/* * Driver for msm7k serial device and console * * Copyright (C) 2007 Google, Inc. * Author: Robert Love * Copyright (c) 2011, Code Aurora Forum. All rights reserved. * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #if defined(CONFIG_SERIAL_MSM_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) # define SUPPORT_SYSRQ #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "msm_serial.h" enum { UARTDM_1P1 = 1, UARTDM_1P2, UARTDM_1P3, UARTDM_1P4, }; struct msm_port { struct uart_port uart; char name[16]; struct clk *clk; struct clk *pclk; unsigned int imr; int is_uartdm; unsigned int old_snap_state; }; static inline void wait_for_xmitr(struct uart_port *port) { while (!(msm_read(port, UART_SR) & UART_SR_TX_EMPTY)) { if (msm_read(port, UART_ISR) & UART_ISR_TX_READY) break; udelay(1); } msm_write(port, UART_CR_CMD_RESET_TX_READY, UART_CR); } static void msm_stop_tx(struct uart_port *port) { struct msm_port *msm_port = UART_TO_MSM(port); msm_port->imr &= ~UART_IMR_TXLEV; msm_write(port, msm_port->imr, UART_IMR); } static void msm_start_tx(struct uart_port *port) { struct msm_port *msm_port = UART_TO_MSM(port); msm_port->imr |= UART_IMR_TXLEV; msm_write(port, msm_port->imr, UART_IMR); } static void msm_stop_rx(struct uart_port *port) { struct msm_port *msm_port = UART_TO_MSM(port); msm_port->imr &= ~(UART_IMR_RXLEV | UART_IMR_RXSTALE); msm_write(port, msm_port->imr, UART_IMR); } static void msm_enable_ms(struct uart_port *port) { struct msm_port *msm_port = UART_TO_MSM(port); msm_port->imr |= UART_IMR_DELTA_CTS; msm_write(port, msm_port->imr, UART_IMR); } static void handle_rx_dm(struct uart_port *port, unsigned int misr) { struct tty_port *tport = &port->state->port; unsigned int sr; int count = 0; struct msm_port *msm_port = UART_TO_MSM(port); if ((msm_read(port, UART_SR) & UART_SR_OVERRUN)) { port->icount.overrun++; tty_insert_flip_char(tport, 0, TTY_OVERRUN); msm_write(port, UART_CR_CMD_RESET_ERR, UART_CR); } if (misr & UART_IMR_RXSTALE) { count = msm_read(port, UARTDM_RX_TOTAL_SNAP) - msm_port->old_snap_state; msm_port->old_snap_state = 0; } else { count = 4 * (msm_read(port, UART_RFWR)); msm_port->old_snap_state += count; } /* TODO: Precise error reporting */ port->icount.rx += count; while (count > 0) { unsigned char buf[4]; sr = msm_read(port, UART_SR); if ((sr & UART_SR_RX_READY) == 0) { msm_port->old_snap_state -= count; break; } ioread32_rep(port->membase + UARTDM_RF, buf, 1); if (sr & UART_SR_RX_BREAK) { port->icount.brk++; if (uart_handle_break(port)) continue; } else if (sr & UART_SR_PAR_FRAME_ERR) port->icount.frame++; /* TODO: handle sysrq */ tty_insert_flip_string(tport, buf, min(count, 4)); count -= 4; } spin_unlock(&port->lock); tty_flip_buffer_push(tport); spin_lock(&port->lock); if (misr & (UART_IMR_RXSTALE)) msm_write(port, UART_CR_CMD_RESET_STALE_INT, UART_CR); msm_write(port, 0xFFFFFF, UARTDM_DMRX); msm_write(port, UART_CR_CMD_STALE_EVENT_ENABLE, UART_CR); } static void handle_rx(struct uart_port *port) { struct tty_port *tport = &port->state->port; unsigned int sr; /* * Handle overrun. My understanding of the hardware is that overrun * is not tied to the RX buffer, so we handle the case out of band. */ if ((msm_read(port, UART_SR) & UART_SR_OVERRUN)) { port->icount.overrun++; tty_insert_flip_char(tport, 0, TTY_OVERRUN); msm_write(port, UART_CR_CMD_RESET_ERR, UART_CR); } /* and now the main RX loop */ while ((sr = msm_read(port, UART_SR)) & UART_SR_RX_READY) { unsigned int c; char flag = TTY_NORMAL; c = msm_read(port, UART_RF); if (sr & UART_SR_RX_BREAK) { port->icount.brk++; if (uart_handle_break(port)) continue; } else if (sr & UART_SR_PAR_FRAME_ERR) { port->icount.frame++; } else { port->icount.rx++; } /* Mask conditions we're ignorning. */ sr &= port->read_status_mask; if (sr & UART_SR_RX_BREAK) flag = TTY_BREAK; else if (sr & UART_SR_PAR_FRAME_ERR) flag = TTY_FRAME; if (!uart_handle_sysrq_char(port, c)) tty_insert_flip_char(tport, c, flag); } spin_unlock(&port->lock); tty_flip_buffer_push(tport); spin_lock(&port->lock); } static void reset_dm_count(struct uart_port *port, int count) { wait_for_xmitr(port); msm_write(port, count, UARTDM_NCF_TX); msm_read(port, UARTDM_NCF_TX); } static void handle_tx(struct uart_port *port) { struct circ_buf *xmit = &port->state->xmit; struct msm_port *msm_port = UART_TO_MSM(port); unsigned int tx_count, num_chars; unsigned int tf_pointer = 0; void __iomem *tf; if (msm_port->is_uartdm) tf = port->membase + UARTDM_TF; else tf = port->membase + UART_TF; tx_count = uart_circ_chars_pending(xmit); tx_count = min3(tx_count, (unsigned int)UART_XMIT_SIZE - xmit->tail, port->fifosize); if (port->x_char) { if (msm_port->is_uartdm) reset_dm_count(port, tx_count + 1); iowrite8_rep(tf, &port->x_char, 1); port->icount.tx++; port->x_char = 0; } else if (tx_count && msm_port->is_uartdm) { reset_dm_count(port, tx_count); } while (tf_pointer < tx_count) { int i; char buf[4] = { 0 }; if (!(msm_read(port, UART_SR) & UART_SR_TX_READY)) break; if (msm_port->is_uartdm) num_chars = min(tx_count - tf_pointer, (unsigned int)sizeof(buf)); else num_chars = 1; for (i = 0; i < num_chars; i++) { buf[i] = xmit->buf[xmit->tail + i]; port->icount.tx++; } iowrite32_rep(tf, buf, 1); xmit->tail = (xmit->tail + num_chars) & (UART_XMIT_SIZE - 1); tf_pointer += num_chars; } /* disable tx interrupts if nothing more to send */ if (uart_circ_empty(xmit)) msm_stop_tx(port); if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) uart_write_wakeup(port); } static void handle_delta_cts(struct uart_port *port) { msm_write(port, UART_CR_CMD_RESET_CTS, UART_CR); port->icount.cts++; wake_up_interruptible(&port->state->port.delta_msr_wait); } static irqreturn_t msm_irq(int irq, void *dev_id) { struct uart_port *port = dev_id; struct msm_port *msm_port = UART_TO_MSM(port); unsigned int misr; spin_lock(&port->lock); misr = msm_read(port, UART_MISR); msm_write(port, 0, UART_IMR); /* disable interrupt */ if (misr & (UART_IMR_RXLEV | UART_IMR_RXSTALE)) { if (msm_port->is_uartdm) handle_rx_dm(port, misr); else handle_rx(port); } if (misr & UART_IMR_TXLEV) handle_tx(port); if (misr & UART_IMR_DELTA_CTS) handle_delta_cts(port); msm_write(port, msm_port->imr, UART_IMR); /* restore interrupt */ spin_unlock(&port->lock); return IRQ_HANDLED; } static unsigned int msm_tx_empty(struct uart_port *port) { return (msm_read(port, UART_SR) & UART_SR_TX_EMPTY) ? TIOCSER_TEMT : 0; } static unsigned int msm_get_mctrl(struct uart_port *port) { return TIOCM_CAR | TIOCM_CTS | TIOCM_DSR | TIOCM_RTS; } static void msm_reset(struct uart_port *port) { struct msm_port *msm_port = UART_TO_MSM(port); /* reset everything */ msm_write(port, UART_CR_CMD_RESET_RX, UART_CR); msm_write(port, UART_CR_CMD_RESET_TX, UART_CR); msm_write(port, UART_CR_CMD_RESET_ERR, UART_CR); msm_write(port, UART_CR_CMD_RESET_BREAK_INT, UART_CR); msm_write(port, UART_CR_CMD_RESET_CTS, UART_CR); msm_write(port, UART_CR_CMD_SET_RFR, UART_CR); /* Disable DM modes */ if (msm_port->is_uartdm) msm_write(port, 0, UARTDM_DMEN); } static void msm_set_mctrl(struct uart_port *port, unsigned int mctrl) { unsigned int mr; mr = msm_read(port, UART_MR1); if (!(mctrl & TIOCM_RTS)) { mr &= ~UART_MR1_RX_RDY_CTL; msm_write(port, mr, UART_MR1); msm_write(port, UART_CR_CMD_RESET_RFR, UART_CR); } else { mr |= UART_MR1_RX_RDY_CTL; msm_write(port, mr, UART_MR1); } } static void msm_break_ctl(struct uart_port *port, int break_ctl) { if (break_ctl) msm_write(port, UART_CR_CMD_START_BREAK, UART_CR); else msm_write(port, UART_CR_CMD_STOP_BREAK, UART_CR); } struct msm_baud_map { u16 divisor; u8 code; u8 rxstale; }; static const struct msm_baud_map * msm_find_best_baud(struct uart_port *port, unsigned int baud) { unsigned int i, divisor; const struct msm_baud_map *entry; static const struct msm_baud_map table[] = { { 1536, 0x00, 1 }, { 768, 0x11, 1 }, { 384, 0x22, 1 }, { 192, 0x33, 1 }, { 96, 0x44, 1 }, { 48, 0x55, 1 }, { 32, 0x66, 1 }, { 24, 0x77, 1 }, { 16, 0x88, 1 }, { 12, 0x99, 6 }, { 8, 0xaa, 6 }, { 6, 0xbb, 6 }, { 4, 0xcc, 6 }, { 3, 0xdd, 8 }, { 2, 0xee, 16 }, { 1, 0xff, 31 }, }; divisor = uart_get_divisor(port, baud); for (i = 0, entry = table; i < ARRAY_SIZE(table); i++, entry++) if (entry->divisor <= divisor) break; return entry; /* Default to smallest divider */ } static int msm_set_baud_rate(struct uart_port *port, unsigned int baud) { unsigned int rxstale, watermark; struct msm_port *msm_port = UART_TO_MSM(port); const struct msm_baud_map *entry; entry = msm_find_best_baud(port, baud); if (msm_port->is_uartdm) msm_write(port, UART_CR_CMD_RESET_RX, UART_CR); msm_write(port, entry->code, UART_CSR); /* RX stale watermark */ rxstale = entry->rxstale; watermark = UART_IPR_STALE_LSB & rxstale; watermark |= UART_IPR_RXSTALE_LAST; watermark |= UART_IPR_STALE_TIMEOUT_MSB & (rxstale << 2); msm_write(port, watermark, UART_IPR); /* set RX watermark */ watermark = (port->fifosize * 3) / 4; msm_write(port, watermark, UART_RFWR); /* set TX watermark */ msm_write(port, 10, UART_TFWR); if (msm_port->is_uartdm) { msm_write(port, UART_CR_CMD_RESET_STALE_INT, UART_CR); msm_write(port, 0xFFFFFF, UARTDM_DMRX); msm_write(port, UART_CR_CMD_STALE_EVENT_ENABLE, UART_CR); } return baud; } static void msm_init_clock(struct uart_port *port) { struct msm_port *msm_port = UART_TO_MSM(port); clk_prepare_enable(msm_port->clk); clk_prepare_enable(msm_port->pclk); msm_serial_set_mnd_regs(port); } static int msm_startup(struct uart_port *port) { struct msm_port *msm_port = UART_TO_MSM(port); unsigned int data, rfr_level; int ret; snprintf(msm_port->name, sizeof(msm_port->name), "msm_serial%d", port->line); ret = request_irq(port->irq, msm_irq, IRQF_TRIGGER_HIGH, msm_port->name, port); if (unlikely(ret)) return ret; msm_init_clock(port); if (likely(port->fifosize > 12)) rfr_level = port->fifosize - 12; else rfr_level = port->fifosize; /* set automatic RFR level */ data = msm_read(port, UART_MR1); data &= ~UART_MR1_AUTO_RFR_LEVEL1; data &= ~UART_MR1_AUTO_RFR_LEVEL0; data |= UART_MR1_AUTO_RFR_LEVEL1 & (rfr_level << 2); data |= UART_MR1_AUTO_RFR_LEVEL0 & rfr_level; msm_write(port, data, UART_MR1); /* make sure that RXSTALE count is non-zero */ data = msm_read(port, UART_IPR); if (unlikely(!data)) { data |= UART_IPR_RXSTALE_LAST; data |= UART_IPR_STALE_LSB; msm_write(port, data, UART_IPR); } data = 0; if (!port->cons || (port->cons && !(port->cons->flags & CON_ENABLED))) { msm_write(port, UART_CR_CMD_PROTECTION_EN, UART_CR); msm_reset(port); data = UART_CR_TX_ENABLE; } data |= UART_CR_RX_ENABLE; msm_write(port, data, UART_CR); /* enable TX & RX */ /* Make sure IPR is not 0 to start with*/ if (msm_port->is_uartdm) msm_write(port, UART_IPR_STALE_LSB, UART_IPR); /* turn on RX and CTS interrupts */ msm_port->imr = UART_IMR_RXLEV | UART_IMR_RXSTALE | UART_IMR_CURRENT_CTS; if (msm_port->is_uartdm) { msm_write(port, 0xFFFFFF, UARTDM_DMRX); msm_write(port, UART_CR_CMD_RESET_STALE_INT, UART_CR); msm_write(port, UART_CR_CMD_STALE_EVENT_ENABLE, UART_CR); } msm_write(port, msm_port->imr, UART_IMR); return 0; } static void msm_shutdown(struct uart_port *port) { struct msm_port *msm_port = UART_TO_MSM(port); msm_port->imr = 0; msm_write(port, 0, UART_IMR); /* disable interrupts */ clk_disable_unprepare(msm_port->clk); free_irq(port->irq, port); } static void msm_set_termios(struct uart_port *port, struct ktermios *termios, struct ktermios *old) { unsigned long flags; unsigned int baud, mr; spin_lock_irqsave(&port->lock, flags); /* calculate and set baud rate */ baud = uart_get_baud_rate(port, termios, old, 300, 115200); baud = msm_set_baud_rate(port, baud); if (tty_termios_baud_rate(termios)) tty_termios_encode_baud_rate(termios, baud, baud); /* calculate parity */ mr = msm_read(port, UART_MR2); mr &= ~UART_MR2_PARITY_MODE; if (termios->c_cflag & PARENB) { if (termios->c_cflag & PARODD) mr |= UART_MR2_PARITY_MODE_ODD; else if (termios->c_cflag & CMSPAR) mr |= UART_MR2_PARITY_MODE_SPACE; else mr |= UART_MR2_PARITY_MODE_EVEN; } /* calculate bits per char */ mr &= ~UART_MR2_BITS_PER_CHAR; switch (termios->c_cflag & CSIZE) { case CS5: mr |= UART_MR2_BITS_PER_CHAR_5; break; case CS6: mr |= UART_MR2_BITS_PER_CHAR_6; break; case CS7: mr |= UART_MR2_BITS_PER_CHAR_7; break; case CS8: default: mr |= UART_MR2_BITS_PER_CHAR_8; break; } /* calculate stop bits */ mr &= ~(UART_MR2_STOP_BIT_LEN_ONE | UART_MR2_STOP_BIT_LEN_TWO); if (termios->c_cflag & CSTOPB) mr |= UART_MR2_STOP_BIT_LEN_TWO; else mr |= UART_MR2_STOP_BIT_LEN_ONE; /* set parity, bits per char, and stop bit */ msm_write(port, mr, UART_MR2); /* calculate and set hardware flow control */ mr = msm_read(port, UART_MR1); mr &= ~(UART_MR1_CTS_CTL | UART_MR1_RX_RDY_CTL); if (termios->c_cflag & CRTSCTS) { mr |= UART_MR1_CTS_CTL; mr |= UART_MR1_RX_RDY_CTL; } msm_write(port, mr, UART_MR1); /* Configure status bits to ignore based on termio flags. */ port->read_status_mask = 0; if (termios->c_iflag & INPCK) port->read_status_mask |= UART_SR_PAR_FRAME_ERR; if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK)) port->read_status_mask |= UART_SR_RX_BREAK; uart_update_timeout(port, termios->c_cflag, baud); spin_unlock_irqrestore(&port->lock, flags); } static const char *msm_type(struct uart_port *port) { return "MSM"; } static void msm_release_port(struct uart_port *port) { struct platform_device *pdev = to_platform_device(port->dev); struct resource *uart_resource; resource_size_t size; uart_resource = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (unlikely(!uart_resource)) return; size = resource_size(uart_resource); release_mem_region(port->mapbase, size); iounmap(port->membase); port->membase = NULL; } static int msm_request_port(struct uart_port *port) { struct platform_device *pdev = to_platform_device(port->dev); struct resource *uart_resource; resource_size_t size; int ret; uart_resource = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (unlikely(!uart_resource)) return -ENXIO; size = resource_size(uart_resource); if (!request_mem_region(port->mapbase, size, "msm_serial")) return -EBUSY; port->membase = ioremap(port->mapbase, size); if (!port->membase) { ret = -EBUSY; goto fail_release_port; } return 0; fail_release_port: release_mem_region(port->mapbase, size); return ret; } static void msm_config_port(struct uart_port *port, int flags) { int ret; if (flags & UART_CONFIG_TYPE) { port->type = PORT_MSM; ret = msm_request_port(port); if (ret) return; } } static int msm_verify_port(struct uart_port *port, struct serial_struct *ser) { if (unlikely(ser->type != PORT_UNKNOWN && ser->type != PORT_MSM)) return -EINVAL; if (unlikely(port->irq != ser->irq)) return -EINVAL; return 0; } static void msm_power(struct uart_port *port, unsigned int state, unsigned int oldstate) { struct msm_port *msm_port = UART_TO_MSM(port); switch (state) { case 0: clk_prepare_enable(msm_port->clk); clk_prepare_enable(msm_port->pclk); break; case 3: clk_disable_unprepare(msm_port->clk); clk_disable_unprepare(msm_port->pclk); break; default: printk(KERN_ERR "msm_serial: Unknown PM state %d\n", state); } } #ifdef CONFIG_CONSOLE_POLL static int msm_poll_init(struct uart_port *port) { struct msm_port *msm_port = UART_TO_MSM(port); /* Enable single character mode on RX FIFO */ if (msm_port->is_uartdm >= UARTDM_1P4) msm_write(port, UARTDM_DMEN_RX_SC_ENABLE, UARTDM_DMEN); return 0; } static int msm_poll_get_char_single(struct uart_port *port) { struct msm_port *msm_port = UART_TO_MSM(port); unsigned int rf_reg = msm_port->is_uartdm ? UARTDM_RF : UART_RF; if (!(msm_read(port, UART_SR) & UART_SR_RX_READY)) return NO_POLL_CHAR; else return msm_read(port, rf_reg) & 0xff; } static int msm_poll_get_char_dm_1p3(struct uart_port *port) { int c; static u32 slop; static int count; unsigned char *sp = (unsigned char *)&slop; /* Check if a previous read had more than one char */ if (count) { c = sp[sizeof(slop) - count]; count--; /* Or if FIFO is empty */ } else if (!(msm_read(port, UART_SR) & UART_SR_RX_READY)) { /* * If RX packing buffer has less than a word, force stale to * push contents into RX FIFO */ count = msm_read(port, UARTDM_RXFS); count = (count >> UARTDM_RXFS_BUF_SHIFT) & UARTDM_RXFS_BUF_MASK; if (count) { msm_write(port, UART_CR_CMD_FORCE_STALE, UART_CR); slop = msm_read(port, UARTDM_RF); c = sp[0]; count--; } else { c = NO_POLL_CHAR; } /* FIFO has a word */ } else { slop = msm_read(port, UARTDM_RF); c = sp[0]; count = sizeof(slop) - 1; } return c; } static int msm_poll_get_char(struct uart_port *port) { u32 imr; int c; struct msm_port *msm_port = UART_TO_MSM(port); /* Disable all interrupts */ imr = msm_read(port, UART_IMR); msm_write(port, 0, UART_IMR); if (msm_port->is_uartdm == UARTDM_1P3) c = msm_poll_get_char_dm_1p3(port); else c = msm_poll_get_char_single(port); /* Enable interrupts */ msm_write(port, imr, UART_IMR); return c; } static void msm_poll_put_char(struct uart_port *port, unsigned char c) { u32 imr; struct msm_port *msm_port = UART_TO_MSM(port); /* Disable all interrupts */ imr = msm_read(port, UART_IMR); msm_write(port, 0, UART_IMR); if (msm_port->is_uartdm) reset_dm_count(port, 1); /* Wait until FIFO is empty */ while (!(msm_read(port, UART_SR) & UART_SR_TX_READY)) cpu_relax(); /* Write a character */ msm_write(port, c, msm_port->is_uartdm ? UARTDM_TF : UART_TF); /* Wait until FIFO is empty */ while (!(msm_read(port, UART_SR) & UART_SR_TX_READY)) cpu_relax(); /* Enable interrupts */ msm_write(port, imr, UART_IMR); return; } #endif static struct uart_ops msm_uart_pops = { .tx_empty = msm_tx_empty, .set_mctrl = msm_set_mctrl, .get_mctrl = msm_get_mctrl, .stop_tx = msm_stop_tx, .start_tx = msm_start_tx, .stop_rx = msm_stop_rx, .enable_ms = msm_enable_ms, .break_ctl = msm_break_ctl, .startup = msm_startup, .shutdown = msm_shutdown, .set_termios = msm_set_termios, .type = msm_type, .release_port = msm_release_port, .request_port = msm_request_port, .config_port = msm_config_port, .verify_port = msm_verify_port, .pm = msm_power, #ifdef CONFIG_CONSOLE_POLL .poll_init = msm_poll_init, .poll_get_char = msm_poll_get_char, .poll_put_char = msm_poll_put_char, #endif }; static struct msm_port msm_uart_ports[] = { { .uart = { .iotype = UPIO_MEM, .ops = &msm_uart_pops, .flags = UPF_BOOT_AUTOCONF, .fifosize = 64, .line = 0, }, }, { .uart = { .iotype = UPIO_MEM, .ops = &msm_uart_pops, .flags = UPF_BOOT_AUTOCONF, .fifosize = 64, .line = 1, }, }, { .uart = { .iotype = UPIO_MEM, .ops = &msm_uart_pops, .flags = UPF_BOOT_AUTOCONF, .fifosize = 64, .line = 2, }, }, }; #define UART_NR ARRAY_SIZE(msm_uart_ports) static inline struct uart_port *get_port_from_line(unsigned int line) { return &msm_uart_ports[line].uart; } #ifdef CONFIG_SERIAL_MSM_CONSOLE static void msm_console_write(struct console *co, const char *s, unsigned int count) { int i; struct uart_port *port; struct msm_port *msm_port; int num_newlines = 0; bool replaced = false; void __iomem *tf; BUG_ON(co->index < 0 || co->index >= UART_NR); port = get_port_from_line(co->index); msm_port = UART_TO_MSM(port); if (msm_port->is_uartdm) tf = port->membase + UARTDM_TF; else tf = port->membase + UART_TF; /* Account for newlines that will get a carriage return added */ for (i = 0; i < count; i++) if (s[i] == '\n') num_newlines++; count += num_newlines; spin_lock(&port->lock); if (msm_port->is_uartdm) reset_dm_count(port, count); i = 0; while (i < count) { int j; unsigned int num_chars; char buf[4] = { 0 }; if (msm_port->is_uartdm) num_chars = min(count - i, (unsigned int)sizeof(buf)); else num_chars = 1; for (j = 0; j < num_chars; j++) { char c = *s; if (c == '\n' && !replaced) { buf[j] = '\r'; j++; replaced = true; } if (j < num_chars) { buf[j] = c; s++; replaced = false; } } while (!(msm_read(port, UART_SR) & UART_SR_TX_READY)) cpu_relax(); iowrite32_rep(tf, buf, 1); i += num_chars; } spin_unlock(&port->lock); } static int __init msm_console_setup(struct console *co, char *options) { struct uart_port *port; struct msm_port *msm_port; int baud = 0, flow, bits, parity; if (unlikely(co->index >= UART_NR || co->index < 0)) return -ENXIO; port = get_port_from_line(co->index); msm_port = UART_TO_MSM(port); if (unlikely(!port->membase)) return -ENXIO; msm_init_clock(port); if (options) uart_parse_options(options, &baud, &parity, &bits, &flow); bits = 8; parity = 'n'; flow = 'n'; msm_write(port, UART_MR2_BITS_PER_CHAR_8 | UART_MR2_STOP_BIT_LEN_ONE, UART_MR2); /* 8N1 */ if (baud < 300 || baud > 115200) baud = 115200; msm_set_baud_rate(port, baud); msm_reset(port); if (msm_port->is_uartdm) { msm_write(port, UART_CR_CMD_PROTECTION_EN, UART_CR); msm_write(port, UART_CR_TX_ENABLE, UART_CR); } printk(KERN_INFO "msm_serial: console setup on port #%d\n", port->line); return uart_set_options(port, co, baud, parity, bits, flow); } static struct uart_driver msm_uart_driver; static struct console msm_console = { .name = "ttyMSM", .write = msm_console_write, .device = uart_console_device, .setup = msm_console_setup, .flags = CON_PRINTBUFFER, .index = -1, .data = &msm_uart_driver, }; #define MSM_CONSOLE (&msm_console) #else #define MSM_CONSOLE NULL #endif static struct uart_driver msm_uart_driver = { .owner = THIS_MODULE, .driver_name = "msm_serial", .dev_name = "ttyMSM", .nr = UART_NR, .cons = MSM_CONSOLE, }; static atomic_t msm_uart_next_id = ATOMIC_INIT(0); static const struct of_device_id msm_uartdm_table[] = { { .compatible = "qcom,msm-uartdm-v1.1", .data = (void *)UARTDM_1P1 }, { .compatible = "qcom,msm-uartdm-v1.2", .data = (void *)UARTDM_1P2 }, { .compatible = "qcom,msm-uartdm-v1.3", .data = (void *)UARTDM_1P3 }, { .compatible = "qcom,msm-uartdm-v1.4", .data = (void *)UARTDM_1P4 }, { } }; static int msm_serial_probe(struct platform_device *pdev) { struct msm_port *msm_port; struct resource *resource; struct uart_port *port; const struct of_device_id *id; int irq; if (pdev->id == -1) pdev->id = atomic_inc_return(&msm_uart_next_id) - 1; if (unlikely(pdev->id < 0 || pdev->id >= UART_NR)) return -ENXIO; printk(KERN_INFO "msm_serial: detected port #%d\n", pdev->id); port = get_port_from_line(pdev->id); port->dev = &pdev->dev; msm_port = UART_TO_MSM(port); id = of_match_device(msm_uartdm_table, &pdev->dev); if (id) msm_port->is_uartdm = (unsigned long)id->data; else msm_port->is_uartdm = 0; msm_port->clk = devm_clk_get(&pdev->dev, "core"); if (IS_ERR(msm_port->clk)) return PTR_ERR(msm_port->clk); if (msm_port->is_uartdm) { msm_port->pclk = devm_clk_get(&pdev->dev, "iface"); if (IS_ERR(msm_port->pclk)) return PTR_ERR(msm_port->pclk); clk_set_rate(msm_port->clk, 1843200); } port->uartclk = clk_get_rate(msm_port->clk); printk(KERN_INFO "uartclk = %d\n", port->uartclk); resource = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (unlikely(!resource)) return -ENXIO; port->mapbase = resource->start; irq = platform_get_irq(pdev, 0); if (unlikely(irq < 0)) return -ENXIO; port->irq = irq; platform_set_drvdata(pdev, port); return uart_add_one_port(&msm_uart_driver, port); } static int msm_serial_remove(struct platform_device *pdev) { struct uart_port *port = platform_get_drvdata(pdev); uart_remove_one_port(&msm_uart_driver, port); return 0; } static const struct of_device_id msm_match_table[] = { { .compatible = "qcom,msm-uart" }, { .compatible = "qcom,msm-uartdm" }, {} }; static struct platform_driver msm_platform_driver = { .remove = msm_serial_remove, .probe = msm_serial_probe, .driver = { .name = "msm_serial", .owner = THIS_MODULE, .of_match_table = msm_match_table, }, }; static int __init msm_serial_init(void) { int ret; ret = uart_register_driver(&msm_uart_driver); if (unlikely(ret)) return ret; ret = platform_driver_register(&msm_platform_driver); if (unlikely(ret)) uart_unregister_driver(&msm_uart_driver); printk(KERN_INFO "msm_serial: driver initialized\n"); return ret; } static void __exit msm_serial_exit(void) { #ifdef CONFIG_SERIAL_MSM_CONSOLE unregister_console(&msm_console); #endif platform_driver_unregister(&msm_platform_driver); uart_unregister_driver(&msm_uart_driver); } module_init(msm_serial_init); module_exit(msm_serial_exit); MODULE_AUTHOR("Robert Love "); MODULE_DESCRIPTION("Driver for msm7x serial device"); MODULE_LICENSE("GPL");