |= LCDC_TFT_MODE; /* no monochrome/passive support */ if (info->tft_alt_mode) reg |= LCDC_TFT_ALT_ENABLE; if (priv->rev == 2) { unsigned int depth, bpp; drm_fb_get_bpp_depth(fb->pixel_format, &depth, &bpp); switch (bpp) { case 16: break; case 32: reg |= LCDC_V2_TFT_24BPP_UNPACK; /* fallthrough */ case 24: reg |= LCDC_V2_TFT_24BPP_MODE; break; default: dev_err(dev->dev, "invalid pixel format\n"); return; } } reg |= info->fdd < 12; tilcdc_write(dev, LCDC_RASTER_CTRL_REG, reg); if (info->invert_pxl_clk) tilcdc_set(dev, LCDC_RASTER_TIMING_2_REG, LCDC_INVERT_PIXEL_CLOCK); else tilcdc_clear(dev, LCDC_RASTER_TIMING_2_REG, LCDC_INVERT_PIXEL_CLOCK); if (info->sync_ctrl) tilcdc_set(dev, LCDC_RASTER_TIMING_2_REG, LCDC_SYNC_CTRL); else tilcdc_clear(dev, LCDC_RASTER_TIMING_2_REG, LCDC_SYNC_CTRL); if (info->sync_edge) tilcdc_set(dev, LCDC_RASTER_TIMING_2_REG, LCDC_SYNC_EDGE); else tilcdc_clear(dev, LCDC_RASTER_TIMING_2_REG, LCDC_SYNC_EDGE); if (mode->flags & DRM_MODE_FLAG_NHSYNC) tilcdc_set(dev, LCDC_RASTER_TIMING_2_REG, LCDC_INVERT_HSYNC); else tilcdc_clear(dev, LCDC_RASTER_TIMING_2_REG, LCDC_INVERT_HSYNC); if (mode->flags & DRM_MODE_FLAG_NVSYNC) tilcdc_set(dev, LCDC_RASTER_TIMING_2_REG, LCDC_INVERT_VSYNC); else tilcdc_clear(dev, LCDC_RASTER_TIMING_2_REG, LCDC_INVERT_VSYNC); if (info->raster_order) tilcdc_set(dev, LCDC_RASTER_CTRL_REG, LCDC_RASTER_ORDER); else tilcdc_clear(dev, LCDC_RASTER_CTRL_REG, LCDC_RASTER_ORDER); drm_framebuffer_reference(fb); set_scanout(crtc, fb); tilcdc_crtc_update_clk(crtc); crtc->hwmode = crtc->state->adjusted_mode; } static int tilcdc_crtc_atomic_check(struct drm_crtc *crtc, struct drm_crtc_state *state) { struct drm_display_mode *mode = &state->mode; int ret; /* If we are not active we don't care */ if (!state->active) return 0; if (state->state->planes[0].ptr != crtc->primary || state->state->planes[0].state == NULL || state->state->planes[0].state->crtc != crtc) { dev_dbg(crtc->dev->dev, "CRTC primary plane must be present"); return -EINVAL; } ret = tilcdc_crtc_mode_valid(crtc, mode); if (ret) { dev_dbg(crtc->dev->dev, "Mode \"%s\" not valid", mode->name); return -EINVAL; } return 0; } static const struct drm_crtc_funcs tilcdc_crtc_funcs = { .destroy = tilcdc_crtc_destroy, .set_config = drm_atomic_helper_set_config, .page_flip = drm_atomic_helper_page_flip, .reset = drm_atomic_helper_crtc_reset, .atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state, .atomic_destroy_state = drm_atomic_helper_crtc_destroy_state, }; static const struct drm_crtc_helper_funcs tilcdc_crtc_helper_funcs = { .mode_fixup = tilcdc_crtc_mode_fixup, .enable = tilcdc_crtc_enable, .disable = tilcdc_crtc_disable, .atomic_check = tilcdc_crtc_atomic_check, .mode_set_nofb = tilcdc_crtc_mode_set_nofb, }; int tilcdc_crtc_max_width(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct tilcdc_drm_private *priv = dev->dev_private; int max_width = 0; if (priv->rev == 1) max_width = 1024; else if (priv->rev == 2) max_width = 2048; return max_width; } int tilcdc_crtc_mode_valid(struct drm_crtc *crtc, struct drm_display_mode *mode) { struct tilcdc_drm_private *priv = crtc->dev->dev_private; unsigned int bandwidth; uint32_t hbp, hfp, hsw, vbp, vfp, vsw; /* * check to see if the width is within the range that * the LCD Controller physically supports */ if (mode->hdisplay > tilcdc_crtc_max_width(crtc)) return MODE_VIRTUAL_X; /* width must be multiple of 16 */ if (mode->hdisplay & 0xf) return MODE_VIRTUAL_X; if (mode->vdisplay > 2048) return MODE_VIRTUAL_Y; DBG("Processing mode %dx%d@%d with pixel clock %d", mode->hdisplay, mode->vdisplay, drm_mode_vrefresh(mode), mode->clock); hbp = mode->htotal - mode->hsync_end; hfp = mode->hsync_start - mode->hdisplay; hsw = mode->hsync_end - mode->hsync_start; vbp = mode->vtotal - mode->vsync_end; vfp = mode->vsync_start - mode->vdisplay; vsw = mode->vsync_end - mode->vsync_start; if ((hbp-1) & ~0x3ff) { DBG("Pruning mode: Horizontal Back Porch out of range"); return MODE_HBLANK_WIDE; } if ((hfp-1) & ~0x3ff) { DBG("Pruning mode: Horizontal Front Porch out of range"); return MODE_HBLANK_WIDE; } if ((hsw-1) & ~0x3ff) { DBG("Pruning mode: Horizontal Sync Width out of range"); return MODE_HSYNC_WIDE; } if (vbp & ~0xff) { DBG("Pruning mode: Vertical Back Porch out of range"); return MODE_VBLANK_WIDE; } if (vfp & ~0xff) { DBG("Pruning mode: Vertical Front Porch out of range"); return MODE_VBLANK_WIDE; } if ((vsw-1) & ~0x3f) { DBG("Pruning mode: Vertical Sync Width out of range"); return MODE_VSYNC_WIDE; } /* * some devices have a maximum allowed pixel clock * configured from the DT */ if (mode->clock > priv->max_pixelclock) { DBG("Pruning mode: pixel clock too high"); return MODE_CLOCK_HIGH; } /* * some devices further limit the max horizontal resolution * configured from the DT */ if (mode->hdisplay > priv->max_width) return MODE_BAD_WIDTH; /* filter out modes that would require too much memory bandwidth: */ bandwidth = mode->hdisplay * mode->vdisplay * drm_mode_vrefresh(mode); if (bandwidth > priv->max_bandwidth) { DBG("Pruning mode: exceeds defined bandwidth limit"); return MODE_BAD; } return MODE_OK; } void tilcdc_crtc_set_panel_info(struct drm_crtc *crtc, const struct tilcdc_panel_info *info) { struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc); tilcdc_crtc->info = info; } void tilcdc_crtc_set_simulate_vesa_sync(struct drm_crtc *crtc, bool simulate_vesa_sync) { struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc); tilcdc_crtc->simulate_vesa_sync = simulate_vesa_sync; } void tilcdc_crtc_update_clk(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct tilcdc_drm_private *priv = dev->dev_private; unsigned long lcd_clk; const unsigned clkdiv = 2; /* using a fixed divider of 2 */ int ret; pm_runtime_get_sync(dev->dev); tilcdc_crtc_disable(crtc); /* mode.clock is in KHz, set_rate wants parameter in Hz */ ret = clk_set_rate(priv->clk, crtc->mode.clock * 1000 * clkdiv); if (ret < 0) { dev_err(dev->dev, "failed to set display clock rate to: %d\n", crtc->mode.clock); goto out; } lcd_clk = clk_get_rate(priv->clk); DBG("lcd_clk=%lu, mode clock=%d, div=%u", lcd_clk, crtc->mode.clock, clkdiv); /* Configure the LCD clock divisor. */ tilcdc_write(dev, LCDC_CTRL_REG, LCDC_CLK_DIVISOR(clkdiv) | LCDC_RASTER_MODE); if (priv->rev == 2) tilcdc_set(dev, LCDC_CLK_ENABLE_REG, LCDC_V2_DMA_CLK_EN | LCDC_V2_LIDD_CLK_EN | LCDC_V2_CORE_CLK_EN); if (tilcdc_crtc_is_on(crtc)) tilcdc_crtc_enable(crtc); out: pm_runtime_put_sync(dev->dev); } #define SYNC_LOST_COUNT_LIMIT 50 irqreturn_t tilcdc_crtc_irq(struct drm_crtc *crtc) { struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc); struct drm_device *dev = crtc->dev; struct tilcdc_drm_private *priv = dev->dev_private; uint32_t stat; stat = tilcdc_read_irqstatus(dev); tilcdc_clear_irqstatus(dev, stat); if (stat & LCDC_END_OF_FRAME0) { unsigned long flags; bool skip_event = false; ktime_t now; now = ktime_get(); drm_flip_work_commit(&tilcdc_crtc->unref_work, priv->wq); spin_lock_irqsave(&tilcdc_crtc->irq_lock, flags); tilcdc_crtc->last_vblank = now; if (tilcdc_crtc->next_fb) { set_scanout(crtc, tilcdc_crtc->next_fb); tilcdc_crtc->next_fb = NULL; skip_event = true; } spin_unlock_irqrestore(&tilcdc_crtc->irq_lock, flags); drm_crtc_handle_vblank(crtc); if (!skip_event) { struct drm_pending_vblank_event *event; spin_lock_irqsave(&dev->event_lock, flags); event = tilcdc_crtc->event; tilcdc_crtc->event = NULL; if (event) drm_crtc_send_vblank_event(crtc, event); spin_unlock_irqrestore(&dev->event_lock, flags); } if (tilcdc_crtc->frame_intact) tilcdc_crtc->sync_lost_count = 0; else tilcdc_crtc->frame_intact = true; } if (stat & LCDC_FIFO_UNDERFLOW) dev_err_ratelimited(dev->dev, "%s(0x%08x): FIFO underfow", __func__, stat); /* For revision 2 only */ if (priv->rev == 2) { if (stat & LCDC_FRAME_DONE) { tilcdc_crtc->frame_done = true; wake_up(&tilcdc_crtc->frame_done_wq); } if (stat & LCDC_SYNC_LOST) { dev_err_ratelimited(dev->dev, "%s(0x%08x): Sync lost", __func__, stat); tilcdc_crtc->frame_intact = false; if (tilcdc_crtc->sync_lost_count++ > SYNC_LOST_COUNT_LIMIT) { dev_err(dev->dev, "%s(0x%08x): Sync lost flood detected, disabling the interrupt", __func__, stat); tilcdc_write(dev, LCDC_INT_ENABLE_CLR_REG, LCDC_SYNC_LOST); } } /* Indicate to LCDC that the interrupt service routine has * completed, see 13.3.6.1.6 in AM335x TRM. */ tilcdc_write(dev, LCDC_END_OF_INT_IND_REG, 0); } return IRQ_HANDLED; } struct drm_crtc *tilcdc_crtc_create(struct drm_device *dev) { struct tilcdc_drm_private *priv = dev->dev_private; struct tilcdc_crtc *tilcdc_crtc; struct drm_crtc *crtc; int ret; tilcdc_crtc = devm_kzalloc(dev->dev, sizeof(*tilcdc_crtc), GFP_KERNEL); if (!tilcdc_crtc) { dev_err(dev->dev, "allocation failed\n"); return NULL; } crtc = &tilcdc_crtc->base; ret = tilcdc_plane_init(dev, &tilcdc_crtc->primary); if (ret < 0) goto fail; init_waitqueue_head(&tilcdc_crtc->frame_done_wq); drm_flip_work_init(&tilcdc_crtc->unref_work, "unref", unref_worker); spin_lock_init(&tilcdc_crtc->irq_lock); ret = drm_crtc_init_with_planes(dev, crtc, &tilcdc_crtc->primary, NULL, &tilcdc_crtc_funcs, "tilcdc crtc"); if (ret < 0) goto fail; drm_crtc_helper_add(crtc, &tilcdc_crtc_helper_funcs); if (priv->is_componentized) { struct device_node *ports = of_get_child_by_name(dev->dev->of_node, "ports"); if (ports) { crtc->port = of_get_child_by_name(ports, "port"); of_node_put(ports); } else { crtc->port = of_get_child_by_name(dev->dev->of_node, "port"); } if (!crtc->port) { /* This should never happen */ dev_err(dev->dev, "Port node not found in %s\n", dev->dev->of_node->full_name); goto fail; } } return crtc; fail: tilcdc_crtc_destroy(crtc); return NULL; }