/* * Copyright 2009 Jerome Glisse. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * */ /* * Authors: * Jerome Glisse * Thomas Hellstrom * Dave Airlie */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "amdgpu.h" #include "bif/bif_4_1_d.h" #define DRM_FILE_PAGE_OFFSET (0x100000000ULL >> PAGE_SHIFT) static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev); static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev); static struct amdgpu_device *amdgpu_get_adev(struct ttm_bo_device *bdev) { struct amdgpu_mman *mman; struct amdgpu_device *adev; mman = container_of(bdev, struct amdgpu_mman, bdev); adev = container_of(mman, struct amdgpu_device, mman); return adev; } /* * Global memory. */ static int amdgpu_ttm_mem_global_init(struct drm_global_reference *ref) { return ttm_mem_global_init(ref->object); } static void amdgpu_ttm_mem_global_release(struct drm_global_reference *ref) { ttm_mem_global_release(ref->object); } static int amdgpu_ttm_global_init(struct amdgpu_device *adev) { struct drm_global_reference *global_ref; int r; adev->mman.mem_global_referenced = false; global_ref = &adev->mman.mem_global_ref; global_ref->global_type = DRM_GLOBAL_TTM_MEM; global_ref->size = sizeof(struct ttm_mem_global); global_ref->init = &amdgpu_ttm_mem_global_init; global_ref->release = &amdgpu_ttm_mem_global_release; r = drm_global_item_ref(global_ref); if (r != 0) { DRM_ERROR("Failed setting up TTM memory accounting " "subsystem.\n"); return r; } adev->mman.bo_global_ref.mem_glob = adev->mman.mem_global_ref.object; global_ref = &adev->mman.bo_global_ref.ref; global_ref->global_type = DRM_GLOBAL_TTM_BO; global_ref->size = sizeof(struct ttm_bo_global); global_ref->init = &ttm_bo_global_init; global_ref->release = &ttm_bo_global_release; r = drm_global_item_ref(global_ref); if (r != 0) { DRM_ERROR("Failed setting up TTM BO subsystem.\n"); drm_global_item_unref(&adev->mman.mem_global_ref); return r; } adev->mman.mem_global_referenced = true; return 0; } static void amdgpu_ttm_global_fini(struct amdgpu_device *adev) { if (adev->mman.mem_global_referenced) { drm_global_item_unref(&adev->mman.bo_global_ref.ref); drm_global_item_unref(&adev->mman.mem_global_ref); adev->mman.mem_global_referenced = false; } } static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags) { return 0; } static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type, struct ttm_mem_type_manager *man) { struct amdgpu_device *adev; adev = amdgpu_get_adev(bdev); switch (type) { case TTM_PL_SYSTEM: /* System memory */ man->flags = TTM_MEMTYPE_FLAG_MAPPABLE; man->available_caching = TTM_PL_MASK_CACHING; man->default_caching = TTM_PL_FLAG_CACHED; break; case TTM_PL_TT: man->func = &ttm_bo_manager_func; man->gpu_offset = adev->mc.gtt_start; man->available_caching = TTM_PL_MASK_CACHING; man->default_caching = TTM_PL_FLAG_CACHED; man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA; break; case TTM_PL_VRAM: /* "On-card" video ram */ man->func = &ttm_bo_manager_func; man->gpu_offset = adev->mc.vram_start; man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_MAPPABLE; man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC; man->default_caching = TTM_PL_FLAG_WC; break; case AMDGPU_PL_GDS: case AMDGPU_PL_GWS: case AMDGPU_PL_OA: /* On-chip GDS memory*/ man->func = &ttm_bo_manager_func; man->gpu_offset = 0; man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA; man->available_caching = TTM_PL_FLAG_UNCACHED; man->default_caching = TTM_PL_FLAG_UNCACHED; break; default: DRM_ERROR("Unsupported memory type %u\n", (unsigned)type); return -EINVAL; } return 0; } static void amdgpu_evict_flags(struct ttm_buffer_object *bo, struct ttm_placement *placement) { struct amdgpu_bo *rbo; static struct ttm_place placements = { .fpfn = 0, .lpfn = 0, .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM }; if (!amdgpu_ttm_bo_is_amdgpu_bo(bo)) { placement->placement = &placements; placement->busy_placement = &placements; placement->num_placement = 1; placement->num_busy_placement = 1; return; } rbo = container_of(bo, struct amdgpu_bo, tbo); switch (bo->mem.mem_type) { case TTM_PL_VRAM: if (rbo->adev->mman.buffer_funcs_ring->ready == false) amdgpu_ttm_placement_from_domain(rbo, AMDGPU_GEM_DOMAIN_CPU); else amdgpu_ttm_placement_from_domain(rbo, AMDGPU_GEM_DOMAIN_GTT); break; case TTM_PL_TT: default: amdgpu_ttm_placement_from_domain(rbo, AMDGPU_GEM_DOMAIN_CPU); } *placement = rbo->placement; } static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp) { struct amdgpu_bo *rbo = container_of(bo, struct amdgpu_bo, tbo); return drm_vma_node_verify_access(&rbo->gem_base.vma_node, filp); } static void amdgpu_move_null(struct ttm_buffer_object *bo, struct ttm_mem_reg *new_mem) { struct ttm_mem_reg *old_mem = &bo->mem; BUG_ON(old_mem->mm_node != NULL); *old_mem = *new_mem; new_mem->mm_node = NULL; } static int amdgpu_move_blit(struct ttm_buffer_object *bo, bool evict, bool no_wait_gpu, struct ttm_mem_reg *new_mem, struct ttm_mem_reg *old_mem) { struct amdgpu_device *adev; struct amdgpu_ring *ring; uint64_t old_start, new_start; struct fence *fence; int r; adev = amdgpu_get_adev(bo->bdev); ring = adev->mman.buffer_funcs_ring; old_start = old_mem->start << PAGE_SHIFT; new_start = new_mem->start << PAGE_SHIFT; switch (old_mem->mem_type) { case TTM_PL_VRAM: old_start += adev->mc.vram_start; break; case TTM_PL_TT: old_start += adev->mc.gtt_start; break; default: DRM_ERROR("Unknown placement %d\n", old_mem->mem_type); return -EINVAL; } switch (new_mem->mem_type) { case TTM_PL_VRAM: new_start += adev->mc.vram_start; break; case TTM_PL_TT: new_start += adev->mc.gtt_start; break; default: DRM_ERROR("Unknown placement %d\n", old_mem->mem_type); return -EINVAL; } if (!ring->ready) { DRM_ERROR("Trying to move memory with ring turned off.\n"); return -EINVAL; } BUILD_BUG_ON((PAGE_SIZE % AMDGPU_GPU_PAGE_SIZE) != 0); r = amdgpu_copy_buffer(ring, old_start, new_start, new_mem->num_pages * PAGE_SIZE, /* bytes */ bo->resv, &fence); /* FIXME: handle copy error */ r = ttm_bo_move_accel_cleanup(bo, fence, evict, no_wait_gpu, new_mem); fence_put(fence); return r; } static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict, bool interruptible, bool no_wait_gpu, struct ttm_mem_reg *new_mem) { struct amdgpu_device *adev; struct ttm_mem_reg *old_mem = &bo->mem; struct ttm_mem_reg tmp_mem; struct ttm_place placements; struct ttm_placement placement; int r; adev = amdgpu_get_adev(bo->bdev); tmp_mem = *new_mem; tmp_mem.mm_node = NULL; placement.num_placement = 1; placement.placement = &placements; placement.num_busy_placement = 1; placement.busy_placement = &placements; placements.fpfn = 0; placements.lpfn = 0; placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; r = ttm_bo_mem_space(bo, &placement, &tmp_mem, interruptible, no_wait_gpu); if (unlikely(r)) { return r; } r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement); if (unlikely(r)) { goto out_cleanup; } r = ttm_tt_bind(bo->ttm, &tmp_mem); if (unlikely(r)) { goto out_cleanup; } r = amdgpu_move_blit(bo, true, no_wait_gpu, &tmp_mem, old_mem); if (unlikely(r)) { goto out_cleanup; } r = ttm_bo_move_ttm(bo, true, no_wait_gpu, new_mem); out_cleanup: ttm_bo_mem_put(bo, &tmp_mem); return r; } static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict, bool interruptible, bool no_wait_gpu, struct ttm_mem_reg *new_mem) { struct amdgpu_device *adev; struct ttm_mem_reg *old_mem = &bo->mem; struct ttm_mem_reg tmp_mem; struct ttm_placement placement; struct ttm_place placements; int r; adev = amdgpu_get_adev(bo->bdev); tmp_mem = *new_mem; tmp_mem.mm_node = NULL; placement.num_placement = 1; placement.placement = &placements; placement.num_busy_placement = 1; placement.busy_placement = &placements; placements.fpfn = 0; placements.lpfn = 0; placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT; r = ttm_bo_mem_space(bo, &placement, &tmp_mem, interruptible, no_wait_gpu); if (unlikely(r)) { return r; } r = ttm_bo_move_ttm(bo, true, no_wait_gpu, &tmp_mem); if (unlikely(r)) { goto out_cleanup; } r = amdgpu_move_blit(bo, true, no_wait_gpu, new_mem, old_mem); if (unlikely(r)) { goto out_cleanup; } out_cleanup: ttm_bo_mem_put(bo, &tmp_mem); return r; } static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict, bool interruptible, bool no_wait_gpu, struct ttm_mem_reg *new_mem) { struct amdgpu_device *adev; struct ttm_mem_reg *old_mem = &bo->mem; int r; adev = amdgpu_get_adev(bo->bdev); if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) { amdgpu_move_null(bo, new_mem); return 0; } if ((old_mem->mem_type == TTM_PL_TT && new_mem->mem_type == TTM_PL_SYSTEM) || (old_mem->mem_type == TTM_PL_SYSTEM && new_mem->mem_type == TTM_PL_TT)) { /* bind is enough */ amdgpu_move_null(bo, new_mem); return 0; } if (adev->mman.buffer_funcs == NULL || adev->mman.buffer_funcs_ring == NULL || !adev->mman.buffer_funcs_ring->ready) { /* use memcpy */ goto memcpy; } if (old_mem->mem_type == TTM_PL_VRAM && new_mem->mem_type == TTM_PL_SYSTEM) { r = amdgpu_move_vram_ram(bo, evict, interruptible, no_wait_gpu, new_mem); } else if (old_mem->mem_type == TTM_PL_SYSTEM && new_mem->mem_type == TTM_PL_VRAM) { r = amdgpu_move_ram_vram(bo, evict, interruptible, no_wait_gpu, new_mem); } else { r = amdgpu_move_blit(bo, evict, no_wait_gpu, new_mem, old_mem); } if (r) { memcpy: r = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, new_mem); if (r) { return r; } } /* update statistics */ atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved); return 0; } static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) { struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; struct amdgpu_device *adev = amdgpu_get_adev(bdev); mem->bus.addr = NULL; mem->bus.offset = 0; mem->bus.size = mem->num_pages << PAGE_SHIFT; mem->bus.base = 0; mem->bus.is_iomem = false; if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE)) return -EINVAL; switch (mem->mem_type) { case TTM_PL_SYSTEM: /* system memory */ return 0; case TTM_PL_TT: break; case TTM_PL_VRAM: mem->bus.offset = mem->start << PAGE_SHIFT; /* check if it's visible */ if ((mem->bus.offset + mem->bus.size) > adev->mc.visible_vram_size) return -EINVAL; mem->bus.base = adev->mc.aper_base; mem->bus.is_iomem = true; #ifdef __alpha__ /* * Alpha: use bus.addr to hold the ioremap() return, * so we can modify bus.base below. */ if (mem->placement & TTM_PL_FLAG_WC) mem->bus.addr = ioremap_wc(mem->bus.base + mem->bus.offset, mem->bus.size); else mem->bus.addr = ioremap_nocache(mem->bus.base + mem->bus.offset, mem->bus.size); /* * Alpha: Use just the bus offset plus * the hose/domain memory base for bus.base. * It then can be used to build PTEs for VRAM * access, as done in ttm_bo_vm_fault(). */ mem->bus.base = (mem->bus.base & 0x0ffffffffUL) + adev->ddev->hose->dense_mem_base; #endif break; default: return -EINVAL; } return 0; } static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) { } /* * TTM backend functions. */ struct amdgpu_ttm_tt { struct ttm_dma_tt ttm; struct amdgpu_device *adev; u64 offset; uint64_t userptr; struct mm_struct *usermm; uint32_t userflags; }; /* prepare the sg table with the user pages */ static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm) { struct amdgpu_device *adev = amdgpu_get_adev(ttm->bdev); struct amdgpu_ttm_tt *gtt = (void *)ttm; unsigned pinned = 0, nents; int r; int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); enum dma_data_direction direction = write ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE; if (gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) { /* check that we only pin down anonymous memory to prevent problems with writeback */ unsigned long end = gtt->userptr + ttm->num_pages * PAGE_SIZE; struct vm_area_struct *vma; vma = find_vma(gtt->usermm, gtt->userptr); if (!vma || vma->vm_file || vma->vm_end < end) return -EPERM; } do { unsigned num_pages = ttm->num_pages - pinned; uint64_t userptr = gtt->userptr + pinned * PAGE_SIZE; struct page **pages = ttm->pages + pinned; r = get_user_pages(current, current->mm, userptr, num_pages, write, 0, pages, NULL); if (r < 0) goto release_pages; pinned += r; } while (pinned < ttm->num_pages); r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0, ttm->num_pages << PAGE_SHIFT, GFP_KERNEL); if (r) goto release_sg; r = -ENOMEM; nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); if (nents != ttm->sg->nents) goto release_sg; drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, gtt->ttm.dma_address, ttm->num_pages); return 0; release_sg: kfree(ttm->sg); release_pages: release_pages(ttm->pages, pinned, 0); return r; } static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm) { struct amdgpu_device *adev = amdgpu_get_adev(ttm->bdev); struct amdgpu_ttm_tt *gtt = (void *)ttm; struct sg_page_iter sg_iter; int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); enum dma_data_direction direction = write ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE; /* double check that we don't free the table twice */ if (!ttm->sg->sgl) return; /* free the sg table and pages again */ dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction); for_each_sg_page(ttm->sg->sgl, &sg_iter, ttm->sg->nents, 0) { struct page *page = sg_page_iter_page(&sg_iter); if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY)) set_page_dirty(page); mark_page_accessed(page); page_cache_release(page); } sg_free_table(ttm->sg); } static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem) { struct amdgpu_ttm_tt *gtt = (void*)ttm; uint32_t flags = amdgpu_ttm_tt_pte_flags(gtt->adev, ttm, bo_mem); int r; if (gtt->userptr) { r = amdgpu_ttm_tt_pin_userptr(ttm); if (r) { DRM_ERROR("failed to pin userptr\n"); return r; } } gtt->offset = (unsigned long)(bo_mem->start << PAGE_SHIFT); if (!ttm->num_pages) { WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n", ttm->num_pages, bo_mem, ttm); } if (bo_mem->mem_type == AMDGPU_PL_GDS || bo_mem->mem_type == AMDGPU_PL_GWS || bo_mem->mem_type == AMDGPU_PL_OA) return -EINVAL; r = amdgpu_gart_bind(gtt->adev, gtt->offset, ttm->num_pages, ttm->pages, gtt->ttm.dma_address, flags); if (r) { DRM_ERROR("failed to bind %lu pages at 0x%08X\n", ttm->num_pages, (unsigned)gtt->offset); return r; } return 0; } static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm) { struct amdgpu_ttm_tt *gtt = (void *)ttm; /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */ if (gtt->adev->gart.ready) amdgpu_gart_unbind(gtt->adev, gtt->offset, ttm->num_pages); if (gtt->userptr) amdgpu_ttm_tt_unpin_userptr(ttm); return 0; } static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm) { struct amdgpu_ttm_tt *gtt = (void *)ttm; ttm_dma_tt_fini(>t->ttm); kfree(gtt); } static struct ttm_backend_func amdgpu_backend_func = { .bind = &amdgpu_ttm_backend_bind, .unbind = &amdgpu_ttm_backend_unbind, .destroy = &amdgpu_ttm_backend_destroy, }; static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_bo_device *bdev, unsigned long size, uint32_t page_flags, struct page *dummy_read_page) { struct amdgpu_device *adev; struct amdgpu_ttm_tt *gtt; adev = amdgpu_get_adev(bdev); gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL); if (gtt == NULL) { return NULL; } gtt->ttm.ttm.func = &amdgpu_backend_func; gtt->adev = adev; if (ttm_dma_tt_init(>t->ttm, bdev, size, page_flags, dummy_read_page)) { kfree(gtt); return NULL; } return >t->ttm.ttm; } static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm) { struct amdgpu_device *adev; struct amdgpu_ttm_tt *gtt = (void *)ttm; unsigned i; int r; bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG); if (ttm->state != tt_unpopulated) return 0; if (gtt && gtt->userptr) { ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL); if (!ttm->sg) return -ENOMEM; ttm->page_flags |= TTM_PAGE_FLAG_SG; ttm->state = tt_unbound; return 0; } if (slave && ttm->sg) { drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages, gtt->ttm.dma_address, ttm->num_pages); ttm->state = tt_unbound; return 0; } adev = amdgpu_get_adev(ttm->bdev); #ifdef CONFIG_SWIOTLB if (swiotlb_nr_tbl()) { return ttm_dma_populate(>t->ttm, adev->dev); } #endif r = ttm_pool_populate(ttm); if (r) { return r; } for (i = 0; i < ttm->num_pages; i++) { gtt->ttm.dma_address[i] = pci_map_page(adev->pdev, ttm->pages[i], 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); if (pci_dma_mapping_error(adev->pdev, gtt->ttm.dma_address[i])) { while (--i) { pci_unmap_page(adev->pdev, gtt->ttm.dma_address[i], PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); gtt->ttm.dma_address[i] = 0; } ttm_pool_unpopulate(ttm); return -EFAULT; } } return 0; } static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm) { struct amdgpu_device *adev; struct amdgpu_ttm_tt *gtt = (void *)ttm; unsigned i; bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG); if (gtt && gtt->userptr) { kfree(ttm->sg); ttm->page_flags &= ~TTM_PAGE_FLAG_SG; return; } if (slave) return; adev = amdgpu_get_adev(ttm->bdev); #ifdef CONFIG_SWIOTLB if (swiotlb_nr_tbl()) { ttm_dma_unpopulate(>t->ttm, adev->dev); return; } #endif for (i = 0; i < ttm->num_pages; i++) { if (gtt->ttm.dma_address[i]) { pci_unmap_page(adev->pdev, gtt->ttm.dma_address[i], PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); } } ttm_pool_unpopulate(ttm); } int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr, uint32_t flags) { struct amdgpu_ttm_tt *gtt = (void *)ttm; if (gtt == NULL) return -EINVAL; gtt->userptr = addr; gtt->usermm = current->mm; gtt->userflags = flags; return 0; } struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm) { struct amdgpu_ttm_tt *gtt = (void *)ttm; if (gtt == NULL) return NULL; return gtt->usermm; } bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start, unsigned long end) { struct amdgpu_ttm_tt *gtt = (void *)ttm; unsigned long size; if (gtt == NULL) return false; if (gtt->ttm.ttm.state != tt_bound || !gtt->userptr) return false; size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE; if (gtt->userptr > end || gtt->userptr + size <= start) return false; return true; } bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm) { struct amdgpu_ttm_tt *gtt = (void *)ttm; if (gtt == NULL) return false; return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY); } uint32_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm, struct ttm_mem_reg *mem) { uint32_t flags = 0; if (mem && mem->mem_type != TTM_PL_SYSTEM) flags |= AMDGPU_PTE_VALID; if (mem && mem->mem_type == TTM_PL_TT) { flags |= AMDGPU_PTE_SYSTEM; if (ttm->caching_state == tt_cached) flags |= AMDGPU_PTE_SNOOPED; } if (adev->asic_type >= CHIP_TONGA) flags |= AMDGPU_PTE_EXECUTABLE; flags |= AMDGPU_PTE_READABLE; if (!amdgpu_ttm_tt_is_readonly(ttm)) flags |= AMDGPU_PTE_WRITEABLE; return flags; } static struct ttm_bo_driver amdgpu_bo_driver = { .ttm_tt_create = &amdgpu_ttm_tt_create, .ttm_tt_populate = &amdgpu_ttm_tt_populate, .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate, .invalidate_caches = &amdgpu_invalidate_caches, .init_mem_type = &amdgpu_init_mem_type, .evict_flags = &amdgpu_evict_flags, .move = &amdgpu_bo_move, .verify_access = &amdgpu_verify_access, .move_notify = &amdgpu_bo_move_notify, .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify, .io_mem_reserve = &amdgpu_ttm_io_mem_reserve, .io_mem_free = &amdgpu_ttm_io_mem_free, }; int amdgpu_ttm_init(struct amdgpu_device *adev) { int r; r = amdgpu_ttm_global_init(adev); if (r) { return r; } /* No others user of address space so set it to 0 */ r = ttm_bo_device_init(&adev->mman.bdev, adev->mman.bo_global_ref.ref.object, &amdgpu_bo_driver, adev->ddev->anon_inode->i_mapping, DRM_FILE_PAGE_OFFSET, adev->need_dma32); if (r) { DRM_ERROR("failed initializing buffer object driver(%d).\n", r); return r; } adev->mman.initialized = true; r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM, adev->mc.real_vram_size >> PAGE_SHIFT); if (r) { DRM_ERROR("Failed initializing VRAM heap.\n"); return r; } /* Change the size here instead of the init above so only lpfn is affected */ amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size); r = amdgpu_bo_create(adev, 256 * 1024, PAGE_SIZE, true, AMDGPU_GEM_DOMAIN_VRAM, AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED, NULL, NULL, &adev->stollen_vga_memory); if (r) { return r; } r = amdgpu_bo_reserve(adev->stollen_vga_memory, false); if (r) return r; r = amdgpu_bo_pin(adev->stollen_vga_memory, AMDGPU_GEM_DOMAIN_VRAM, NULL); amdgpu_bo_unreserve(adev->stollen_vga_memory); if (r) { amdgpu_bo_unref(&adev->stollen_vga_memory); return r; } DRM_INFO("amdgpu: %uM of VRAM memory ready\n", (unsigned) (adev->mc.real_vram_size / (1024 * 1024))); r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, adev->mc.gtt_size >> PAGE_SHIFT); if (r) { DRM_ERROR("Failed initializing GTT heap.\n"); return r; } DRM_INFO("amdgpu: %uM of GTT memory ready.\n", (unsigned)(adev->mc.gtt_size / (1024 * 1024))); adev->gds.mem.total_size = adev->gds.mem.total_size << AMDGPU_GDS_SHIFT; adev->gds.mem.gfx_partition_size = adev->gds.mem.gfx_partition_size << AMDGPU_GDS_SHIFT; adev->gds.mem.cs_partition_size = adev->gds.mem.cs_partition_size << AMDGPU_GDS_SHIFT; adev->gds.gws.total_size = adev->gds.gws.total_size << AMDGPU_GWS_SHIFT; adev->gds.gws.gfx_partition_size = adev->gds.gws.gfx_partition_size << AMDGPU_GWS_SHIFT; adev->gds.gws.cs_partition_size = adev->gds.gws.cs_partition_size << AMDGPU_GWS_SHIFT; adev->gds.oa.total_size = adev->gds.oa.total_size << AMDGPU_OA_SHIFT; adev->gds.oa.gfx_partition_size = adev->gds.oa.gfx_partition_size << AMDGPU_OA_SHIFT; adev->gds.oa.cs_partition_size = adev->gds.oa.cs_partition_size << AMDGPU_OA_SHIFT; /* GDS Memory */ r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS, adev->gds.mem.total_size >> PAGE_SHIFT); if (r) { DRM_ERROR("Failed initializing GDS heap.\n"); return r; } /* GWS */ r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS, adev->gds.gws.total_size >> PAGE_SHIFT); if (r) { DRM_ERROR("Failed initializing gws heap.\n"); return r; } /* OA */ r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA, adev->gds.oa.total_size >> PAGE_SHIFT); if (r) { DRM_ERROR("Failed initializing oa heap.\n"); return r; } r = amdgpu_ttm_debugfs_init(adev); if (r) { DRM_ERROR("Failed to init debugfs\n"); return r; } return 0; } void amdgpu_ttm_fini(struct amdgpu_device *adev) { int r; if (!adev->mman.initialized) return; amdgpu_ttm_debugfs_fini(adev); if (adev->stollen_vga_memory) { r = amdgpu_bo_reserve(adev->stollen_vga_memory, false); if (r == 0) { amdgpu_bo_unpin(adev->stollen_vga_memory); amdgpu_bo_unreserve(adev->stollen_vga_memory); } amdgpu_bo_unref(&adev->stollen_vga_memory); } ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM); ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT); ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS); ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS); ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA); ttm_bo_device_release(&adev->mman.bdev); amdgpu_gart_fini(adev); amdgpu_ttm_global_fini(adev); adev->mman.initialized = false; DRM_INFO("amdgpu: ttm finalized\n"); } /* this should only be called at bootup or when userspace * isn't running */ void amdgpu_ttm_set_active_vram_size(struct amdgpu_device *adev, u64 size) { struct ttm_mem_type_manager *man; if (!adev->mman.initialized) return; man = &adev->mman.bdev.man[TTM_PL_VRAM]; /* this just adjusts TTM size idea, which sets lpfn to the correct value */ man->size = size >> PAGE_SHIFT; } int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma) { struct drm_file *file_priv; struct amdgpu_device *adev; if (unlikely(vma->vm_pgoff < DRM_FILE_PAGE_OFFSET)) return -EINVAL; file_priv = filp->private_data; adev = file_priv->minor->dev->dev_private; if (adev == NULL) return -EINVAL; return ttm_bo_mmap(filp, vma, &adev->mman.bdev); } int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset, uint64_t dst_offset, uint32_t byte_count, struct reservation_object *resv, struct fence **fence) { struct amdgpu_device *adev = ring->adev; struct amdgpu_job *job; uint32_t max_bytes; unsigned num_loops, num_dw; unsigned i; int r; max_bytes = adev->mman.buffer_funcs->copy_max_bytes; num_loops = DIV_ROUND_UP(byte_count, max_bytes); num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw; /* for IB padding */ while (num_dw & 0x7) num_dw++; r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job); if (r) return r; if (resv) { r = amdgpu_sync_resv(adev, &job->sync, resv, AMDGPU_FENCE_OWNER_UNDEFINED); if (r) { DRM_ERROR("sync failed (%d).\n", r); goto error_free; } } for (i = 0; i < num_loops; i++) { uint32_t cur_size_in_bytes = min(byte_count, max_bytes); amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset, dst_offset, cur_size_in_bytes); src_offset += cur_size_in_bytes; dst_offset += cur_size_in_bytes; byte_count -= cur_size_in_bytes; } amdgpu_ring_pad_ib(ring, &job->ibs[0]); WARN_ON(job->ibs[0].length_dw > num_dw); r = amdgpu_job_submit(job, ring, AMDGPU_FENCE_OWNER_UNDEFINED, fence); if (r) goto error_free; return 0; error_free: amdgpu_job_free(job); return r; } #if defined(CONFIG_DEBUG_FS) static int amdgpu_mm_dump_table(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *)m->private; unsigned ttm_pl = *(int *)node->info_ent->data; struct drm_device *dev = node->minor->dev; struct amdgpu_device *adev = dev->dev_private; struct drm_mm *mm = (struct drm_mm *)adev->mman.bdev.man[ttm_pl].priv; int ret; struct ttm_bo_global *glob = adev->mman.bdev.glob; spin_lock(&glob->lru_lock); ret = drm_mm_dump_table(m, mm); spin_unlock(&glob->lru_lock); if (ttm_pl == TTM_PL_VRAM) seq_printf(m, "man size:%llu pages, ram usage:%lluMB, vis usage:%lluMB\n", adev->mman.bdev.man[ttm_pl].size, (u64)atomic64_read(&adev->vram_usage) >> 20, (u64)atomic64_read(&adev->vram_vis_usage) >> 20); return ret; } static int ttm_pl_vram = TTM_PL_VRAM; static int ttm_pl_tt = TTM_PL_TT; static struct drm_info_list amdgpu_ttm_debugfs_list[] = { {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, &ttm_pl_vram}, {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, &ttm_pl_tt}, {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL}, #ifdef CONFIG_SWIOTLB {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL} #endif }; static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = f->f_inode->i_private; ssize_t result = 0; int r; if (size & 0x3 || *pos & 0x3) return -EINVAL; while (size) { unsigned long flags; uint32_t value; if (*pos >= adev->mc.mc_vram_size) return result; spin_lock_irqsave(&adev->mmio_idx_lock, flags); WREG32(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000); WREG32(mmMM_INDEX_HI, *pos >> 31); value = RREG32(mmMM_DATA); spin_unlock_irqrestore(&adev->mmio_idx_lock, flags); r = put_user(value, (uint32_t *)buf); if (r) return r; result += 4; buf += 4; *pos += 4; size -= 4; } return result; } static const struct file_operations amdgpu_ttm_vram_fops = { .owner = THIS_MODULE, .read = amdgpu_ttm_vram_read, .llseek = default_llseek }; static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = f->f_inode->i_private; ssize_t result = 0; int r; while (size) { loff_t p = *pos / PAGE_SIZE; unsigned off = *pos & ~PAGE_MASK; size_t cur_size = min_t(size_t, size, PAGE_SIZE - off); struct page *page; void *ptr; if (p >= adev->gart.num_cpu_pages) return result; page = adev->gart.pages[p]; if (page) { ptr = kmap(page); ptr += off; r = copy_to_user(buf, ptr, cur_size); kunmap(adev->gart.pages[p]); } else r = clear_user(buf, cur_size); if (r) return -EFAULT; result += cur_size; buf += cur_size; *pos += cur_size; size -= cur_size; } return result; } static const struct file_operations amdgpu_ttm_gtt_fops = { .owner = THIS_MODULE, .read = amdgpu_ttm_gtt_read, .llseek = default_llseek }; #endif static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev) { #if defined(CONFIG_DEBUG_FS) unsigned count; struct drm_minor *minor = adev->ddev->primary; struct dentry *ent, *root = minor->debugfs_root; ent = debugfs_create_file("amdgpu_vram", S_IFREG | S_IRUGO, root, adev, &amdgpu_ttm_vram_fops); if (IS_ERR(ent)) return PTR_ERR(ent); i_size_write(ent->d_inode, adev->mc.mc_vram_size); adev->mman.vram = ent; ent = debugfs_create_file("amdgpu_gtt", S_IFREG | S_IRUGO, root, adev, &amdgpu_ttm_gtt_fops); if (IS_ERR(ent)) return PTR_ERR(ent); i_size_write(ent->d_inode, adev->mc.gtt_size); adev->mman.gtt = ent; count = ARRAY_SIZE(amdgpu_ttm_debugfs_list); #ifdef CONFIG_SWIOTLB if (!swiotlb_nr_tbl()) --count; #endif return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count); #else return 0; #endif } static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev) { #if defined(CONFIG_DEBUG_FS) debugfs_remove(adev->mman.vram); adev->mman.vram = NULL; debugfs_remove(adev->mman.gtt); adev->mman.gtt = NULL; #endif }