/* * Copyright (c) 2007 Mellanox Technologies. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include #include #include #include #include #include #include #include #include #include #include #include "mlx4_en.h" int mlx4_en_create_tx_ring(struct mlx4_en_priv *priv, struct mlx4_en_tx_ring **pring, u32 size, u16 stride, int node, int queue_index) { struct mlx4_en_dev *mdev = priv->mdev; struct mlx4_en_tx_ring *ring; int tmp; int err; ring = kzalloc_node(sizeof(*ring), GFP_KERNEL, node); if (!ring) { ring = kzalloc(sizeof(*ring), GFP_KERNEL); if (!ring) { en_err(priv, "Failed allocating TX ring\n"); return -ENOMEM; } } ring->size = size; ring->size_mask = size - 1; ring->stride = stride; ring->full_size = ring->size - HEADROOM - MAX_DESC_TXBBS; tmp = size * sizeof(struct mlx4_en_tx_info); ring->tx_info = kmalloc_node(tmp, GFP_KERNEL | __GFP_NOWARN, node); if (!ring->tx_info) { ring->tx_info = vmalloc(tmp); if (!ring->tx_info) { err = -ENOMEM; goto err_ring; } } en_dbg(DRV, priv, "Allocated tx_info ring at addr:%p size:%d\n", ring->tx_info, tmp); ring->bounce_buf = kmalloc_node(MAX_DESC_SIZE, GFP_KERNEL, node); if (!ring->bounce_buf) { ring->bounce_buf = kmalloc(MAX_DESC_SIZE, GFP_KERNEL); if (!ring->bounce_buf) { err = -ENOMEM; goto err_info; } } ring->buf_size = ALIGN(size * ring->stride, MLX4_EN_PAGE_SIZE); /* Allocate HW buffers on provided NUMA node */ set_dev_node(&mdev->dev->persist->pdev->dev, node); err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres, ring->buf_size, 2 * PAGE_SIZE); set_dev_node(&mdev->dev->persist->pdev->dev, mdev->dev->numa_node); if (err) { en_err(priv, "Failed allocating hwq resources\n"); goto err_bounce; } err = mlx4_en_map_buffer(&ring->wqres.buf); if (err) { en_err(priv, "Failed to map TX buffer\n"); goto err_hwq_res; } ring->buf = ring->wqres.buf.direct.buf; en_dbg(DRV, priv, "Allocated TX ring (addr:%p) - buf:%p size:%d buf_size:%d dma:%llx\n", ring, ring->buf, ring->size, ring->buf_size, (unsigned long long) ring->wqres.buf.direct.map); err = mlx4_qp_reserve_range(mdev->dev, 1, 1, &ring->qpn, MLX4_RESERVE_ETH_BF_QP); if (err) { en_err(priv, "failed reserving qp for TX ring\n"); goto err_map; } err = mlx4_qp_alloc(mdev->dev, ring->qpn, &ring->qp, GFP_KERNEL); if (err) { en_err(priv, "Failed allocating qp %d\n", ring->qpn); goto err_reserve; } ring->qp.event = mlx4_en_sqp_event; err = mlx4_bf_alloc(mdev->dev, &ring->bf, node); if (err) { en_dbg(DRV, priv, "working without blueflame (%d)\n", err); ring->bf.uar = &mdev->priv_uar; ring->bf.uar->map = mdev->uar_map; ring->bf_enabled = false; ring->bf_alloced = false; priv->pflags &= ~MLX4_EN_PRIV_FLAGS_BLUEFLAME; } else { ring->bf_alloced = true; ring->bf_enabled = !!(priv->pflags & MLX4_EN_PRIV_FLAGS_BLUEFLAME); } ring->hwtstamp_tx_type = priv->hwtstamp_config.tx_type; ring->queue_index = queue_index; if (queue_index < priv->num_tx_rings_p_up) cpumask_set_cpu(cpumask_local_spread(queue_index, priv->mdev->dev->numa_node), &ring->affinity_mask); *pring = ring; return 0; err_reserve: mlx4_qp_release_range(mdev->dev, ring->qpn, 1); err_map: mlx4_en_unmap_buffer(&ring->wqres.buf); err_hwq_res: mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size); err_bounce: kfree(ring->bounce_buf); ring->bounce_buf = NULL; err_info: kvfree(ring->tx_info); ring->tx_info = NULL; err_ring: kfree(ring); *pring = NULL; return err; } void mlx4_en_destroy_tx_ring(struct mlx4_en_priv *priv, struct mlx4_en_tx_ring **pring) { struct mlx4_en_dev *mdev = priv->mdev; struct mlx4_en_tx_ring *ring = *pring; en_dbg(DRV, priv, "Destroying tx ring, qpn: %d\n", ring->qpn); if (ring->bf_alloced) mlx4_bf_free(mdev->dev, &ring->bf); mlx4_qp_remove(mdev->dev, &ring->qp); mlx4_qp_free(mdev->dev, &ring->qp); mlx4_qp_release_range(priv->mdev->dev, ring->qpn, 1); mlx4_en_unmap_buffer(&ring->wqres.buf); mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size); kfree(ring->bounce_buf); ring->bounce_buf = NULL; kvfree(ring->tx_info); ring->tx_info = NULL; kfree(ring); *pring = NULL; } int mlx4_en_activate_tx_ring(struct mlx4_en_priv *priv, struct mlx4_en_tx_ring *ring, int cq, int user_prio) { struct mlx4_en_dev *mdev = priv->mdev; int err; ring->cqn = cq; ring->prod = 0; ring->cons = 0xffffffff; ring->last_nr_txbb = 1; memset(ring->tx_info, 0, ring->size * sizeof(struct mlx4_en_tx_info)); memset(ring->buf, 0, ring->buf_size); ring->qp_state = MLX4_QP_STATE_RST; ring->doorbell_qpn = cpu_to_be32(ring->qp.qpn << 8); ring->mr_key = cpu_to_be32(mdev->mr.key); mlx4_en_fill_qp_context(priv, ring->size, ring->stride, 1, 0, ring->qpn, ring->cqn, user_prio, &ring->context); if (ring->bf_alloced) ring->context.usr_page = cpu_to_be32(ring->bf.uar->index); err = mlx4_qp_to_ready(mdev->dev, &ring->wqres.mtt, &ring->context, &ring->qp, &ring->qp_state); if (!cpumask_empty(&ring->affinity_mask)) netif_set_xps_queue(priv->dev, &ring->affinity_mask, ring->queue_index); return err; } void mlx4_en_deactivate_tx_ring(struct mlx4_en_priv *priv, struct mlx4_en_tx_ring *ring) { struct mlx4_en_dev *mdev = priv->mdev; mlx4_qp_modify(mdev->dev, NULL, ring->qp_state, MLX4_QP_STATE_RST, NULL, 0, 0, &ring->qp); } static inline bool mlx4_en_is_tx_ring_full(struct mlx4_en_tx_ring *ring) { return ring->prod - ring->cons > ring->full_size; } static void mlx4_en_stamp_wqe(struct mlx4_en_priv *priv, struct mlx4_en_tx_ring *ring, int index, u8 owner) { __be32 stamp = cpu_to_be32(STAMP_VAL | (!!owner << STAMP_SHIFT)); struct mlx4_en_tx_desc *tx_desc = ring->buf + index * TXBB_SIZE; struct mlx4_en_tx_info *tx_info = &ring->tx_info[index]; void *end = ring->buf + ring->buf_size; __be32 *ptr = (__be32 *)tx_desc; int i; /* Optimize the common case when there are no wraparounds */ if (likely((void *)tx_desc + tx_info->nr_txbb * TXBB_SIZE <= end)) { /* Stamp the freed descriptor */ for (i = 0; i < tx_info->nr_txbb * TXBB_SIZE; i += STAMP_STRIDE) { *ptr = stamp; ptr += STAMP_DWORDS; } } else { /* Stamp the freed descriptor */ for (i = 0; i < tx_info->nr_txbb * TXBB_SIZE; i += STAMP_STRIDE) { *ptr = stamp; ptr += STAMP_DWORDS; if ((void *)ptr >= end) { ptr = ring->buf; stamp ^= cpu_to_be32(0x80000000); } } } } static u32 mlx4_en_free_tx_desc(struct mlx4_en_priv *priv, struct mlx4_en_tx_ring *ring, int index, u8 owner, u64 timestamp) { struct mlx4_en_tx_info *tx_info = &ring->tx_info[index]; struct mlx4_en_tx_desc *tx_desc = ring->buf + index * TXBB_SIZE; struct mlx4_wqe_data_seg *data = (void *) tx_desc + tx_info->data_offset; void *end = ring->buf + ring->buf_size; struct sk_buff *skb = tx_info->skb; int nr_maps = tx_info->nr_maps; int i; /* We do not touch skb here, so prefetch skb->users location * to speedup consume_skb() */ prefetchw(&skb->users); if (unlikely(timestamp)) { struct skb_shared_hwtstamps hwts; mlx4_en_fill_hwtstamps(priv->mdev, &hwts, timestamp); skb_tstamp_tx(skb, &hwts); } /* Optimize the common case when there are no wraparounds */ if (likely((void *) tx_desc + tx_info->nr_txbb * TXBB_SIZE <= end)) { if (!tx_info->inl) { if (tx_info->linear) dma_unmap_single(priv->ddev, tx_info->map0_dma, tx_info->map0_byte_count, PCI_DMA_TODEVICE); else dma_unmap_page(priv->ddev, tx_info->map0_dma, tx_info->map0_byte_count, PCI_DMA_TODEVICE); for (i = 1; i < nr_maps; i++) { data++; dma_unmap_page(priv->ddev, (dma_addr_t)be64_to_cpu(data->addr), be32_to_cpu(data->byte_count), PCI_DMA_TODEVICE); } } } else { if (!tx_info->inl) { if ((void *) data >= end) { data = ring->buf + ((void *)data - end); } if (tx_info->linear) dma_unmap_single(priv->ddev, tx_info->map0_dma, tx_info->map0_byte_count, PCI_DMA_TODEVICE); else dma_unmap_page(priv->ddev, tx_info->map0_dma, tx_info->map0_byte_count, PCI_DMA_TODEVICE); for (i = 1; i < nr_maps; i++) { data++; /* Check for wraparound before unmapping */ if ((void *) data >= end) data = ring->buf; dma_unmap_page(priv->ddev, (dma_addr_t)be64_to_cpu(data->addr), be32_to_cpu(data->byte_count), PCI_DMA_TODEVICE); } } } dev_consume_skb_any(skb); return tx_info->nr_txbb; } int mlx4_en_free_tx_buf(struct net_device *dev, struct mlx4_en_tx_ring *ring) { struct mlx4_en_priv *priv = netdev_priv(dev); int cnt = 0; /* Skip last polled descriptor */ ring->cons += ring->last_nr_txbb; en_dbg(DRV, priv, "Freeing Tx buf - cons:0x%x prod:0x%x\n", ring->cons, ring->prod); if ((u32) (ring->prod - ring->cons) > ring->size) { if (netif_msg_tx_err(priv)) en_warn(priv, "Tx consumer passed producer!\n"); return 0; } while (ring->cons != ring->prod) { ring->last_nr_txbb = mlx4_en_free_tx_desc(priv, ring, ring->cons & ring->size_mask, !!(ring->cons & ring->size), 0); ring->cons += ring->last_nr_txbb; cnt++; } netdev_tx_reset_queue(ring->tx_queue); if (cnt) en_dbg(DRV, priv, "Freed %d uncompleted tx descriptors\n", cnt); return cnt; } static bool mlx4_en_process_tx_cq(struct net_device *dev, struct mlx4_en_cq *cq) { struct mlx4_en_priv *priv = netdev_priv(dev); struct mlx4_cq *mcq = &cq->mcq; struct mlx4_en_tx_ring *ring = priv->tx_ring[cq->ring]; struct mlx4_cqe *cqe; u16 index; u16 new_index, ring_index, stamp_index; u32 txbbs_skipped = 0; u32 txbbs_stamp = 0; u32 cons_index = mcq->cons_index; int size = cq->size; u32 size_mask = ring->size_mask; struct mlx4_cqe *buf = cq->buf; u32 packets = 0; u32 bytes = 0; int factor = priv->cqe_factor; u64 timestamp = 0; int done = 0; int budget = priv->tx_work_limit; u32 last_nr_txbb; u32 ring_cons; if (!priv->port_up) return true; netdev_txq_bql_complete_prefetchw(ring->tx_queue); index = cons_index & size_mask; cqe = mlx4_en_get_cqe(buf, index, priv->cqe_size) + factor; last_nr_txbb = ACCESS_ONCE(ring->last_nr_txbb); ring_cons = ACCESS_ONCE(ring->cons); ring_index = ring_cons & size_mask; stamp_index = ring_index; /* Process all completed CQEs */ while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK, cons_index & size) && (done < budget)) { /* * make sure we read the CQE after we read the * ownership bit */ dma_rmb(); if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) == MLX4_CQE_OPCODE_ERROR)) { struct mlx4_err_cqe *cqe_err = (struct mlx4_err_cqe *)cqe; en_err(priv, "CQE error - vendor syndrome: 0x%x syndrome: 0x%x\n", cqe_err->vendor_err_syndrome, cqe_err->syndrome); } /* Skip over last polled CQE */ new_index = be16_to_cpu(cqe->wqe_index) & size_mask; do { txbbs_skipped += last_nr_txbb; ring_index = (ring_index + last_nr_txbb) & size_mask; if (ring->tx_info[ring_index].ts_requested) timestamp = mlx4_en_get_cqe_ts(cqe); /* free next descriptor */ last_nr_txbb = mlx4_en_free_tx_desc( priv, ring, ring_index, !!((ring_cons + txbbs_skipped) & ring->size), timestamp); mlx4_en_stamp_wqe(priv, ring, stamp_index, !!((ring_cons + txbbs_stamp) & ring->size)); stamp_index = ring_index; txbbs_stamp = txbbs_skipped; packets++; bytes += ring->tx_info[ring_index].nr_bytes; } while ((++done < budget) && (ring_index != new_index)); ++cons_index; index = cons_index & size_mask; cqe = mlx4_en_get_cqe(buf, index, priv->cqe_size) + factor; } /* * To prevent CQ overflow we first update CQ consumer and only then * the ring consumer. */ mcq->cons_index = cons_index; mlx4_cq_set_ci(mcq); wmb(); /* we want to dirty this cache line once */ ACCESS_ONCE(ring->last_nr_txbb) = last_nr_txbb; ACCESS_ONCE(ring->cons) = ring_cons + txbbs_skipped; netdev_tx_completed_queue(ring->tx_queue, packets, bytes); /* Wakeup Tx queue if this stopped, and ring is not full. */ if (netif_tx_queue_stopped(ring->tx_queue) && !mlx4_en_is_tx_ring_full(ring)) { netif_tx_wake_queue(ring->tx_queue); ring->wake_queue++; } return done < budget; } void mlx4_en_tx_irq(struct mlx4_cq *mcq) { struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq); struct mlx4_en_priv *priv = netdev_priv(cq->dev); if (likely(priv->port_up)) napi_schedule_irqoff(&cq->napi); else mlx4_en_arm_cq(priv, cq); } /* TX CQ polling - called by NAPI */ int mlx4_en_poll_tx_cq(struct napi_struct *napi, int budget) { struct mlx4_en_cq *cq = container_of(napi, struct mlx4_en_cq, napi); struct net_device *dev = cq->dev; struct mlx4_en_priv *priv = netdev_priv(dev); int clean_complete; clean_complete = mlx4_en_process_tx_cq(dev, cq); if (!clean_complete) return budget; napi_complete(napi); mlx4_en_arm_cq(priv, cq); return 0; } static struct mlx4_en_tx_desc *mlx4_en_bounce_to_desc(struct mlx4_en_priv *priv, struct mlx4_en_tx_ring *ring, u32 index, unsigned int desc_size) { u32 copy = (ring->size - index) * TXBB_SIZE; int i; for (i = desc_size - copy - 4; i >= 0; i -= 4) { if ((i & (TXBB_SIZE - 1)) == 0) wmb(); *((u32 *) (ring->buf + i)) = *((u32 *) (ring->bounce_buf + copy + i)); } for (i = copy - 4; i >= 4 ; i -= 4) { if ((i & (TXBB_SIZE - 1)) == 0) wmb(); *((u32 *) (ring->buf + index * TXBB_SIZE + i)) = *((u32 *) (ring->bounce_buf + i)); } /* Return real descriptor location */ return ring->buf + index * TXBB_SIZE; } /* Decide if skb can be inlined in tx descriptor to avoid dma mapping * * It seems strange we do not simply use skb_copy_bits(). * This would allow to inline all skbs iff skb->len <= inline_thold * * Note that caller already checked skb was not a gso packet */ static bool is_inline(int inline_thold, const struct sk_buff *skb, const struct skb_shared_info *shinfo, void **pfrag) { void *ptr; if (skb->len > inline_thold || !inline_thold) return false; if (shinfo->nr_frags == 1) { ptr = skb_frag_address_safe(&shinfo->frags[0]); if (unlikely(!ptr)) return false; *pfrag = ptr; return true; } if (shinfo->nr_frags) return false; return true; } static int inline_size(const struct sk_buff *skb) { if (skb->len + CTRL_SIZE + sizeof(struct mlx4_wqe_inline_seg) <= MLX4_INLINE_ALIGN) return ALIGN(skb->len + CTRL_SIZE + sizeof(struct mlx4_wqe_inline_seg), 16); else return ALIGN(skb->len + CTRL_SIZE + 2 * sizeof(struct mlx4_wqe_inline_seg), 16); } static int get_real_size(const struct sk_buff *skb, const struct skb_shared_info *shinfo, struct net_device *dev, int *lso_header_size, bool *inline_ok, void **pfrag) { struct mlx4_en_priv *priv = netdev_priv(dev); int real_size; if (shinfo->gso_size) { *inline_ok = false; if (skb->encapsulation) *lso_header_size = (skb_inner_transport_header(skb) - skb->data) + inner_tcp_hdrlen(skb); else *lso_header_size = skb_transport_offset(skb) + tcp_hdrlen(skb); real_size = CTRL_SIZE + shinfo->nr_frags * DS_SIZE + ALIGN(*lso_header_size + 4, DS_SIZE); if (unlikely(*lso_header_size != skb_headlen(skb))) { /* We add a segment for the skb linear buffer only if * it contains data */ if (*lso_header_size < skb_headlen(skb)) real_size += DS_SIZE; else { if (netif_msg_tx_err(priv)) en_warn(priv, "Non-linear headers\n"); return 0; } } } else { *lso_header_size = 0; *inline_ok = is_inline(priv->prof->inline_thold, skb, shinfo, pfrag); if (*inline_ok) real_size = inline_size(skb); else real_size = CTRL_SIZE + (shinfo->nr_frags + 1) * DS_SIZE; } return real_size; } static void build_inline_wqe(struct mlx4_en_tx_desc *tx_desc, const struct sk_buff *skb, const struct skb_shared_info *shinfo, int real_size, u16 *vlan_tag, int tx_ind, void *fragptr) { struct mlx4_wqe_inline_seg *inl = &tx_desc->inl; int spc = MLX4_INLINE_ALIGN - CTRL_SIZE - sizeof *inl; unsigned int hlen = skb_headlen(skb); if (skb->len <= spc) { if (likely(skb->len >= MIN_PKT_LEN)) { inl->byte_count = cpu_to_be32(1 << 31 | skb->len); } else { inl->byte_count = cpu_to_be32(1 << 31 | MIN_PKT_LEN); memset(((void *)(inl + 1)) + skb->len, 0, MIN_PKT_LEN - skb->len); } skb_copy_from_linear_data(skb, inl + 1, hlen); if (shinfo->nr_frags) memcpy(((void *)(inl + 1)) + hlen, fragptr, skb_frag_size(&shinfo->frags[0])); } else { inl->byte_count = cpu_to_be32(1 << 31 | spc); if (hlen <= spc) { skb_copy_from_linear_data(skb, inl + 1, hlen); if (hlen < spc) { memcpy(((void *)(inl + 1)) + hlen, fragptr, spc - hlen); fragptr += spc - hlen; } inl = (void *) (inl + 1) + spc; memcpy(((void *)(inl + 1)), fragptr, skb->len - spc); } else { skb_copy_from_linear_data(skb, inl + 1, spc); inl = (void *) (inl + 1) + spc; skb_copy_from_linear_data_offset(skb, spc, inl + 1, hlen - spc); if (shinfo->nr_frags) memcpy(((void *)(inl + 1)) + hlen - spc, fragptr, skb_frag_size(&shinfo->frags[0])); } dma_wmb(); inl->byte_count = cpu_to_be32(1 << 31 | (skb->len - spc)); } } u16 mlx4_en_select_queue(struct net_device *dev, struct sk_buff *skb, void *accel_priv, select_queue_fallback_t fallback) { struct mlx4_en_priv *priv = netdev_priv(dev); u16 rings_p_up = priv->num_tx_rings_p_up; u8 up = 0; if (dev->num_tc) return skb_tx_hash(dev, skb); if (skb_vlan_tag_present(skb)) up = skb_vlan_tag_get(skb) >> VLAN_PRIO_SHIFT; return fallback(dev, skb) % rings_p_up + up * rings_p_up; } static void mlx4_bf_copy(void __iomem *dst, const void *src, unsigned int bytecnt) { __iowrite64_copy(dst, src, bytecnt / 8); } netdev_tx_t mlx4_en_xmit(struct sk_buff *skb, struct net_device *dev) { struct skb_shared_info *shinfo = skb_shinfo(skb); struct mlx4_en_priv *priv = netdev_priv(dev); struct device *ddev = priv->ddev; struct mlx4_en_tx_ring *ring; struct mlx4_en_tx_desc *tx_desc; struct mlx4_wqe_data_seg *data; struct mlx4_en_tx_info *tx_info; int tx_ind = 0; int nr_txbb; int desc_size; int real_size; u32 index, bf_index; __be32 op_own; u16 vlan_tag = 0; int i_frag; int lso_header_size; void *fragptr = NULL; bool bounce = false; bool send_doorbell; bool stop_queue; bool inline_ok; u32 ring_cons; if (!priv->port_up) goto tx_drop; tx_ind = skb_get_queue_mapping(skb); ring = priv->tx_ring[tx_ind]; /* fetch ring->cons far ahead before needing it to avoid stall */ ring_cons = ACCESS_ONCE(ring->cons); real_size = get_real_size(skb, shinfo, dev, &lso_header_size, &inline_ok, &fragptr); if (unlikely(!real_size)) goto tx_drop; /* Align descriptor to TXBB size */ desc_size = ALIGN(real_size, TXBB_SIZE); nr_txbb = desc_size / TXBB_SIZE; if (unlikely(nr_txbb > MAX_DESC_TXBBS)) { if (netif_msg_tx_err(priv)) en_warn(priv, "Oversized header or SG list\n"); goto tx_drop; } if (skb_vlan_tag_present(skb)) vlan_tag = skb_vlan_tag_get(skb); netdev_txq_bql_enqueue_prefetchw(ring->tx_queue); /* Track current inflight packets for performance analysis */ AVG_PERF_COUNTER(priv->pstats.inflight_avg, (u32)(ring->prod - ring_cons - 1)); /* Packet is good - grab an index and transmit it */ index = ring->prod & ring->size_mask; bf_index = ring->prod; /* See if we have enough space for whole descriptor TXBB for setting * SW ownership on next descriptor; if not, use a bounce buffer. */ if (likely(index + nr_txbb <= ring->size)) tx_desc = ring->buf + index * TXBB_SIZE; else { tx_desc = (struct mlx4_en_tx_desc *) ring->bounce_buf; bounce = true; } /* Save skb in tx_info ring */ tx_info = &ring->tx_info[index]; tx_info->skb = skb; tx_info->nr_txbb = nr_txbb; data = &tx_desc->data; if (lso_header_size) data = ((void *)&tx_desc->lso + ALIGN(lso_header_size + 4, DS_SIZE)); /* valid only for none inline segments */ tx_info->data_offset = (void *)data - (void *)tx_desc; tx_info->inl = inline_ok; tx_info->linear = (lso_header_size < skb_headlen(skb) && !inline_ok) ? 1 : 0; tx_info->nr_maps = shinfo->nr_frags + tx_info->linear; data += tx_info->nr_maps - 1; if (!tx_info->inl) { dma_addr_t dma = 0; u32 byte_count = 0; /* Map fragments if any */ for (i_frag = shinfo->nr_frags - 1; i_frag >= 0; i_frag--) { const struct skb_frag_struct *frag; frag = &shinfo->frags[i_frag]; byte_count = skb_frag_size(frag); dma = skb_frag_dma_map(ddev, frag, 0, byte_count, DMA_TO_DEVICE); if (dma_mapping_error(ddev, dma)) goto tx_drop_unmap; data->addr = cpu_to_be64(dma); data->lkey = ring->mr_key; dma_wmb(); data->byte_count = cpu_to_be32(byte_count); --data; } /* Map linear part if needed */ if (tx_info->linear) { byte_count = skb_headlen(skb) - lso_header_size; dma = dma_map_single(ddev, skb->data + lso_header_size, byte_count, PCI_DMA_TODEVICE); if (dma_mapping_error(ddev, dma)) goto tx_drop_unmap; data->addr = cpu_to_be64(dma); data->lkey = ring->mr_key; dma_wmb(); data->byte_count = cpu_to_be32(byte_count); } /* tx completion can avoid cache line miss for common cases */ tx_info->map0_dma = dma; tx_info->map0_byte_count = byte_count; } /* * For timestamping add flag to skb_shinfo and * set flag for further reference */ tx_info->ts_requested = 0; if (unlikely(ring->hwtstamp_tx_type == HWTSTAMP_TX_ON && shinfo->tx_flags & SKBTX_HW_TSTAMP)) { shinfo->tx_flags |= SKBTX_IN_PROGRESS; tx_info->ts_requested = 1; } /* Prepare ctrl segement apart opcode+ownership, which depends on * whether LSO is used */ tx_desc->ctrl.srcrb_flags = priv->ctrl_flags; if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) { if (!skb->encapsulation) tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_IP_CSUM | MLX4_WQE_CTRL_TCP_UDP_CSUM); else tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_IP_CSUM); ring->tx_csum++; } if (priv->flags & MLX4_EN_FLAG_ENABLE_HW_LOOPBACK) { struct ethhdr *ethh; /* Copy dst mac address to wqe. This allows loopback in eSwitch, * so that VFs and PF can communicate with each other */ ethh = (struct ethhdr *)skb->data; tx_desc->ctrl.srcrb_flags16[0] = get_unaligned((__be16 *)ethh->h_dest); tx_desc->ctrl.imm = get_unaligned((__be32 *)(ethh->h_dest + 2)); } /* Handle LSO (TSO) packets */ if (lso_header_size) { int i; /* Mark opcode as LSO */ op_own = cpu_to_be32(MLX4_OPCODE_LSO | (1 << 6)) | ((ring->prod & ring->size) ? cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0); /* Fill in the LSO prefix */ tx_desc->lso.mss_hdr_size = cpu_to_be32( shinfo->gso_size << 16 | lso_header_size); /* Copy headers; * note that we already verified that it is linear */ memcpy(tx_desc->lso.header, skb->data, lso_header_size); ring->tso_packets++; i = ((skb->len - lso_header_size) / shinfo->gso_size) + !!((skb->len - lso_header_size) % shinfo->gso_size); tx_info->nr_bytes = skb->len + (i - 1) * lso_header_size; ring->packets += i; } else { /* Normal (Non LSO) packet */ op_own = cpu_to_be32(MLX4_OPCODE_SEND) | ((ring->prod & ring->size) ? cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0); tx_info->nr_bytes = max_t(unsigned int, skb->len, ETH_ZLEN); ring->packets++; } ring->bytes += tx_info->nr_bytes; netdev_tx_sent_queue(ring->tx_queue, tx_info->nr_bytes); AVG_PERF_COUNTER(priv->pstats.tx_pktsz_avg, skb->len); if (tx_info->inl) build_inline_wqe(tx_desc, skb, shinfo, real_size, &vlan_tag, tx_ind, fragptr); if (skb->encapsulation) { struct iphdr *ipv4 = (struct iphdr *)skb_inner_network_header(skb); if (ipv4->protocol == IPPROTO_TCP || ipv4->protocol == IPPROTO_UDP) op_own |= cpu_to_be32(MLX4_WQE_CTRL_IIP | MLX4_WQE_CTRL_ILP); else op_own |= cpu_to_be32(MLX4_WQE_CTRL_IIP); } ring->prod += nr_txbb; /* If we used a bounce buffer then copy descriptor back into place */ if (unlikely(bounce)) tx_desc = mlx4_en_bounce_to_desc(priv, ring, index, desc_size); skb_tx_timestamp(skb); /* Check available TXBBs And 2K spare for prefetch */ stop_queue = mlx4_en_is_tx_ring_full(ring); if (unlikely(stop_queue)) { netif_tx_stop_queue(ring->tx_queue); ring->queue_stopped++; } send_doorbell = !skb->xmit_more || netif_xmit_stopped(ring->tx_queue); real_size = (real_size / 16) & 0x3f; if (ring->bf_enabled && desc_size <= MAX_BF && !bounce && !skb_vlan_tag_present(skb) && send_doorbell) { tx_desc->ctrl.bf_qpn = ring->doorbell_qpn | cpu_to_be32(real_size); op_own |= htonl((bf_index & 0xffff) << 8); /* Ensure new descriptor hits memory * before setting ownership of this descriptor to HW */ dma_wmb(); tx_desc->ctrl.owner_opcode = op_own; wmb(); mlx4_bf_copy(ring->bf.reg + ring->bf.offset, &tx_desc->ctrl, desc_size); wmb(); ring->bf.offset ^= ring->bf.buf_size; } else { tx_desc->ctrl.vlan_tag = cpu_to_be16(vlan_tag); tx_desc->ctrl.ins_vlan = MLX4_WQE_CTRL_INS_CVLAN * !!skb_vlan_tag_present(skb); tx_desc->ctrl.fence_size = real_size; /* Ensure new descriptor hits memory * before setting ownership of this descriptor to HW */ dma_wmb(); tx_desc->ctrl.owner_opcode = op_own; if (send_doorbell) { wmb(); /* Since there is no iowrite*_native() that writes the * value as is, without byteswapping - using the one * the doesn't do byteswapping in the relevant arch * endianness. */ #if defined(__LITTLE_ENDIAN) iowrite32( #else iowrite32be( #endif ring->doorbell_qpn, ring->bf.uar->map + MLX4_SEND_DOORBELL); } else { ring->xmit_more++; } } if (unlikely(stop_queue)) { /* If queue was emptied after the if (stop_queue) , and before * the netif_tx_stop_queue() - need to wake the queue, * or else it will remain stopped forever. * Need a memory barrier to make sure ring->cons was not * updated before queue was stopped. */ smp_rmb(); ring_cons = ACCESS_ONCE(ring->cons); if (unlikely(!mlx4_en_is_tx_ring_full(ring))) { netif_tx_wake_queue(ring->tx_queue); ring->wake_queue++; } } return NETDEV_TX_OK; tx_drop_unmap: en_err(priv, "DMA mapping error\n"); while (++i_frag < shinfo->nr_frags) { ++data; dma_unmap_page(ddev, (dma_addr_t) be64_to_cpu(data->addr), be32_to_cpu(data->byte_count), PCI_DMA_TODEVICE); } tx_drop: dev_kfree_skb_any(skb); priv->stats.tx_dropped++; return NETDEV_TX_OK; }