/* * Copyright 2007-8 Advanced Micro Devices, Inc. * Copyright 2008 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Dave Airlie * Alex Deucher */ #include #include #include #include "radeon_fixed.h" #include "radeon.h" #include "atom.h" #include "atom-bits.h" static void atombios_lock_crtc(struct drm_crtc *crtc, int lock) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; int index = GetIndexIntoMasterTable(COMMAND, UpdateCRTC_DoubleBufferRegisters); ENABLE_CRTC_PS_ALLOCATION args; memset(&args, 0, sizeof(args)); args.ucCRTC = radeon_crtc->crtc_id; args.ucEnable = lock; atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); } static void atombios_enable_crtc(struct drm_crtc *crtc, int state) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; int index = GetIndexIntoMasterTable(COMMAND, EnableCRTC); ENABLE_CRTC_PS_ALLOCATION args; memset(&args, 0, sizeof(args)); args.ucCRTC = radeon_crtc->crtc_id; args.ucEnable = state; atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); } static void atombios_enable_crtc_memreq(struct drm_crtc *crtc, int state) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; int index = GetIndexIntoMasterTable(COMMAND, EnableCRTCMemReq); ENABLE_CRTC_PS_ALLOCATION args; memset(&args, 0, sizeof(args)); args.ucCRTC = radeon_crtc->crtc_id; args.ucEnable = state; atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); } static void atombios_blank_crtc(struct drm_crtc *crtc, int state) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; int index = GetIndexIntoMasterTable(COMMAND, BlankCRTC); BLANK_CRTC_PS_ALLOCATION args; memset(&args, 0, sizeof(args)); args.ucCRTC = radeon_crtc->crtc_id; args.ucBlanking = state; atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); } void atombios_crtc_dpms(struct drm_crtc *crtc, int mode) { struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; switch (mode) { case DRM_MODE_DPMS_ON: if (ASIC_IS_DCE3(rdev)) atombios_enable_crtc_memreq(crtc, 1); atombios_enable_crtc(crtc, 1); atombios_blank_crtc(crtc, 0); break; case DRM_MODE_DPMS_STANDBY: case DRM_MODE_DPMS_SUSPEND: case DRM_MODE_DPMS_OFF: atombios_blank_crtc(crtc, 1); atombios_enable_crtc(crtc, 0); if (ASIC_IS_DCE3(rdev)) atombios_enable_crtc_memreq(crtc, 0); break; } if (mode != DRM_MODE_DPMS_OFF) { radeon_crtc_load_lut(crtc); } } static void atombios_set_crtc_dtd_timing(struct drm_crtc *crtc, SET_CRTC_USING_DTD_TIMING_PARAMETERS * crtc_param) { struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; SET_CRTC_USING_DTD_TIMING_PARAMETERS conv_param; int index = GetIndexIntoMasterTable(COMMAND, SetCRTC_UsingDTDTiming); conv_param.usH_Size = cpu_to_le16(crtc_param->usH_Size); conv_param.usH_Blanking_Time = cpu_to_le16(crtc_param->usH_Blanking_Time); conv_param.usV_Size = cpu_to_le16(crtc_param->usV_Size); conv_param.usV_Blanking_Time = cpu_to_le16(crtc_param->usV_Blanking_Time); conv_param.usH_SyncOffset = cpu_to_le16(crtc_param->usH_SyncOffset); conv_param.usH_SyncWidth = cpu_to_le16(crtc_param->usH_SyncWidth); conv_param.usV_SyncOffset = cpu_to_le16(crtc_param->usV_SyncOffset); conv_param.usV_SyncWidth = cpu_to_le16(crtc_param->usV_SyncWidth); conv_param.susModeMiscInfo.usAccess = cpu_to_le16(crtc_param->susModeMiscInfo.usAccess); conv_param.ucCRTC = crtc_param->ucCRTC; printk("executing set crtc dtd timing\n"); atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&conv_param); } void atombios_crtc_set_timing(struct drm_crtc *crtc, SET_CRTC_TIMING_PARAMETERS_PS_ALLOCATION * crtc_param) { struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; SET_CRTC_TIMING_PARAMETERS_PS_ALLOCATION conv_param; int index = GetIndexIntoMasterTable(COMMAND, SetCRTC_Timing); conv_param.usH_Total = cpu_to_le16(crtc_param->usH_Total); conv_param.usH_Disp = cpu_to_le16(crtc_param->usH_Disp); conv_param.usH_SyncStart = cpu_to_le16(crtc_param->usH_SyncStart); conv_param.usH_SyncWidth = cpu_to_le16(crtc_param->usH_SyncWidth); conv_param.usV_Total = cpu_to_le16(crtc_param->usV_Total); conv_param.usV_Disp = cpu_to_le16(crtc_param->usV_Disp); conv_param.usV_SyncStart = cpu_to_le16(crtc_param->usV_SyncStart); conv_param.usV_SyncWidth = cpu_to_le16(crtc_param->usV_SyncWidth); conv_param.susModeMiscInfo.usAccess = cpu_to_le16(crtc_param->susModeMiscInfo.usAccess); conv_param.ucCRTC = crtc_param->ucCRTC; conv_param.ucOverscanRight = crtc_param->ucOverscanRight; conv_param.ucOverscanLeft = crtc_param->ucOverscanLeft; conv_param.ucOverscanBottom = crtc_param->ucOverscanBottom; conv_param.ucOverscanTop = crtc_param->ucOverscanTop; conv_param.ucReserved = crtc_param->ucReserved; printk("executing set crtc timing\n"); atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&conv_param); } void atombios_crtc_set_pll(struct drm_crtc *crtc, struct drm_display_mode *mode) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; struct drm_encoder *encoder = NULL; struct radeon_encoder *radeon_encoder = NULL; uint8_t frev, crev; int index = GetIndexIntoMasterTable(COMMAND, SetPixelClock); SET_PIXEL_CLOCK_PS_ALLOCATION args; PIXEL_CLOCK_PARAMETERS *spc1_ptr; PIXEL_CLOCK_PARAMETERS_V2 *spc2_ptr; PIXEL_CLOCK_PARAMETERS_V3 *spc3_ptr; uint32_t sclock = mode->clock; uint32_t ref_div = 0, fb_div = 0, frac_fb_div = 0, post_div = 0; struct radeon_pll *pll; int pll_flags = 0; memset(&args, 0, sizeof(args)); if (ASIC_IS_AVIVO(rdev)) { uint32_t ss_cntl; if ((rdev->family == CHIP_RS600) || (rdev->family == CHIP_RS690) || (rdev->family == CHIP_RS740)) pll_flags |= (RADEON_PLL_USE_FRAC_FB_DIV | RADEON_PLL_PREFER_CLOSEST_LOWER); if (ASIC_IS_DCE32(rdev) && mode->clock > 200000) /* range limits??? */ pll_flags |= RADEON_PLL_PREFER_HIGH_FB_DIV; else pll_flags |= RADEON_PLL_PREFER_LOW_REF_DIV; /* disable spread spectrum clocking for now -- thanks Hedy Lamarr */ if (radeon_crtc->crtc_id == 0) { ss_cntl = RREG32(AVIVO_P1PLL_INT_SS_CNTL); WREG32(AVIVO_P1PLL_INT_SS_CNTL, ss_cntl & ~1); } else { ss_cntl = RREG32(AVIVO_P2PLL_INT_SS_CNTL); WREG32(AVIVO_P2PLL_INT_SS_CNTL, ss_cntl & ~1); } } else { pll_flags |= RADEON_PLL_LEGACY; if (mode->clock > 200000) /* range limits??? */ pll_flags |= RADEON_PLL_PREFER_HIGH_FB_DIV; else pll_flags |= RADEON_PLL_PREFER_LOW_REF_DIV; } list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { if (encoder->crtc == crtc) { if (!ASIC_IS_AVIVO(rdev)) { if (encoder->encoder_type != DRM_MODE_ENCODER_DAC) pll_flags |= RADEON_PLL_NO_ODD_POST_DIV; if (!ASIC_IS_AVIVO(rdev) && (encoder->encoder_type == DRM_MODE_ENCODER_LVDS)) pll_flags |= RADEON_PLL_USE_REF_DIV; } radeon_encoder = to_radeon_encoder(encoder); } } if (radeon_crtc->crtc_id == 0) pll = &rdev->clock.p1pll; else pll = &rdev->clock.p2pll; radeon_compute_pll(pll, mode->clock, &sclock, &fb_div, &frac_fb_div, &ref_div, &post_div, pll_flags); atom_parse_cmd_header(rdev->mode_info.atom_context, index, &frev, &crev); switch (frev) { case 1: switch (crev) { case 1: spc1_ptr = (PIXEL_CLOCK_PARAMETERS *) & args.sPCLKInput; spc1_ptr->usPixelClock = cpu_to_le16(sclock); spc1_ptr->usRefDiv = cpu_to_le16(ref_div); spc1_ptr->usFbDiv = cpu_to_le16(fb_div); spc1_ptr->ucFracFbDiv = frac_fb_div; spc1_ptr->ucPostDiv = post_div; spc1_ptr->ucPpll = radeon_crtc->crtc_id ? ATOM_PPLL2 : ATOM_PPLL1; spc1_ptr->ucCRTC = radeon_crtc->crtc_id; spc1_ptr->ucRefDivSrc = 1; break; case 2: spc2_ptr = (PIXEL_CLOCK_PARAMETERS_V2 *) & args.sPCLKInput; spc2_ptr->usPixelClock = cpu_to_le16(sclock); spc2_ptr->usRefDiv = cpu_to_le16(ref_div); spc2_ptr->usFbDiv = cpu_to_le16(fb_div); spc2_ptr->ucFracFbDiv = frac_fb_div; spc2_ptr->ucPostDiv = post_div; spc2_ptr->ucPpll = radeon_crtc->crtc_id ? ATOM_PPLL2 : ATOM_PPLL1; spc2_ptr->ucCRTC = radeon_crtc->crtc_id; spc2_ptr->ucRefDivSrc = 1; break; case 3: if (!encoder) return; spc3_ptr = (PIXEL_CLOCK_PARAMETERS_V3 *) & args.sPCLKInput; spc3_ptr->usPixelClock = cpu_to_le16(sclock); spc3_ptr->usRefDiv = cpu_to_le16(ref_div); spc3_ptr->usFbDiv = cpu_to_le16(fb_div); spc3_ptr->ucFracFbDiv = frac_fb_div; spc3_ptr->ucPostDiv = post_div; spc3_ptr->ucPpll = radeon_crtc->crtc_id ? ATOM_PPLL2 : ATOM_PPLL1; spc3_ptr->ucMiscInfo = (radeon_crtc->crtc_id << 2); spc3_ptr->ucTransmitterId = radeon_encoder->encoder_id; spc3_ptr->ucEncoderMode = atombios_get_encoder_mode(encoder); break; default: DRM_ERROR("Unknown table version %d %d\n", frev, crev); return; } break; default: DRM_ERROR("Unknown table version %d %d\n", frev, crev); return; } printk("executing set pll\n"); atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); } int atombios_crtc_set_base(struct drm_crtc *crtc, int x, int y, struct drm_framebuffer *old_fb) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; struct radeon_framebuffer *radeon_fb; struct drm_gem_object *obj; struct drm_radeon_gem_object *obj_priv; uint64_t fb_location; uint32_t fb_format, fb_pitch_pixels, tiling_flags; if (!crtc->fb) return -EINVAL; radeon_fb = to_radeon_framebuffer(crtc->fb); obj = radeon_fb->obj; obj_priv = obj->driver_private; if (radeon_gem_object_pin(obj, RADEON_GEM_DOMAIN_VRAM, &fb_location)) { return -EINVAL; } switch (crtc->fb->bits_per_pixel) { case 15: fb_format = AVIVO_D1GRPH_CONTROL_DEPTH_16BPP | AVIVO_D1GRPH_CONTROL_16BPP_ARGB1555; break; case 16: fb_format = AVIVO_D1GRPH_CONTROL_DEPTH_16BPP | AVIVO_D1GRPH_CONTROL_16BPP_RGB565; break; case 24: case 32: fb_format = AVIVO_D1GRPH_CONTROL_DEPTH_32BPP | AVIVO_D1GRPH_CONTROL_32BPP_ARGB8888; break; default: DRM_ERROR("Unsupported screen depth %d\n", crtc->fb->bits_per_pixel); return -EINVAL; } radeon_object_get_tiling_flags(obj->driver_private, &tiling_flags, NULL); if (tiling_flags & RADEON_TILING_MACRO) fb_format |= AVIVO_D1GRPH_MACRO_ADDRESS_MODE; if (tiling_flags & RADEON_TILING_MICRO) fb_format |= AVIVO_D1GRPH_TILED; if (radeon_crtc->crtc_id == 0) WREG32(AVIVO_D1VGA_CONTROL, 0); else WREG32(AVIVO_D2VGA_CONTROL, 0); WREG32(AVIVO_D1GRPH_PRIMARY_SURFACE_ADDRESS + radeon_crtc->crtc_offset, (u32) fb_location); WREG32(AVIVO_D1GRPH_SECONDARY_SURFACE_ADDRESS + radeon_crtc->crtc_offset, (u32) fb_location); WREG32(AVIVO_D1GRPH_CONTROL + radeon_crtc->crtc_offset, fb_format); WREG32(AVIVO_D1GRPH_SURFACE_OFFSET_X + radeon_crtc->crtc_offset, 0); WREG32(AVIVO_D1GRPH_SURFACE_OFFSET_Y + radeon_crtc->crtc_offset, 0); WREG32(AVIVO_D1GRPH_X_START + radeon_crtc->crtc_offset, 0); WREG32(AVIVO_D1GRPH_Y_START + radeon_crtc->crtc_offset, 0); WREG32(AVIVO_D1GRPH_X_END + radeon_crtc->crtc_offset, crtc->fb->width); WREG32(AVIVO_D1GRPH_Y_END + radeon_crtc->crtc_offset, crtc->fb->height); fb_pitch_pixels = crtc->fb->pitch / (crtc->fb->bits_per_pixel / 8); WREG32(AVIVO_D1GRPH_PITCH + radeon_crtc->crtc_offset, fb_pitch_pixels); WREG32(AVIVO_D1GRPH_ENABLE + radeon_crtc->crtc_offset, 1); WREG32(AVIVO_D1MODE_DESKTOP_HEIGHT + radeon_crtc->crtc_offset, crtc->mode.vdisplay); x &= ~3; y &= ~1; WREG32(AVIVO_D1MODE_VIEWPORT_START + radeon_crtc->crtc_offset, (x << 16) | y); WREG32(AVIVO_D1MODE_VIEWPORT_SIZE + radeon_crtc->crtc_offset, (crtc->mode.hdisplay << 16) | crtc->mode.vdisplay); if (crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) WREG32(AVIVO_D1MODE_DATA_FORMAT + radeon_crtc->crtc_offset, AVIVO_D1MODE_INTERLEAVE_EN); else WREG32(AVIVO_D1MODE_DATA_FORMAT + radeon_crtc->crtc_offset, 0); if (old_fb && old_fb != crtc->fb) { radeon_fb = to_radeon_framebuffer(old_fb); radeon_gem_object_unpin(radeon_fb->obj); } return 0; } int atombios_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode, int x, int y, struct drm_framebuffer *old_fb) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; struct drm_encoder *encoder; SET_CRTC_TIMING_PARAMETERS_PS_ALLOCATION crtc_timing; /* TODO color tiling */ memset(&crtc_timing, 0, sizeof(crtc_timing)); /* TODO tv */ list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { } crtc_timing.ucCRTC = radeon_crtc->crtc_id; crtc_timing.usH_Total = adjusted_mode->crtc_htotal; crtc_timing.usH_Disp = adjusted_mode->crtc_hdisplay; crtc_timing.usH_SyncStart = adjusted_mode->crtc_hsync_start; crtc_timing.usH_SyncWidth = adjusted_mode->crtc_hsync_end - adjusted_mode->crtc_hsync_start; crtc_timing.usV_Total = adjusted_mode->crtc_vtotal; crtc_timing.usV_Disp = adjusted_mode->crtc_vdisplay; crtc_timing.usV_SyncStart = adjusted_mode->crtc_vsync_start; crtc_timing.usV_SyncWidth = adjusted_mode->crtc_vsync_end - adjusted_mode->crtc_vsync_start; if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC) crtc_timing.susModeMiscInfo.usAccess |= ATOM_VSYNC_POLARITY; if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC) crtc_timing.susModeMiscInfo.usAccess |= ATOM_HSYNC_POLARITY; if (adjusted_mode->flags & DRM_MODE_FLAG_CSYNC) crtc_timing.susModeMiscInfo.usAccess |= ATOM_COMPOSITESYNC; if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) crtc_timing.susModeMiscInfo.usAccess |= ATOM_INTERLACE; if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) crtc_timing.susModeMiscInfo.usAccess |= ATOM_DOUBLE_CLOCK_MODE; atombios_crtc_set_pll(crtc, adjusted_mode); atombios_crtc_set_timing(crtc, &crtc_timing); if (ASIC_IS_AVIVO(rdev)) atombios_crtc_set_base(crtc, x, y, old_fb); else { if (radeon_crtc->crtc_id == 0) { SET_CRTC_USING_DTD_TIMING_PARAMETERS crtc_dtd_timing; memset(&crtc_dtd_timing, 0, sizeof(crtc_dtd_timing)); /* setup FP shadow regs on R4xx */ crtc_dtd_timing.ucCRTC = radeon_crtc->crtc_id; crtc_dtd_timing.usH_Size = adjusted_mode->crtc_hdisplay; crtc_dtd_timing.usV_Size = adjusted_mode->crtc_vdisplay; crtc_dtd_timing.usH_Blanking_Time = adjusted_mode->crtc_hblank_end - adjusted_mode->crtc_hdisplay; crtc_dtd_timing.usV_Blanking_Time = adjusted_mode->crtc_vblank_end - adjusted_mode->crtc_vdisplay; crtc_dtd_timing.usH_SyncOffset = adjusted_mode->crtc_hsync_start - adjusted_mode->crtc_hdisplay; crtc_dtd_timing.usV_SyncOffset = adjusted_mode->crtc_vsync_start - adjusted_mode->crtc_vdisplay; crtc_dtd_timing.usH_SyncWidth = adjusted_mode->crtc_hsync_end - adjusted_mode->crtc_hsync_start; crtc_dtd_timing.usV_SyncWidth = adjusted_mode->crtc_vsync_end - adjusted_mode->crtc_vsync_start; /* crtc_dtd_timing.ucH_Border = adjusted_mode->crtc_hborder; */ /* crtc_dtd_timing.ucV_Border = adjusted_mode->crtc_vborder; */ if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC) crtc_dtd_timing.susModeMiscInfo.usAccess |= ATOM_VSYNC_POLARITY; if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC) crtc_dtd_timing.susModeMiscInfo.usAccess |= ATOM_HSYNC_POLARITY; if (adjusted_mode->flags & DRM_MODE_FLAG_CSYNC) crtc_dtd_timing.susModeMiscInfo.usAccess |= ATOM_COMPOSITESYNC; if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) crtc_dtd_timing.susModeMiscInfo.usAccess |= ATOM_INTERLACE; if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) crtc_dtd_timing.susModeMiscInfo.usAccess |= ATOM_DOUBLE_CLOCK_MODE; atombios_set_crtc_dtd_timing(crtc, &crtc_dtd_timing); } radeon_crtc_set_base(crtc, x, y, old_fb); radeon_legacy_atom_set_surface(crtc); } return 0; } static bool atombios_crtc_mode_fixup(struct drm_crtc *crtc, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { return true; } static void atombios_crtc_prepare(struct drm_crtc *crtc) { atombios_crtc_dpms(crtc, DRM_MODE_DPMS_OFF); atombios_lock_crtc(crtc, 1); } static void atombios_crtc_commit(struct drm_crtc *crtc) { atombios_crtc_dpms(crtc, DRM_MODE_DPMS_ON); atombios_lock_crtc(crtc, 0); } static const struct drm_crtc_helper_funcs atombios_helper_funcs = { .dpms = atombios_crtc_dpms, .mode_fixup = atombios_crtc_mode_fixup, .mode_set = atombios_crtc_mode_set, .mode_set_base = atombios_crtc_set_base, .prepare = atombios_crtc_prepare, .commit = atombios_crtc_commit, }; void radeon_atombios_init_crtc(struct drm_device *dev, struct radeon_crtc *radeon_crtc) { if (radeon_crtc->crtc_id == 1) radeon_crtc->crtc_offset = AVIVO_D2CRTC_H_TOTAL - AVIVO_D1CRTC_H_TOTAL; drm_crtc_helper_add(&radeon_crtc->base, &atombios_helper_funcs); } void radeon_init_disp_bw_avivo(struct drm_device *dev, struct drm_display_mode *mode1, uint32_t pixel_bytes1, struct drm_display_mode *mode2, uint32_t pixel_bytes2) { struct radeon_device *rdev = dev->dev_private; fixed20_12 min_mem_eff; fixed20_12 peak_disp_bw, mem_bw, pix_clk, pix_clk2, temp_ff; fixed20_12 sclk_ff, mclk_ff; uint32_t dc_lb_memory_split, temp; min_mem_eff.full = rfixed_const_8(0); if (rdev->disp_priority == 2) { uint32_t mc_init_misc_lat_timer = 0; if (rdev->family == CHIP_RV515) mc_init_misc_lat_timer = RREG32_MC(RV515_MC_INIT_MISC_LAT_TIMER); else if (rdev->family == CHIP_RS690) mc_init_misc_lat_timer = RREG32_MC(RS690_MC_INIT_MISC_LAT_TIMER); mc_init_misc_lat_timer &= ~(R300_MC_DISP1R_INIT_LAT_MASK << R300_MC_DISP1R_INIT_LAT_SHIFT); mc_init_misc_lat_timer &= ~(R300_MC_DISP0R_INIT_LAT_MASK << R300_MC_DISP0R_INIT_LAT_SHIFT); if (mode2) mc_init_misc_lat_timer |= (1 << R300_MC_DISP1R_INIT_LAT_SHIFT); if (mode1) mc_init_misc_lat_timer |= (1 << R300_MC_DISP0R_INIT_LAT_SHIFT); if (rdev->family == CHIP_RV515) WREG32_MC(RV515_MC_INIT_MISC_LAT_TIMER, mc_init_misc_lat_timer); else if (rdev->family == CHIP_RS690) WREG32_MC(RS690_MC_INIT_MISC_LAT_TIMER, mc_init_misc_lat_timer); } /* * determine is there is enough bw for current mode */ temp_ff.full = rfixed_const(100); mclk_ff.full = rfixed_const(rdev->clock.default_mclk); mclk_ff.full = rfixed_div(mclk_ff, temp_ff); sclk_ff.full = rfixed_const(rdev->clock.default_sclk); sclk_ff.full = rfixed_div(sclk_ff, temp_ff); temp = (rdev->mc.vram_width / 8) * (rdev->mc.vram_is_ddr ? 2 : 1); temp_ff.full = rfixed_const(temp); mem_bw.full = rfixed_mul(mclk_ff, temp_ff); mem_bw.full = rfixed_mul(mem_bw, min_mem_eff); pix_clk.full = 0; pix_clk2.full = 0; peak_disp_bw.full = 0; if (mode1) { temp_ff.full = rfixed_const(1000); pix_clk.full = rfixed_const(mode1->clock); /* convert to fixed point */ pix_clk.full = rfixed_div(pix_clk, temp_ff); temp_ff.full = rfixed_const(pixel_bytes1); peak_disp_bw.full += rfixed_mul(pix_clk, temp_ff); } if (mode2) { temp_ff.full = rfixed_const(1000); pix_clk2.full = rfixed_const(mode2->clock); /* convert to fixed point */ pix_clk2.full = rfixed_div(pix_clk2, temp_ff); temp_ff.full = rfixed_const(pixel_bytes2); peak_disp_bw.full += rfixed_mul(pix_clk2, temp_ff); } if (peak_disp_bw.full >= mem_bw.full) { DRM_ERROR ("You may not have enough display bandwidth for current mode\n" "If you have flickering problem, try to lower resolution, refresh rate, or color depth\n"); printk("peak disp bw %d, mem_bw %d\n", rfixed_trunc(peak_disp_bw), rfixed_trunc(mem_bw)); } /* * Line Buffer Setup * There is a single line buffer shared by both display controllers. * DC_LB_MEMORY_SPLIT controls how that line buffer is shared between the display * controllers. The paritioning can either be done manually or via one of four * preset allocations specified in bits 1:0: * 0 - line buffer is divided in half and shared between each display controller * 1 - D1 gets 3/4 of the line buffer, D2 gets 1/4 * 2 - D1 gets the whole buffer * 3 - D1 gets 1/4 of the line buffer, D2 gets 3/4 * Setting bit 2 of DC_LB_MEMORY_SPLIT controls switches to manual allocation mode. * In manual allocation mode, D1 always starts at 0, D1 end/2 is specified in bits * 14:4; D2 allocation follows D1. */ /* is auto or manual better ? */ dc_lb_memory_split = RREG32(AVIVO_DC_LB_MEMORY_SPLIT) & ~AVIVO_DC_LB_MEMORY_SPLIT_MASK; dc_lb_memory_split &= ~AVIVO_DC_LB_MEMORY_SPLIT_SHIFT_MODE; #if 1 /* auto */ if (mode1 && mode2) { if (mode1->hdisplay > mode2->hdisplay) { if (mode1->hdisplay > 2560) dc_lb_memory_split |= AVIVO_DC_LB_MEMORY_SPLIT_D1_3Q_D2_1Q; else dc_lb_memory_split |= AVIVO_DC_LB_MEMORY_SPLIT_D1HALF_D2HALF; } else if (mode2->hdisplay > mode1->hdisplay) { if (mode2->hdisplay > 2560) dc_lb_memory_split |= AVIVO_DC_LB_MEMORY_SPLIT_D1_1Q_D2_3Q; else dc_lb_memory_split |= AVIVO_DC_LB_MEMORY_SPLIT_D1HALF_D2HALF; } else dc_lb_memory_split |= AVIVO_DC_LB_MEMORY_SPLIT_D1HALF_D2HALF; } else if (mode1) { dc_lb_memory_split |= AVIVO_DC_LB_MEMORY_SPLIT_D1_ONLY; } else if (mode2) { dc_lb_memory_split |= AVIVO_DC_LB_MEMORY_SPLIT_D1_1Q_D2_3Q; } #else /* manual */ dc_lb_memory_split |= AVIVO_DC_LB_MEMORY_SPLIT_SHIFT_MODE; dc_lb_memory_split &= ~(AVIVO_DC_LB_DISP1_END_ADR_MASK << AVIVO_DC_LB_DISP1_END_ADR_SHIFT); if (mode1) { dc_lb_memory_split |= ((((mode1->hdisplay / 2) + 64) & AVIVO_DC_LB_DISP1_END_ADR_MASK) << AVIVO_DC_LB_DISP1_END_ADR_SHIFT); } else if (mode2) { dc_lb_memory_split |= (0 << AVIVO_DC_LB_DISP1_END_ADR_SHIFT); } #endif WREG32(AVIVO_DC_LB_MEMORY_SPLIT, dc_lb_memory_split); }