/* * drivers/mmc/host/omap_hsmmc.c * * Driver for OMAP2430/3430 MMC controller. * * Copyright (C) 2007 Texas Instruments. * * Authors: * Syed Mohammed Khasim * Madhusudhan * Mohit Jalori * * This file is licensed under the terms of the GNU General Public License * version 2. This program is licensed "as is" without any warranty of any * kind, whether express or implied. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* OMAP HSMMC Host Controller Registers */ #define OMAP_HSMMC_SYSCONFIG 0x0010 #define OMAP_HSMMC_CON 0x002C #define OMAP_HSMMC_BLK 0x0104 #define OMAP_HSMMC_ARG 0x0108 #define OMAP_HSMMC_CMD 0x010C #define OMAP_HSMMC_RSP10 0x0110 #define OMAP_HSMMC_RSP32 0x0114 #define OMAP_HSMMC_RSP54 0x0118 #define OMAP_HSMMC_RSP76 0x011C #define OMAP_HSMMC_DATA 0x0120 #define OMAP_HSMMC_HCTL 0x0128 #define OMAP_HSMMC_SYSCTL 0x012C #define OMAP_HSMMC_STAT 0x0130 #define OMAP_HSMMC_IE 0x0134 #define OMAP_HSMMC_ISE 0x0138 #define OMAP_HSMMC_CAPA 0x0140 #define VS18 (1 << 26) #define VS30 (1 << 25) #define SDVS18 (0x5 << 9) #define SDVS30 (0x6 << 9) #define SDVS33 (0x7 << 9) #define SDVS_MASK 0x00000E00 #define SDVSCLR 0xFFFFF1FF #define SDVSDET 0x00000400 #define AUTOIDLE 0x1 #define SDBP (1 << 8) #define DTO 0xe #define ICE 0x1 #define ICS 0x2 #define CEN (1 << 2) #define CLKD_MASK 0x0000FFC0 #define CLKD_SHIFT 6 #define DTO_MASK 0x000F0000 #define DTO_SHIFT 16 #define INT_EN_MASK 0x307F0033 #define INIT_STREAM (1 << 1) #define DP_SELECT (1 << 21) #define DDIR (1 << 4) #define DMA_EN 0x1 #define MSBS (1 << 5) #define BCE (1 << 1) #define FOUR_BIT (1 << 1) #define DW8 (1 << 5) #define CC 0x1 #define TC 0x02 #define OD 0x1 #define ERR (1 << 15) #define CMD_TIMEOUT (1 << 16) #define DATA_TIMEOUT (1 << 20) #define CMD_CRC (1 << 17) #define DATA_CRC (1 << 21) #define CARD_ERR (1 << 28) #define STAT_CLEAR 0xFFFFFFFF #define INIT_STREAM_CMD 0x00000000 #define DUAL_VOLT_OCR_BIT 7 #define SRC (1 << 25) #define SRD (1 << 26) /* * FIXME: Most likely all the data using these _DEVID defines should come * from the platform_data, or implemented in controller and slot specific * functions. */ #define OMAP_MMC1_DEVID 0 #define OMAP_MMC2_DEVID 1 #define MMC_TIMEOUT_MS 20 #define OMAP_MMC_MASTER_CLOCK 96000000 #define DRIVER_NAME "mmci-omap-hs" /* * One controller can have multiple slots, like on some omap boards using * omap.c controller driver. Luckily this is not currently done on any known * omap_hsmmc.c device. */ #define mmc_slot(host) (host->pdata->slots[host->slot_id]) /* * MMC Host controller read/write API's */ #define OMAP_HSMMC_READ(base, reg) \ __raw_readl((base) + OMAP_HSMMC_##reg) #define OMAP_HSMMC_WRITE(base, reg, val) \ __raw_writel((val), (base) + OMAP_HSMMC_##reg) struct mmc_omap_host { struct device *dev; struct mmc_host *mmc; struct mmc_request *mrq; struct mmc_command *cmd; struct mmc_data *data; struct clk *fclk; struct clk *iclk; struct clk *dbclk; struct semaphore sem; struct work_struct mmc_carddetect_work; void __iomem *base; resource_size_t mapbase; unsigned int id; unsigned int dma_len; unsigned int dma_sg_idx; unsigned char bus_mode; u32 *buffer; u32 bytesleft; int suspended; int irq; int carddetect; int use_dma, dma_ch; int slot_id; int dbclk_enabled; int response_busy; struct omap_mmc_platform_data *pdata; }; /* * Stop clock to the card */ static void omap_mmc_stop_clock(struct mmc_omap_host *host) { OMAP_HSMMC_WRITE(host->base, SYSCTL, OMAP_HSMMC_READ(host->base, SYSCTL) & ~CEN); if ((OMAP_HSMMC_READ(host->base, SYSCTL) & CEN) != 0x0) dev_dbg(mmc_dev(host->mmc), "MMC Clock is not stoped\n"); } /* * Send init stream sequence to card * before sending IDLE command */ static void send_init_stream(struct mmc_omap_host *host) { int reg = 0; unsigned long timeout; disable_irq(host->irq); OMAP_HSMMC_WRITE(host->base, CON, OMAP_HSMMC_READ(host->base, CON) | INIT_STREAM); OMAP_HSMMC_WRITE(host->base, CMD, INIT_STREAM_CMD); timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS); while ((reg != CC) && time_before(jiffies, timeout)) reg = OMAP_HSMMC_READ(host->base, STAT) & CC; OMAP_HSMMC_WRITE(host->base, CON, OMAP_HSMMC_READ(host->base, CON) & ~INIT_STREAM); enable_irq(host->irq); } static inline int mmc_omap_cover_is_closed(struct mmc_omap_host *host) { int r = 1; if (host->pdata->slots[host->slot_id].get_cover_state) r = host->pdata->slots[host->slot_id].get_cover_state(host->dev, host->slot_id); return r; } static ssize_t mmc_omap_show_cover_switch(struct device *dev, struct device_attribute *attr, char *buf) { struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev); struct mmc_omap_host *host = mmc_priv(mmc); return sprintf(buf, "%s\n", mmc_omap_cover_is_closed(host) ? "closed" : "open"); } static DEVICE_ATTR(cover_switch, S_IRUGO, mmc_omap_show_cover_switch, NULL); static ssize_t mmc_omap_show_slot_name(struct device *dev, struct device_attribute *attr, char *buf) { struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev); struct mmc_omap_host *host = mmc_priv(mmc); struct omap_mmc_slot_data slot = host->pdata->slots[host->slot_id]; return sprintf(buf, "%s\n", slot.name); } static DEVICE_ATTR(slot_name, S_IRUGO, mmc_omap_show_slot_name, NULL); /* * Configure the response type and send the cmd. */ static void mmc_omap_start_command(struct mmc_omap_host *host, struct mmc_command *cmd, struct mmc_data *data) { int cmdreg = 0, resptype = 0, cmdtype = 0; dev_dbg(mmc_dev(host->mmc), "%s: CMD%d, argument 0x%08x\n", mmc_hostname(host->mmc), cmd->opcode, cmd->arg); host->cmd = cmd; /* * Clear status bits and enable interrupts */ OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR); OMAP_HSMMC_WRITE(host->base, ISE, INT_EN_MASK); OMAP_HSMMC_WRITE(host->base, IE, INT_EN_MASK); host->response_busy = 0; if (cmd->flags & MMC_RSP_PRESENT) { if (cmd->flags & MMC_RSP_136) resptype = 1; else if (cmd->flags & MMC_RSP_BUSY) { resptype = 3; host->response_busy = 1; } else resptype = 2; } /* * Unlike OMAP1 controller, the cmdtype does not seem to be based on * ac, bc, adtc, bcr. Only commands ending an open ended transfer need * a val of 0x3, rest 0x0. */ if (cmd == host->mrq->stop) cmdtype = 0x3; cmdreg = (cmd->opcode << 24) | (resptype << 16) | (cmdtype << 22); if (data) { cmdreg |= DP_SELECT | MSBS | BCE; if (data->flags & MMC_DATA_READ) cmdreg |= DDIR; else cmdreg &= ~(DDIR); } if (host->use_dma) cmdreg |= DMA_EN; OMAP_HSMMC_WRITE(host->base, ARG, cmd->arg); OMAP_HSMMC_WRITE(host->base, CMD, cmdreg); } static int mmc_omap_get_dma_dir(struct mmc_omap_host *host, struct mmc_data *data) { if (data->flags & MMC_DATA_WRITE) return DMA_TO_DEVICE; else return DMA_FROM_DEVICE; } /* * Notify the transfer complete to MMC core */ static void mmc_omap_xfer_done(struct mmc_omap_host *host, struct mmc_data *data) { if (!data) { struct mmc_request *mrq = host->mrq; host->mrq = NULL; mmc_omap_fclk_lazy_disable(host); mmc_request_done(host->mmc, mrq); return; } host->data = NULL; if (host->use_dma && host->dma_ch != -1) dma_unmap_sg(mmc_dev(host->mmc), data->sg, host->dma_len, mmc_omap_get_dma_dir(host, data)); if (!data->error) data->bytes_xfered += data->blocks * (data->blksz); else data->bytes_xfered = 0; if (!data->stop) { host->mrq = NULL; mmc_request_done(host->mmc, data->mrq); return; } mmc_omap_start_command(host, data->stop, NULL); } /* * Notify the core about command completion */ static void mmc_omap_cmd_done(struct mmc_omap_host *host, struct mmc_command *cmd) { host->cmd = NULL; if (cmd->flags & MMC_RSP_PRESENT) { if (cmd->flags & MMC_RSP_136) { /* response type 2 */ cmd->resp[3] = OMAP_HSMMC_READ(host->base, RSP10); cmd->resp[2] = OMAP_HSMMC_READ(host->base, RSP32); cmd->resp[1] = OMAP_HSMMC_READ(host->base, RSP54); cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP76); } else { /* response types 1, 1b, 3, 4, 5, 6 */ cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP10); } } if ((host->data == NULL && !host->response_busy) || cmd->error) { host->mrq = NULL; mmc_request_done(host->mmc, cmd->mrq); } } /* * DMA clean up for command errors */ static void mmc_dma_cleanup(struct mmc_omap_host *host, int errno) { host->data->error = errno; if (host->use_dma && host->dma_ch != -1) { dma_unmap_sg(mmc_dev(host->mmc), host->data->sg, host->dma_len, mmc_omap_get_dma_dir(host, host->data)); omap_free_dma(host->dma_ch); host->dma_ch = -1; up(&host->sem); } host->data = NULL; } /* * Readable error output */ #ifdef CONFIG_MMC_DEBUG static void mmc_omap_report_irq(struct mmc_omap_host *host, u32 status) { /* --- means reserved bit without definition at documentation */ static const char *mmc_omap_status_bits[] = { "CC", "TC", "BGE", "---", "BWR", "BRR", "---", "---", "CIRQ", "OBI", "---", "---", "---", "---", "---", "ERRI", "CTO", "CCRC", "CEB", "CIE", "DTO", "DCRC", "DEB", "---", "ACE", "---", "---", "---", "---", "CERR", "CERR", "BADA", "---", "---", "---" }; char res[256]; char *buf = res; int len, i; len = sprintf(buf, "MMC IRQ 0x%x :", status); buf += len; for (i = 0; i < ARRAY_SIZE(mmc_omap_status_bits); i++) if (status & (1 << i)) { len = sprintf(buf, " %s", mmc_omap_status_bits[i]); buf += len; } dev_dbg(mmc_dev(host->mmc), "%s\n", res); } #endif /* CONFIG_MMC_DEBUG */ /* * MMC controller internal state machines reset * * Used to reset command or data internal state machines, using respectively * SRC or SRD bit of SYSCTL register * Can be called from interrupt context */ static inline void mmc_omap_reset_controller_fsm(struct mmc_omap_host *host, unsigned long bit) { unsigned long i = 0; unsigned long limit = (loops_per_jiffy * msecs_to_jiffies(MMC_TIMEOUT_MS)); OMAP_HSMMC_WRITE(host->base, SYSCTL, OMAP_HSMMC_READ(host->base, SYSCTL) | bit); while ((OMAP_HSMMC_READ(host->base, SYSCTL) & bit) && (i++ < limit)) cpu_relax(); if (OMAP_HSMMC_READ(host->base, SYSCTL) & bit) dev_err(mmc_dev(host->mmc), "Timeout waiting on controller reset in %s\n", __func__); } /* * MMC controller IRQ handler */ static irqreturn_t mmc_omap_irq(int irq, void *dev_id) { struct mmc_omap_host *host = dev_id; struct mmc_data *data; int end_cmd = 0, end_trans = 0, status; if (host->mrq == NULL) { OMAP_HSMMC_WRITE(host->base, STAT, OMAP_HSMMC_READ(host->base, STAT)); return IRQ_HANDLED; } data = host->data; status = OMAP_HSMMC_READ(host->base, STAT); dev_dbg(mmc_dev(host->mmc), "IRQ Status is %x\n", status); if (status & ERR) { #ifdef CONFIG_MMC_DEBUG mmc_omap_report_irq(host, status); #endif if ((status & CMD_TIMEOUT) || (status & CMD_CRC)) { if (host->cmd) { if (status & CMD_TIMEOUT) { mmc_omap_reset_controller_fsm(host, SRC); host->cmd->error = -ETIMEDOUT; } else { host->cmd->error = -EILSEQ; } end_cmd = 1; } if (host->data || host->response_busy) { if (host->data) mmc_dma_cleanup(host, -ETIMEDOUT); host->response_busy = 0; mmc_omap_reset_controller_fsm(host, SRD); } } if ((status & DATA_TIMEOUT) || (status & DATA_CRC)) { if (host->data || host->response_busy) { int err = (status & DATA_TIMEOUT) ? -ETIMEDOUT : -EILSEQ; if (host->data) mmc_dma_cleanup(host, err); else host->mrq->cmd->error = err; host->response_busy = 0; mmc_omap_reset_controller_fsm(host, SRD); end_trans = 1; } } if (status & CARD_ERR) { dev_dbg(mmc_dev(host->mmc), "Ignoring card err CMD%d\n", host->cmd->opcode); if (host->cmd) end_cmd = 1; if (host->data) end_trans = 1; } } OMAP_HSMMC_WRITE(host->base, STAT, status); if (end_cmd || (status & CC)) mmc_omap_cmd_done(host, host->cmd); if (end_trans || (status & TC)) mmc_omap_xfer_done(host, data); return IRQ_HANDLED; } /* * Switch MMC interface voltage ... only relevant for MMC1. * * MMC2 and MMC3 use fixed 1.8V levels, and maybe a transceiver. * The MMC2 transceiver controls are used instead of DAT4..DAT7. * Some chips, like eMMC ones, use internal transceivers. */ static int omap_mmc_switch_opcond(struct mmc_omap_host *host, int vdd) { u32 reg_val = 0; int ret; /* Disable the clocks */ clk_disable(host->fclk); clk_disable(host->iclk); clk_disable(host->dbclk); /* Turn the power off */ ret = mmc_slot(host).set_power(host->dev, host->slot_id, 0, 0); if (ret != 0) goto err; /* Turn the power ON with given VDD 1.8 or 3.0v */ ret = mmc_slot(host).set_power(host->dev, host->slot_id, 1, vdd); if (ret != 0) goto err; clk_enable(host->fclk); clk_enable(host->iclk); clk_enable(host->dbclk); OMAP_HSMMC_WRITE(host->base, HCTL, OMAP_HSMMC_READ(host->base, HCTL) & SDVSCLR); reg_val = OMAP_HSMMC_READ(host->base, HCTL); /* * If a MMC dual voltage card is detected, the set_ios fn calls * this fn with VDD bit set for 1.8V. Upon card removal from the * slot, omap_mmc_set_ios sets the VDD back to 3V on MMC_POWER_OFF. * * Cope with a bit of slop in the range ... per data sheets: * - "1.8V" for vdds_mmc1/vdds_mmc1a can be up to 2.45V max, * but recommended values are 1.71V to 1.89V * - "3.0V" for vdds_mmc1/vdds_mmc1a can be up to 3.5V max, * but recommended values are 2.7V to 3.3V * * Board setup code shouldn't permit anything very out-of-range. * TWL4030-family VMMC1 and VSIM regulators are fine (avoiding the * middle range) but VSIM can't power DAT4..DAT7 at more than 3V. */ if ((1 << vdd) <= MMC_VDD_23_24) reg_val |= SDVS18; else reg_val |= SDVS30; OMAP_HSMMC_WRITE(host->base, HCTL, reg_val); OMAP_HSMMC_WRITE(host->base, HCTL, OMAP_HSMMC_READ(host->base, HCTL) | SDBP); return 0; err: dev_dbg(mmc_dev(host->mmc), "Unable to switch operating voltage\n"); return ret; } /* * Work Item to notify the core about card insertion/removal */ static void mmc_omap_detect(struct work_struct *work) { struct mmc_omap_host *host = container_of(work, struct mmc_omap_host, mmc_carddetect_work); struct omap_mmc_slot_data *slot = &mmc_slot(host); if (mmc_slot(host).card_detect) host->carddetect = slot->card_detect(slot->card_detect_irq); else host->carddetect = -ENOSYS; sysfs_notify(&host->mmc->class_dev.kobj, NULL, "cover_switch"); if (host->carddetect) { mmc_detect_change(host->mmc, (HZ * 200) / 1000); } else { mmc_omap_reset_controller_fsm(host, SRD); mmc_detect_change(host->mmc, (HZ * 50) / 1000); } } /* * ISR for handling card insertion and removal */ static irqreturn_t omap_mmc_cd_handler(int irq, void *dev_id) { struct mmc_omap_host *host = (struct mmc_omap_host *)dev_id; schedule_work(&host->mmc_carddetect_work); return IRQ_HANDLED; } static int mmc_omap_get_dma_sync_dev(struct mmc_omap_host *host, struct mmc_data *data) { int sync_dev; if (data->flags & MMC_DATA_WRITE) { if (host->id == OMAP_MMC1_DEVID) sync_dev = OMAP24XX_DMA_MMC1_TX; else sync_dev = OMAP24XX_DMA_MMC2_TX; } else { if (host->id == OMAP_MMC1_DEVID) sync_dev = OMAP24XX_DMA_MMC1_RX; else sync_dev = OMAP24XX_DMA_MMC2_RX; } return sync_dev; } static void mmc_omap_config_dma_params(struct mmc_omap_host *host, struct mmc_data *data, struct scatterlist *sgl) { int blksz, nblk, dma_ch; dma_ch = host->dma_ch; if (data->flags & MMC_DATA_WRITE) { omap_set_dma_dest_params(dma_ch, 0, OMAP_DMA_AMODE_CONSTANT, (host->mapbase + OMAP_HSMMC_DATA), 0, 0); omap_set_dma_src_params(dma_ch, 0, OMAP_DMA_AMODE_POST_INC, sg_dma_address(sgl), 0, 0); } else { omap_set_dma_src_params(dma_ch, 0, OMAP_DMA_AMODE_CONSTANT, (host->mapbase + OMAP_HSMMC_DATA), 0, 0); omap_set_dma_dest_params(dma_ch, 0, OMAP_DMA_AMODE_POST_INC, sg_dma_address(sgl), 0, 0); } blksz = host->data->blksz; nblk = sg_dma_len(sgl) / blksz; omap_set_dma_transfer_params(dma_ch, OMAP_DMA_DATA_TYPE_S32, blksz / 4, nblk, OMAP_DMA_SYNC_FRAME, mmc_omap_get_dma_sync_dev(host, data), !(data->flags & MMC_DATA_WRITE)); omap_start_dma(dma_ch); } /* * DMA call back function */ static void mmc_omap_dma_cb(int lch, u16 ch_status, void *data) { struct mmc_omap_host *host = data; if (ch_status & OMAP2_DMA_MISALIGNED_ERR_IRQ) dev_dbg(mmc_dev(host->mmc), "MISALIGNED_ADRS_ERR\n"); if (host->dma_ch < 0) return; host->dma_sg_idx++; if (host->dma_sg_idx < host->dma_len) { /* Fire up the next transfer. */ mmc_omap_config_dma_params(host, host->data, host->data->sg + host->dma_sg_idx); return; } omap_free_dma(host->dma_ch); host->dma_ch = -1; /* * DMA Callback: run in interrupt context. * mutex_unlock will through a kernel warning if used. */ up(&host->sem); } /* * Routine to configure and start DMA for the MMC card */ static int mmc_omap_start_dma_transfer(struct mmc_omap_host *host, struct mmc_request *req) { int dma_ch = 0, ret = 0, err = 1, i; struct mmc_data *data = req->data; /* Sanity check: all the SG entries must be aligned by block size. */ for (i = 0; i < host->dma_len; i++) { struct scatterlist *sgl; sgl = data->sg + i; if (sgl->length % data->blksz) return -EINVAL; } if ((data->blksz % 4) != 0) /* REVISIT: The MMC buffer increments only when MSB is written. * Return error for blksz which is non multiple of four. */ return -EINVAL; /* * If for some reason the DMA transfer is still active, * we wait for timeout period and free the dma */ if (host->dma_ch != -1) { set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(100); if (down_trylock(&host->sem)) { omap_free_dma(host->dma_ch); host->dma_ch = -1; up(&host->sem); return err; } } else { if (down_trylock(&host->sem)) return err; } ret = omap_request_dma(mmc_omap_get_dma_sync_dev(host, data), "MMC/SD", mmc_omap_dma_cb,host, &dma_ch); if (ret != 0) { dev_err(mmc_dev(host->mmc), "%s: omap_request_dma() failed with %d\n", mmc_hostname(host->mmc), ret); return ret; } host->dma_len = dma_map_sg(mmc_dev(host->mmc), data->sg, data->sg_len, mmc_omap_get_dma_dir(host, data)); host->dma_ch = dma_ch; host->dma_sg_idx = 0; mmc_omap_config_dma_params(host, data, data->sg); return 0; } static void set_data_timeout(struct mmc_omap_host *host, struct mmc_request *req) { unsigned int timeout, cycle_ns; uint32_t reg, clkd, dto = 0; reg = OMAP_HSMMC_READ(host->base, SYSCTL); clkd = (reg & CLKD_MASK) >> CLKD_SHIFT; if (clkd == 0) clkd = 1; cycle_ns = 1000000000 / (clk_get_rate(host->fclk) / clkd); timeout = req->data->timeout_ns / cycle_ns; timeout += req->data->timeout_clks; if (timeout) { while ((timeout & 0x80000000) == 0) { dto += 1; timeout <<= 1; } dto = 31 - dto; timeout <<= 1; if (timeout && dto) dto += 1; if (dto >= 13) dto -= 13; else dto = 0; if (dto > 14) dto = 14; } reg &= ~DTO_MASK; reg |= dto << DTO_SHIFT; OMAP_HSMMC_WRITE(host->base, SYSCTL, reg); } /* * Configure block length for MMC/SD cards and initiate the transfer. */ static int mmc_omap_prepare_data(struct mmc_omap_host *host, struct mmc_request *req) { int ret; host->data = req->data; if (req->data == NULL) { OMAP_HSMMC_WRITE(host->base, BLK, 0); return 0; } OMAP_HSMMC_WRITE(host->base, BLK, (req->data->blksz) | (req->data->blocks << 16)); set_data_timeout(host, req); if (host->use_dma) { ret = mmc_omap_start_dma_transfer(host, req); if (ret != 0) { dev_dbg(mmc_dev(host->mmc), "MMC start dma failure\n"); return ret; } } return 0; } /* * Request function. for read/write operation */ static void omap_mmc_request(struct mmc_host *mmc, struct mmc_request *req) { struct mmc_omap_host *host = mmc_priv(mmc); WARN_ON(host->mrq != NULL); host->mrq = req; mmc_omap_prepare_data(host, req); mmc_omap_start_command(host, req->cmd, req->data); } /* Routine to configure clock values. Exposed API to core */ static void omap_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) { struct mmc_omap_host *host = mmc_priv(mmc); u16 dsor = 0; unsigned long regval; unsigned long timeout; u32 con; switch (ios->power_mode) { case MMC_POWER_OFF: mmc_slot(host).set_power(host->dev, host->slot_id, 0, 0); break; case MMC_POWER_UP: mmc_slot(host).set_power(host->dev, host->slot_id, 1, ios->vdd); break; } con = OMAP_HSMMC_READ(host->base, CON); switch (mmc->ios.bus_width) { case MMC_BUS_WIDTH_8: OMAP_HSMMC_WRITE(host->base, CON, con | DW8); break; case MMC_BUS_WIDTH_4: OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8); OMAP_HSMMC_WRITE(host->base, HCTL, OMAP_HSMMC_READ(host->base, HCTL) | FOUR_BIT); break; case MMC_BUS_WIDTH_1: OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8); OMAP_HSMMC_WRITE(host->base, HCTL, OMAP_HSMMC_READ(host->base, HCTL) & ~FOUR_BIT); break; } if (host->id == OMAP_MMC1_DEVID) { /* Only MMC1 can interface at 3V without some flavor * of external transceiver; but they all handle 1.8V. */ if ((OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET) && (ios->vdd == DUAL_VOLT_OCR_BIT)) { /* * The mmc_select_voltage fn of the core does * not seem to set the power_mode to * MMC_POWER_UP upon recalculating the voltage. * vdd 1.8v. */ if (omap_mmc_switch_opcond(host, ios->vdd) != 0) dev_dbg(mmc_dev(host->mmc), "Switch operation failed\n"); } } if (ios->clock) { dsor = OMAP_MMC_MASTER_CLOCK / ios->clock; if (dsor < 1) dsor = 1; if (OMAP_MMC_MASTER_CLOCK / dsor > ios->clock) dsor++; if (dsor > 250) dsor = 250; } omap_mmc_stop_clock(host); regval = OMAP_HSMMC_READ(host->base, SYSCTL); regval = regval & ~(CLKD_MASK); regval = regval | (dsor << 6) | (DTO << 16); OMAP_HSMMC_WRITE(host->base, SYSCTL, regval); OMAP_HSMMC_WRITE(host->base, SYSCTL, OMAP_HSMMC_READ(host->base, SYSCTL) | ICE); /* Wait till the ICS bit is set */ timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS); while ((OMAP_HSMMC_READ(host->base, SYSCTL) & ICS) != 0x2 && time_before(jiffies, timeout)) msleep(1); OMAP_HSMMC_WRITE(host->base, SYSCTL, OMAP_HSMMC_READ(host->base, SYSCTL) | CEN); if (ios->power_mode == MMC_POWER_ON) send_init_stream(host); if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) OMAP_HSMMC_WRITE(host->base, CON, OMAP_HSMMC_READ(host->base, CON) | OD); } static int omap_hsmmc_get_cd(struct mmc_host *mmc) { struct mmc_omap_host *host = mmc_priv(mmc); struct omap_mmc_platform_data *pdata = host->pdata; if (!pdata->slots[0].card_detect) return -ENOSYS; return pdata->slots[0].card_detect(pdata->slots[0].card_detect_irq); } static int omap_hsmmc_get_ro(struct mmc_host *mmc) { struct mmc_omap_host *host = mmc_priv(mmc); struct omap_mmc_platform_data *pdata = host->pdata; if (!pdata->slots[0].get_ro) return -ENOSYS; return pdata->slots[0].get_ro(host->dev, 0); } static void omap_hsmmc_init(struct mmc_omap_host *host) { u32 hctl, capa, value; /* Only MMC1 supports 3.0V */ if (host->id == OMAP_MMC1_DEVID) { hctl = SDVS30; capa = VS30 | VS18; } else { hctl = SDVS18; capa = VS18; } value = OMAP_HSMMC_READ(host->base, HCTL) & ~SDVS_MASK; OMAP_HSMMC_WRITE(host->base, HCTL, value | hctl); value = OMAP_HSMMC_READ(host->base, CAPA); OMAP_HSMMC_WRITE(host->base, CAPA, value | capa); /* Set the controller to AUTO IDLE mode */ value = OMAP_HSMMC_READ(host->base, SYSCONFIG); OMAP_HSMMC_WRITE(host->base, SYSCONFIG, value | AUTOIDLE); /* Set SD bus power bit */ value = OMAP_HSMMC_READ(host->base, HCTL); OMAP_HSMMC_WRITE(host->base, HCTL, value | SDBP); } static struct mmc_host_ops mmc_omap_ops = { .request = omap_mmc_request, .set_ios = omap_mmc_set_ios, .get_cd = omap_hsmmc_get_cd, .get_ro = omap_hsmmc_get_ro, /* NYET -- enable_sdio_irq */ }; static int __init omap_mmc_probe(struct platform_device *pdev) { struct omap_mmc_platform_data *pdata = pdev->dev.platform_data; struct mmc_host *mmc; struct mmc_omap_host *host = NULL; struct resource *res; int ret = 0, irq; if (pdata == NULL) { dev_err(&pdev->dev, "Platform Data is missing\n"); return -ENXIO; } if (pdata->nr_slots == 0) { dev_err(&pdev->dev, "No Slots\n"); return -ENXIO; } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); irq = platform_get_irq(pdev, 0); if (res == NULL || irq < 0) return -ENXIO; res = request_mem_region(res->start, res->end - res->start + 1, pdev->name); if (res == NULL) return -EBUSY; mmc = mmc_alloc_host(sizeof(struct mmc_omap_host), &pdev->dev); if (!mmc) { ret = -ENOMEM; goto err; } host = mmc_priv(mmc); host->mmc = mmc; host->pdata = pdata; host->dev = &pdev->dev; host->use_dma = 1; host->dev->dma_mask = &pdata->dma_mask; host->dma_ch = -1; host->irq = irq; host->id = pdev->id; host->slot_id = 0; host->mapbase = res->start; host->base = ioremap(host->mapbase, SZ_4K); platform_set_drvdata(pdev, host); INIT_WORK(&host->mmc_carddetect_work, mmc_omap_detect); mmc->ops = &mmc_omap_ops; mmc->f_min = 400000; mmc->f_max = 52000000; sema_init(&host->sem, 1); host->iclk = clk_get(&pdev->dev, "mmchs_ick"); if (IS_ERR(host->iclk)) { ret = PTR_ERR(host->iclk); host->iclk = NULL; goto err1; } host->fclk = clk_get(&pdev->dev, "mmchs_fck"); if (IS_ERR(host->fclk)) { ret = PTR_ERR(host->fclk); host->fclk = NULL; clk_put(host->iclk); goto err1; } if (clk_enable(host->fclk) != 0) { clk_put(host->iclk); clk_put(host->fclk); goto err1; } if (clk_enable(host->iclk) != 0) { clk_disable(host->fclk); clk_put(host->iclk); clk_put(host->fclk); goto err1; } host->dbclk = clk_get(&pdev->dev, "mmchsdb_fck"); /* * MMC can still work without debounce clock. */ if (IS_ERR(host->dbclk)) dev_warn(mmc_dev(host->mmc), "Failed to get debounce clock\n"); else if (clk_enable(host->dbclk) != 0) dev_dbg(mmc_dev(host->mmc), "Enabling debounce" " clk failed\n"); else host->dbclk_enabled = 1; /* Since we do only SG emulation, we can have as many segs * as we want. */ mmc->max_phys_segs = 1024; mmc->max_hw_segs = 1024; mmc->max_blk_size = 512; /* Block Length at max can be 1024 */ mmc->max_blk_count = 0xFFFF; /* No. of Blocks is 16 bits */ mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count; mmc->max_seg_size = mmc->max_req_size; mmc->ocr_avail = mmc_slot(host).ocr_mask; mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED; if (pdata->slots[host->slot_id].wires >= 8) mmc->caps |= MMC_CAP_8_BIT_DATA; else if (pdata->slots[host->slot_id].wires >= 4) mmc->caps |= MMC_CAP_4_BIT_DATA; omap_hsmmc_init(host); /* Request IRQ for MMC operations */ ret = request_irq(host->irq, mmc_omap_irq, IRQF_DISABLED, mmc_hostname(mmc), host); if (ret) { dev_dbg(mmc_dev(host->mmc), "Unable to grab HSMMC IRQ\n"); goto err_irq; } if (pdata->init != NULL) { if (pdata->init(&pdev->dev) != 0) { dev_dbg(mmc_dev(host->mmc), "Unable to configure MMC IRQs\n"); goto err_irq_cd_init; } } /* Request IRQ for card detect */ if ((mmc_slot(host).card_detect_irq)) { ret = request_irq(mmc_slot(host).card_detect_irq, omap_mmc_cd_handler, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING | IRQF_DISABLED, mmc_hostname(mmc), host); if (ret) { dev_dbg(mmc_dev(host->mmc), "Unable to grab MMC CD IRQ\n"); goto err_irq_cd; } } OMAP_HSMMC_WRITE(host->base, ISE, INT_EN_MASK); OMAP_HSMMC_WRITE(host->base, IE, INT_EN_MASK); mmc_add_host(mmc); if (host->pdata->slots[host->slot_id].name != NULL) { ret = device_create_file(&mmc->class_dev, &dev_attr_slot_name); if (ret < 0) goto err_slot_name; } if (mmc_slot(host).card_detect_irq && host->pdata->slots[host->slot_id].get_cover_state) { ret = device_create_file(&mmc->class_dev, &dev_attr_cover_switch); if (ret < 0) goto err_cover_switch; } return 0; err_cover_switch: device_remove_file(&mmc->class_dev, &dev_attr_cover_switch); err_slot_name: mmc_remove_host(mmc); err_irq_cd: free_irq(mmc_slot(host).card_detect_irq, host); err_irq_cd_init: free_irq(host->irq, host); err_irq: clk_disable(host->fclk); clk_disable(host->iclk); clk_put(host->fclk); clk_put(host->iclk); if (host->dbclk_enabled) { clk_disable(host->dbclk); clk_put(host->dbclk); } err1: iounmap(host->base); err: dev_dbg(mmc_dev(host->mmc), "Probe Failed\n"); release_mem_region(res->start, res->end - res->start + 1); if (host) mmc_free_host(mmc); return ret; } static int omap_mmc_remove(struct platform_device *pdev) { struct mmc_omap_host *host = platform_get_drvdata(pdev); struct resource *res; if (host) { mmc_remove_host(host->mmc); if (host->pdata->cleanup) host->pdata->cleanup(&pdev->dev); free_irq(host->irq, host); if (mmc_slot(host).card_detect_irq) free_irq(mmc_slot(host).card_detect_irq, host); flush_scheduled_work(); clk_disable(host->fclk); clk_disable(host->iclk); clk_put(host->fclk); clk_put(host->iclk); if (host->dbclk_enabled) { clk_disable(host->dbclk); clk_put(host->dbclk); } mmc_free_host(host->mmc); iounmap(host->base); } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (res) release_mem_region(res->start, res->end - res->start + 1); platform_set_drvdata(pdev, NULL); return 0; } #ifdef CONFIG_PM static int omap_mmc_suspend(struct platform_device *pdev, pm_message_t state) { int ret = 0; struct mmc_omap_host *host = platform_get_drvdata(pdev); if (host && host->suspended) return 0; if (host) { ret = mmc_suspend_host(host->mmc, state); if (ret == 0) { host->suspended = 1; OMAP_HSMMC_WRITE(host->base, ISE, 0); OMAP_HSMMC_WRITE(host->base, IE, 0); if (host->pdata->suspend) { ret = host->pdata->suspend(&pdev->dev, host->slot_id); if (ret) dev_dbg(mmc_dev(host->mmc), "Unable to handle MMC board" " level suspend\n"); } if (host->id == OMAP_MMC1_DEVID && !(OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET)) { OMAP_HSMMC_WRITE(host->base, HCTL, OMAP_HSMMC_READ(host->base, HCTL) & SDVSCLR); OMAP_HSMMC_WRITE(host->base, HCTL, OMAP_HSMMC_READ(host->base, HCTL) | SDVS30); OMAP_HSMMC_WRITE(host->base, HCTL, OMAP_HSMMC_READ(host->base, HCTL) | SDBP); } clk_disable(host->fclk); clk_disable(host->iclk); clk_disable(host->dbclk); } } return ret; } /* Routine to resume the MMC device */ static int omap_mmc_resume(struct platform_device *pdev) { int ret = 0; struct mmc_omap_host *host = platform_get_drvdata(pdev); if (host && !host->suspended) return 0; if (host) { ret = clk_enable(host->fclk); if (ret) goto clk_en_err; ret = clk_enable(host->iclk); if (ret) { clk_disable(host->fclk); clk_put(host->fclk); goto clk_en_err; } if (clk_enable(host->dbclk) != 0) dev_dbg(mmc_dev(host->mmc), "Enabling debounce clk failed\n"); omap_hsmmc_init(host); if (host->pdata->resume) { ret = host->pdata->resume(&pdev->dev, host->slot_id); if (ret) dev_dbg(mmc_dev(host->mmc), "Unmask interrupt failed\n"); } /* Notify the core to resume the host */ ret = mmc_resume_host(host->mmc); if (ret == 0) host->suspended = 0; } return ret; clk_en_err: dev_dbg(mmc_dev(host->mmc), "Failed to enable MMC clocks during resume\n"); return ret; } #else #define omap_mmc_suspend NULL #define omap_mmc_resume NULL #endif static struct platform_driver omap_mmc_driver = { .probe = omap_mmc_probe, .remove = omap_mmc_remove, .suspend = omap_mmc_suspend, .resume = omap_mmc_resume, .driver = { .name = DRIVER_NAME, .owner = THIS_MODULE, }, }; static int __init omap_mmc_init(void) { /* Register the MMC driver */ return platform_driver_register(&omap_mmc_driver); } static void __exit omap_mmc_cleanup(void) { /* Unregister MMC driver */ platform_driver_unregister(&omap_mmc_driver); } module_init(omap_mmc_init); module_exit(omap_mmc_cleanup); MODULE_DESCRIPTION("OMAP High Speed Multimedia Card driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:" DRIVER_NAME); MODULE_AUTHOR("Texas Instruments Inc");