/* * Copyright 2015 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include "pp_debug.h" #include #include #include #include "atom-types.h" #include "atombios.h" #include "processpptables.h" #include "cgs_common.h" #include "smumgr.h" #include "hwmgr.h" #include "hardwaremanager.h" #include "rv_ppsmc.h" #include "rv_hwmgr.h" #include "power_state.h" #include "rv_smumgr.h" #include "pp_soc15.h" #define RAVEN_MAX_DEEPSLEEP_DIVIDER_ID 5 #define RAVEN_MINIMUM_ENGINE_CLOCK 800 /* 8Mhz, the low boundary of engine clock allowed on this chip */ #define SCLK_MIN_DIV_INTV_SHIFT 12 #define RAVEN_DISPCLK_BYPASS_THRESHOLD 10000 /* 100Mhz */ #define SMC_RAM_END 0x40000 static const unsigned long PhwRaven_Magic = (unsigned long) PHM_Rv_Magic; int rv_display_clock_voltage_request(struct pp_hwmgr *hwmgr, struct pp_display_clock_request *clock_req); static struct rv_power_state *cast_rv_ps(struct pp_hw_power_state *hw_ps) { if (PhwRaven_Magic != hw_ps->magic) return NULL; return (struct rv_power_state *)hw_ps; } static const struct rv_power_state *cast_const_rv_ps( const struct pp_hw_power_state *hw_ps) { if (PhwRaven_Magic != hw_ps->magic) return NULL; return (struct rv_power_state *)hw_ps; } static int rv_initialize_dpm_defaults(struct pp_hwmgr *hwmgr) { struct rv_hwmgr *rv_hwmgr = (struct rv_hwmgr *)(hwmgr->backend); rv_hwmgr->dce_slow_sclk_threshold = 30000; rv_hwmgr->thermal_auto_throttling_treshold = 0; rv_hwmgr->is_nb_dpm_enabled = 1; rv_hwmgr->dpm_flags = 1; rv_hwmgr->gfx_off_controled_by_driver = false; phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkThrottleLowNotification); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PowerPlaySupport); return 0; } static int rv_construct_max_power_limits_table(struct pp_hwmgr *hwmgr, struct phm_clock_and_voltage_limits *table) { return 0; } static int rv_init_dynamic_state_adjustment_rule_settings( struct pp_hwmgr *hwmgr) { uint32_t table_size = sizeof(struct phm_clock_voltage_dependency_table) + (7 * sizeof(struct phm_clock_voltage_dependency_record)); struct phm_clock_voltage_dependency_table *table_clk_vlt = kzalloc(table_size, GFP_KERNEL); if (NULL == table_clk_vlt) { pr_err("Can not allocate memory!\n"); return -ENOMEM; } table_clk_vlt->count = 8; table_clk_vlt->entries[0].clk = PP_DAL_POWERLEVEL_0; table_clk_vlt->entries[0].v = 0; table_clk_vlt->entries[1].clk = PP_DAL_POWERLEVEL_1; table_clk_vlt->entries[1].v = 1; table_clk_vlt->entries[2].clk = PP_DAL_POWERLEVEL_2; table_clk_vlt->entries[2].v = 2; table_clk_vlt->entries[3].clk = PP_DAL_POWERLEVEL_3; table_clk_vlt->entries[3].v = 3; table_clk_vlt->entries[4].clk = PP_DAL_POWERLEVEL_4; table_clk_vlt->entries[4].v = 4; table_clk_vlt->entries[5].clk = PP_DAL_POWERLEVEL_5; table_clk_vlt->entries[5].v = 5; table_clk_vlt->entries[6].clk = PP_DAL_POWERLEVEL_6; table_clk_vlt->entries[6].v = 6; table_clk_vlt->entries[7].clk = PP_DAL_POWERLEVEL_7; table_clk_vlt->entries[7].v = 7; hwmgr->dyn_state.vddc_dep_on_dal_pwrl = table_clk_vlt; return 0; } static int rv_get_system_info_data(struct pp_hwmgr *hwmgr) { struct rv_hwmgr *rv_data = (struct rv_hwmgr *)hwmgr->backend; rv_data->sys_info.htc_hyst_lmt = 5; rv_data->sys_info.htc_tmp_lmt = 203; if (rv_data->thermal_auto_throttling_treshold == 0) rv_data->thermal_auto_throttling_treshold = 203; rv_construct_max_power_limits_table (hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_ac); rv_init_dynamic_state_adjustment_rule_settings(hwmgr); return 0; } static int rv_construct_boot_state(struct pp_hwmgr *hwmgr) { return 0; } static int rv_tf_set_clock_limit(struct pp_hwmgr *hwmgr, void *input, void *output, void *storage, int result) { struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend); struct PP_Clocks clocks = {0}; struct pp_display_clock_request clock_req; clocks.dcefClock = hwmgr->display_config.min_dcef_set_clk; clocks.dcefClockInSR = hwmgr->display_config.min_dcef_deep_sleep_set_clk; clock_req.clock_type = amd_pp_dcf_clock; clock_req.clock_freq_in_khz = clocks.dcefClock * 10; if (clocks.dcefClock == 0 && clocks.dcefClockInSR == 0) clock_req.clock_freq_in_khz = rv_data->dcf_actual_hard_min_freq; PP_ASSERT_WITH_CODE(!rv_display_clock_voltage_request(hwmgr, &clock_req), "Attempt to set DCF Clock Failed!", return -EINVAL); if(rv_data->need_min_deep_sleep_dcefclk && 0 != clocks.dcefClockInSR) smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetMinDeepSleepDcefclk, clocks.dcefClockInSR / 100); if (((hwmgr->uvd_arbiter.vclk_soft_min / 100) != rv_data->vclk_soft_min) || ((hwmgr->uvd_arbiter.dclk_soft_min / 100) != rv_data->dclk_soft_min)) { rv_data->vclk_soft_min = hwmgr->uvd_arbiter.vclk_soft_min / 100; rv_data->dclk_soft_min = hwmgr->uvd_arbiter.dclk_soft_min / 100; smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetSoftMinVcn, (rv_data->vclk_soft_min << 16) | rv_data->vclk_soft_min); } if((hwmgr->gfx_arbiter.sclk_hard_min != 0) && ((hwmgr->gfx_arbiter.sclk_hard_min / 100) != rv_data->soc_actual_hard_min_freq)) { smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetHardMinSocclkByFreq, hwmgr->gfx_arbiter.sclk_hard_min / 100); rv_read_arg_from_smc(hwmgr->smumgr, &rv_data->soc_actual_hard_min_freq); } if ((hwmgr->gfx_arbiter.gfxclk != 0) && (rv_data->gfx_actual_soft_min_freq != (hwmgr->gfx_arbiter.gfxclk))) { smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetMinVideoGfxclkFreq, hwmgr->gfx_arbiter.gfxclk / 100); rv_read_arg_from_smc(hwmgr->smumgr, &rv_data->gfx_actual_soft_min_freq); } if ((hwmgr->gfx_arbiter.fclk != 0) && (rv_data->fabric_actual_soft_min_freq != (hwmgr->gfx_arbiter.fclk / 100))) { smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetMinVideoFclkFreq, hwmgr->gfx_arbiter.fclk / 100); rv_read_arg_from_smc(hwmgr->smumgr, &rv_data->fabric_actual_soft_min_freq); } return 0; } static int rv_tf_set_num_active_display(struct pp_hwmgr *hwmgr, void *input, void *output, void *storage, int result) { uint32_t num_of_active_displays = 0; struct cgs_display_info info = {0}; cgs_get_active_displays_info(hwmgr->device, &info); num_of_active_displays = info.display_count; smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetDisplayCount, num_of_active_displays); return 0; } static const struct phm_master_table_item rv_set_power_state_list[] = { { NULL, rv_tf_set_clock_limit }, { NULL, rv_tf_set_num_active_display }, { } }; static const struct phm_master_table_header rv_set_power_state_master = { 0, PHM_MasterTableFlag_None, rv_set_power_state_list }; static int rv_tf_init_power_gate_state(struct pp_hwmgr *hwmgr, void *input, void *output, void *storage, int result) { struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend); rv_data->vcn_power_gated = true; rv_data->isp_tileA_power_gated = true; rv_data->isp_tileB_power_gated = true; return 0; } static const struct phm_master_table_item rv_setup_asic_list[] = { { .tableFunction = rv_tf_init_power_gate_state }, { } }; static const struct phm_master_table_header rv_setup_asic_master = { 0, PHM_MasterTableFlag_None, rv_setup_asic_list }; static int rv_tf_reset_cc6_data(struct pp_hwmgr *hwmgr, void *input, void *output, void *storage, int result) { struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend); rv_data->separation_time = 0; rv_data->cc6_disable = false; rv_data->pstate_disable = false; rv_data->cc6_setting_changed = false; return 0; } static const struct phm_master_table_item rv_power_down_asic_list[] = { { .tableFunction = rv_tf_reset_cc6_data }, { } }; static const struct phm_master_table_header rv_power_down_asic_master = { 0, PHM_MasterTableFlag_None, rv_power_down_asic_list }; static int rv_tf_disable_gfx_off(struct pp_hwmgr *hwmgr, void *input, void *output, void *storage, int result) { struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend); if (rv_data->gfx_off_controled_by_driver) smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_DisableGfxOff); return 0; } static const struct phm_master_table_item rv_disable_dpm_list[] = { {NULL, rv_tf_disable_gfx_off}, { }, }; static const struct phm_master_table_header rv_disable_dpm_master = { 0, PHM_MasterTableFlag_None, rv_disable_dpm_list }; static int rv_tf_enable_gfx_off(struct pp_hwmgr *hwmgr, void *input, void *output, void *storage, int result) { struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend); if (rv_data->gfx_off_controled_by_driver) smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_EnableGfxOff); return 0; } static const struct phm_master_table_item rv_enable_dpm_list[] = { {NULL, rv_tf_enable_gfx_off}, { }, }; static const struct phm_master_table_header rv_enable_dpm_master = { 0, PHM_MasterTableFlag_None, rv_enable_dpm_list }; static int rv_apply_state_adjust_rules(struct pp_hwmgr *hwmgr, struct pp_power_state *prequest_ps, const struct pp_power_state *pcurrent_ps) { return 0; } /* temporary hardcoded clock voltage breakdown tables */ DpmClock_t VddDcfClk[]= { { 300, 2600}, { 600, 3200}, { 600, 3600}, }; DpmClock_t VddSocClk[]= { { 478, 2600}, { 722, 3200}, { 722, 3600}, }; DpmClock_t VddFClk[]= { { 400, 2600}, {1200, 3200}, {1200, 3600}, }; DpmClock_t VddDispClk[]= { { 435, 2600}, { 661, 3200}, {1086, 3600}, }; DpmClock_t VddDppClk[]= { { 435, 2600}, { 661, 3200}, { 661, 3600}, }; DpmClock_t VddPhyClk[]= { { 540, 2600}, { 810, 3200}, { 810, 3600}, }; static int rv_get_clock_voltage_dependency_table(struct pp_hwmgr *hwmgr, struct rv_voltage_dependency_table **pptable, uint32_t num_entry, DpmClock_t *pclk_dependency_table) { uint32_t table_size, i; struct rv_voltage_dependency_table *ptable; table_size = sizeof(uint32_t) + sizeof(struct rv_voltage_dependency_table) * num_entry; ptable = kzalloc(table_size, GFP_KERNEL); if (NULL == ptable) return -ENOMEM; ptable->count = num_entry; for (i = 0; i < ptable->count; i++) { ptable->entries[i].clk = pclk_dependency_table->Freq * 100; ptable->entries[i].vol = pclk_dependency_table->Vol; pclk_dependency_table++; } *pptable = ptable; return 0; } static int rv_populate_clock_table(struct pp_hwmgr *hwmgr) { int result; struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend); DpmClocks_t *table = &(rv_data->clock_table); struct rv_clock_voltage_information *pinfo = &(rv_data->clock_vol_info); result = rv_copy_table_from_smc(hwmgr->smumgr, (uint8_t *)table, CLOCKTABLE); PP_ASSERT_WITH_CODE((0 == result), "Attempt to copy clock table from smc failed", return result); if (0 == result && table->DcefClocks[0].Freq != 0) { rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_dcefclk, NUM_DCEFCLK_DPM_LEVELS, &rv_data->clock_table.DcefClocks[0]); rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_socclk, NUM_SOCCLK_DPM_LEVELS, &rv_data->clock_table.SocClocks[0]); rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_fclk, NUM_FCLK_DPM_LEVELS, &rv_data->clock_table.FClocks[0]); rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_mclk, NUM_MEMCLK_DPM_LEVELS, &rv_data->clock_table.MemClocks[0]); } else { rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_dcefclk, ARRAY_SIZE(VddDcfClk), &VddDcfClk[0]); rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_socclk, ARRAY_SIZE(VddSocClk), &VddSocClk[0]); rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_fclk, ARRAY_SIZE(VddFClk), &VddFClk[0]); } rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_dispclk, ARRAY_SIZE(VddDispClk), &VddDispClk[0]); rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_dppclk, ARRAY_SIZE(VddDppClk), &VddDppClk[0]); rv_get_clock_voltage_dependency_table(hwmgr, &pinfo->vdd_dep_on_phyclk, ARRAY_SIZE(VddPhyClk), &VddPhyClk[0]); return 0; } static int rv_hwmgr_backend_init(struct pp_hwmgr *hwmgr) { int result = 0; struct rv_hwmgr *data; data = kzalloc(sizeof(struct rv_hwmgr), GFP_KERNEL); if (data == NULL) return -ENOMEM; hwmgr->backend = data; result = rv_initialize_dpm_defaults(hwmgr); if (result != 0) { pr_err("rv_initialize_dpm_defaults failed\n"); return result; } rv_populate_clock_table(hwmgr); result = rv_get_system_info_data(hwmgr); if (result != 0) { pr_err("rv_get_system_info_data failed\n"); return result; } rv_construct_boot_state(hwmgr); result = phm_construct_table(hwmgr, &rv_setup_asic_master, &(hwmgr->setup_asic)); if (result != 0) { pr_err("Fail to construct setup ASIC\n"); return result; } result = phm_construct_table(hwmgr, &rv_power_down_asic_master, &(hwmgr->power_down_asic)); if (result != 0) { pr_err("Fail to construct power down ASIC\n"); return result; } result = phm_construct_table(hwmgr, &rv_set_power_state_master, &(hwmgr->set_power_state)); if (result != 0) { pr_err("Fail to construct set_power_state\n"); return result; } result = phm_construct_table(hwmgr, &rv_disable_dpm_master, &(hwmgr->disable_dynamic_state_management)); if (result != 0) { pr_err("Fail to disable_dynamic_state\n"); return result; } result = phm_construct_table(hwmgr, &rv_enable_dpm_master, &(hwmgr->enable_dynamic_state_management)); if (result != 0) { pr_err("Fail to enable_dynamic_state\n"); return result; } hwmgr->platform_descriptor.hardwareActivityPerformanceLevels = RAVEN_MAX_HARDWARE_POWERLEVELS; hwmgr->platform_descriptor.hardwarePerformanceLevels = RAVEN_MAX_HARDWARE_POWERLEVELS; hwmgr->platform_descriptor.vbiosInterruptId = 0; hwmgr->platform_descriptor.clockStep.engineClock = 500; hwmgr->platform_descriptor.clockStep.memoryClock = 500; hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50; return result; } static int rv_hwmgr_backend_fini(struct pp_hwmgr *hwmgr) { struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend); struct rv_clock_voltage_information *pinfo = &(rv_data->clock_vol_info); phm_destroy_table(hwmgr, &(hwmgr->set_power_state)); phm_destroy_table(hwmgr, &(hwmgr->enable_dynamic_state_management)); phm_destroy_table(hwmgr, &(hwmgr->disable_dynamic_state_management)); phm_destroy_table(hwmgr, &(hwmgr->power_down_asic)); phm_destroy_table(hwmgr, &(hwmgr->setup_asic)); if (pinfo->vdd_dep_on_dcefclk) { kfree(pinfo->vdd_dep_on_dcefclk); pinfo->vdd_dep_on_dcefclk = NULL; } if (pinfo->vdd_dep_on_socclk) { kfree(pinfo->vdd_dep_on_socclk); pinfo->vdd_dep_on_socclk = NULL; } if (pinfo->vdd_dep_on_fclk) { kfree(pinfo->vdd_dep_on_fclk); pinfo->vdd_dep_on_fclk = NULL; } if (pinfo->vdd_dep_on_dispclk) { kfree(pinfo->vdd_dep_on_dispclk); pinfo->vdd_dep_on_dispclk = NULL; } if (pinfo->vdd_dep_on_dppclk) { kfree(pinfo->vdd_dep_on_dppclk); pinfo->vdd_dep_on_dppclk = NULL; } if (pinfo->vdd_dep_on_phyclk) { kfree(pinfo->vdd_dep_on_phyclk); pinfo->vdd_dep_on_phyclk = NULL; } if (NULL != hwmgr->dyn_state.vddc_dep_on_dal_pwrl) { kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl); hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL; } kfree(hwmgr->backend); hwmgr->backend = NULL; return 0; } static int rv_dpm_force_dpm_level(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level) { return 0; } static int rv_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low) { return 0; } static int rv_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low) { return 0; } static int rv_dpm_patch_boot_state(struct pp_hwmgr *hwmgr, struct pp_hw_power_state *hw_ps) { return 0; } static int rv_dpm_get_pp_table_entry_callback( struct pp_hwmgr *hwmgr, struct pp_hw_power_state *hw_ps, unsigned int index, const void *clock_info) { struct rv_power_state *rv_ps = cast_rv_ps(hw_ps); rv_ps->levels[index].engine_clock = 0; rv_ps->levels[index].vddc_index = 0; rv_ps->level = index + 1; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) { rv_ps->levels[index].ds_divider_index = 5; rv_ps->levels[index].ss_divider_index = 5; } return 0; } static int rv_dpm_get_num_of_pp_table_entries(struct pp_hwmgr *hwmgr) { int result; unsigned long ret = 0; result = pp_tables_get_num_of_entries(hwmgr, &ret); return result ? 0 : ret; } static int rv_dpm_get_pp_table_entry(struct pp_hwmgr *hwmgr, unsigned long entry, struct pp_power_state *ps) { int result; struct rv_power_state *rv_ps; ps->hardware.magic = PhwRaven_Magic; rv_ps = cast_rv_ps(&(ps->hardware)); result = pp_tables_get_entry(hwmgr, entry, ps, rv_dpm_get_pp_table_entry_callback); rv_ps->uvd_clocks.vclk = ps->uvd_clocks.VCLK; rv_ps->uvd_clocks.dclk = ps->uvd_clocks.DCLK; return result; } static int rv_get_power_state_size(struct pp_hwmgr *hwmgr) { return sizeof(struct rv_power_state); } static int rv_set_cpu_power_state(struct pp_hwmgr *hwmgr) { return 0; } static int rv_store_cc6_data(struct pp_hwmgr *hwmgr, uint32_t separation_time, bool cc6_disable, bool pstate_disable, bool pstate_switch_disable) { return 0; } static int rv_get_dal_power_level(struct pp_hwmgr *hwmgr, struct amd_pp_simple_clock_info *info) { return -EINVAL; } static int rv_force_clock_level(struct pp_hwmgr *hwmgr, enum pp_clock_type type, uint32_t mask) { return 0; } static int rv_print_clock_levels(struct pp_hwmgr *hwmgr, enum pp_clock_type type, char *buf) { return 0; } static int rv_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state, PHM_PerformanceLevelDesignation designation, uint32_t index, PHM_PerformanceLevel *level) { const struct rv_power_state *ps; struct rv_hwmgr *data; uint32_t level_index; uint32_t i; uint32_t vol_dep_record_index = 0; if (level == NULL || hwmgr == NULL || state == NULL) return -EINVAL; data = (struct rv_hwmgr *)(hwmgr->backend); ps = cast_const_rv_ps(state); level_index = index > ps->level - 1 ? ps->level - 1 : index; level->coreClock = 30000; if (designation == PHM_PerformanceLevelDesignation_PowerContainment) { for (i = 1; i < ps->level; i++) { if (ps->levels[i].engine_clock > data->dce_slow_sclk_threshold) { level->coreClock = 30000; break; } } } if (level_index == 0) { vol_dep_record_index = data->clock_vol_info.vdd_dep_on_fclk->count - 1; level->memory_clock = data->clock_vol_info.vdd_dep_on_fclk->entries[vol_dep_record_index].clk; } else { level->memory_clock = data->clock_vol_info.vdd_dep_on_fclk->entries[0].clk; } level->nonLocalMemoryFreq = 0; level->nonLocalMemoryWidth = 0; return 0; } static int rv_get_current_shallow_sleep_clocks(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state, struct pp_clock_info *clock_info) { const struct rv_power_state *ps = cast_const_rv_ps(state); clock_info->min_eng_clk = ps->levels[0].engine_clock / (1 << (ps->levels[0].ss_divider_index)); clock_info->max_eng_clk = ps->levels[ps->level - 1].engine_clock / (1 << (ps->levels[ps->level - 1].ss_divider_index)); return 0; } #define MEM_FREQ_LOW_LATENCY 25000 #define MEM_FREQ_HIGH_LATENCY 80000 #define MEM_LATENCY_HIGH 245 #define MEM_LATENCY_LOW 35 #define MEM_LATENCY_ERR 0xFFFF static uint32_t rv_get_mem_latency(struct pp_hwmgr *hwmgr, uint32_t clock) { if (clock >= MEM_FREQ_LOW_LATENCY && clock < MEM_FREQ_HIGH_LATENCY) return MEM_LATENCY_HIGH; else if (clock >= MEM_FREQ_HIGH_LATENCY) return MEM_LATENCY_LOW; else return MEM_LATENCY_ERR; } static int rv_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr, enum amd_pp_clock_type type, struct pp_clock_levels_with_latency *clocks) { uint32_t i; struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend); struct rv_clock_voltage_information *pinfo = &(rv_data->clock_vol_info); struct rv_voltage_dependency_table *pclk_vol_table; bool latency_required = false; if (pinfo == NULL) return -EINVAL; switch (type) { case amd_pp_mem_clock: pclk_vol_table = pinfo->vdd_dep_on_mclk; latency_required = true; break; case amd_pp_f_clock: pclk_vol_table = pinfo->vdd_dep_on_fclk; latency_required = true; break; case amd_pp_dcf_clock: pclk_vol_table = pinfo->vdd_dep_on_dcefclk; break; case amd_pp_disp_clock: pclk_vol_table = pinfo->vdd_dep_on_dispclk; break; case amd_pp_phy_clock: pclk_vol_table = pinfo->vdd_dep_on_phyclk; break; case amd_pp_dpp_clock: pclk_vol_table = pinfo->vdd_dep_on_dppclk; default: return -EINVAL; } if (pclk_vol_table == NULL || pclk_vol_table->count == 0) return -EINVAL; clocks->num_levels = 0; for (i = 0; i < pclk_vol_table->count; i++) { clocks->data[i].clocks_in_khz = pclk_vol_table->entries[i].clk; clocks->data[i].latency_in_us = latency_required ? rv_get_mem_latency(hwmgr, pclk_vol_table->entries[i].clk) : 0; clocks->num_levels++; } return 0; } static int rv_get_clock_by_type_with_voltage(struct pp_hwmgr *hwmgr, enum amd_pp_clock_type type, struct pp_clock_levels_with_voltage *clocks) { uint32_t i; struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend); struct rv_clock_voltage_information *pinfo = &(rv_data->clock_vol_info); struct rv_voltage_dependency_table *pclk_vol_table = NULL; if (pinfo == NULL) return -EINVAL; switch (type) { case amd_pp_mem_clock: pclk_vol_table = pinfo->vdd_dep_on_mclk; break; case amd_pp_f_clock: pclk_vol_table = pinfo->vdd_dep_on_fclk; break; case amd_pp_dcf_clock: pclk_vol_table = pinfo->vdd_dep_on_dcefclk; break; case amd_pp_soc_clock: pclk_vol_table = pinfo->vdd_dep_on_socclk; break; default: return -EINVAL; } if (pclk_vol_table == NULL || pclk_vol_table->count == 0) return -EINVAL; clocks->num_levels = 0; for (i = 0; i < pclk_vol_table->count; i++) { clocks->data[i].clocks_in_khz = pclk_vol_table->entries[i].clk; clocks->data[i].voltage_in_mv = pclk_vol_table->entries[i].vol; clocks->num_levels++; } return 0; } int rv_display_clock_voltage_request(struct pp_hwmgr *hwmgr, struct pp_display_clock_request *clock_req) { int result = 0; struct rv_hwmgr *rv_data = (struct rv_hwmgr *)(hwmgr->backend); enum amd_pp_clock_type clk_type = clock_req->clock_type; uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000; PPSMC_Msg msg; switch (clk_type) { case amd_pp_dcf_clock: if (clk_freq == rv_data->dcf_actual_hard_min_freq) return 0; msg = PPSMC_MSG_SetHardMinDcefclkByFreq; rv_data->dcf_actual_hard_min_freq = clk_freq; break; case amd_pp_soc_clock: msg = PPSMC_MSG_SetHardMinSocclkByFreq; break; case amd_pp_f_clock: if (clk_freq == rv_data->f_actual_hard_min_freq) return 0; rv_data->f_actual_hard_min_freq = clk_freq; msg = PPSMC_MSG_SetHardMinFclkByFreq; break; default: pr_info("[DisplayClockVoltageRequest]Invalid Clock Type!"); return -EINVAL; } result = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, msg, clk_freq); return result; } static int rv_get_max_high_clocks(struct pp_hwmgr *hwmgr, struct amd_pp_simple_clock_info *clocks) { clocks->engine_max_clock = 80000; /* driver can't get engine clock, temp hard code to 800MHz */ return 0; } static int rv_thermal_get_temperature(struct pp_hwmgr *hwmgr) { uint32_t reg_offset = soc15_get_register_offset(THM_HWID, 0, mmTHM_TCON_CUR_TMP_BASE_IDX, mmTHM_TCON_CUR_TMP); uint32_t reg_value = cgs_read_register(hwmgr->device, reg_offset); int cur_temp = (reg_value & THM_TCON_CUR_TMP__CUR_TEMP_MASK) >> THM_TCON_CUR_TMP__CUR_TEMP__SHIFT; if (cur_temp & THM_TCON_CUR_TMP__CUR_TEMP_RANGE_SEL_MASK) cur_temp = ((cur_temp / 8) - 49) * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; else cur_temp = (cur_temp / 8) * PP_TEMPERATURE_UNITS_PER_CENTIGRADES; return cur_temp; } static int rv_read_sensor(struct pp_hwmgr *hwmgr, int idx, void *value, int *size) { switch (idx) { case AMDGPU_PP_SENSOR_GPU_TEMP: *((uint32_t *)value) = rv_thermal_get_temperature(hwmgr); return 0; default: return -EINVAL; } } static const struct pp_hwmgr_func rv_hwmgr_funcs = { .backend_init = rv_hwmgr_backend_init, .backend_fini = rv_hwmgr_backend_fini, .asic_setup = NULL, .apply_state_adjust_rules = rv_apply_state_adjust_rules, .force_dpm_level = rv_dpm_force_dpm_level, .get_power_state_size = rv_get_power_state_size, .powerdown_uvd = NULL, .powergate_uvd = NULL, .powergate_vce = NULL, .get_mclk = rv_dpm_get_mclk, .get_sclk = rv_dpm_get_sclk, .patch_boot_state = rv_dpm_patch_boot_state, .get_pp_table_entry = rv_dpm_get_pp_table_entry, .get_num_of_pp_table_entries = rv_dpm_get_num_of_pp_table_entries, .set_cpu_power_state = rv_set_cpu_power_state, .store_cc6_data = rv_store_cc6_data, .force_clock_level = rv_force_clock_level, .print_clock_levels = rv_print_clock_levels, .get_dal_power_level = rv_get_dal_power_level, .get_performance_level = rv_get_performance_level, .get_current_shallow_sleep_clocks = rv_get_current_shallow_sleep_clocks, .get_clock_by_type_with_latency = rv_get_clock_by_type_with_latency, .get_clock_by_type_with_voltage = rv_get_clock_by_type_with_voltage, .get_max_high_clocks = rv_get_max_high_clocks, .read_sensor = rv_read_sensor, }; int rv_init_function_pointers(struct pp_hwmgr *hwmgr) { hwmgr->hwmgr_func = &rv_hwmgr_funcs; hwmgr->pptable_func = &pptable_funcs; return 0; }