/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1996 David S. Miller (dm@engr.sgi.com) * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org) * Copyright (C) 1999, 2000 Silicon Graphics, Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for run_uncached() */ /* * Special Variant of smp_call_function for use by cache functions: * * o No return value * o collapses to normal function call on UP kernels * o collapses to normal function call on systems with a single shared * primary cache. */ static inline void r4k_on_each_cpu(void (*func) (void *info), void *info, int retry, int wait) { preempt_disable(); #if !defined(CONFIG_MIPS_MT_SMP) && !defined(CONFIG_MIPS_MT_SMTC) smp_call_function(func, info, retry, wait); #endif func(info); preempt_enable(); } /* * Must die. */ static unsigned long icache_size __read_mostly; static unsigned long dcache_size __read_mostly; static unsigned long scache_size __read_mostly; /* * Dummy cache handling routines for machines without boardcaches */ static void cache_noop(void) {} static struct bcache_ops no_sc_ops = { .bc_enable = (void *)cache_noop, .bc_disable = (void *)cache_noop, .bc_wback_inv = (void *)cache_noop, .bc_inv = (void *)cache_noop }; struct bcache_ops *bcops = &no_sc_ops; #define cpu_is_r4600_v1_x() ((read_c0_prid() & 0xfffffff0) == 0x00002010) #define cpu_is_r4600_v2_x() ((read_c0_prid() & 0xfffffff0) == 0x00002020) #define R4600_HIT_CACHEOP_WAR_IMPL \ do { \ if (R4600_V2_HIT_CACHEOP_WAR && cpu_is_r4600_v2_x()) \ *(volatile unsigned long *)CKSEG1; \ if (R4600_V1_HIT_CACHEOP_WAR) \ __asm__ __volatile__("nop;nop;nop;nop"); \ } while (0) static void (*r4k_blast_dcache_page)(unsigned long addr); static inline void r4k_blast_dcache_page_dc32(unsigned long addr) { R4600_HIT_CACHEOP_WAR_IMPL; blast_dcache32_page(addr); } static inline void r4k_blast_dcache_page_setup(void) { unsigned long dc_lsize = cpu_dcache_line_size(); if (dc_lsize == 0) r4k_blast_dcache_page = (void *)cache_noop; else if (dc_lsize == 16) r4k_blast_dcache_page = blast_dcache16_page; else if (dc_lsize == 32) r4k_blast_dcache_page = r4k_blast_dcache_page_dc32; } static void (* r4k_blast_dcache_page_indexed)(unsigned long addr); static inline void r4k_blast_dcache_page_indexed_setup(void) { unsigned long dc_lsize = cpu_dcache_line_size(); if (dc_lsize == 0) r4k_blast_dcache_page_indexed = (void *)cache_noop; else if (dc_lsize == 16) r4k_blast_dcache_page_indexed = blast_dcache16_page_indexed; else if (dc_lsize == 32) r4k_blast_dcache_page_indexed = blast_dcache32_page_indexed; } static void (* r4k_blast_dcache)(void); static inline void r4k_blast_dcache_setup(void) { unsigned long dc_lsize = cpu_dcache_line_size(); if (dc_lsize == 0) r4k_blast_dcache = (void *)cache_noop; else if (dc_lsize == 16) r4k_blast_dcache = blast_dcache16; else if (dc_lsize == 32) r4k_blast_dcache = blast_dcache32; } /* force code alignment (used for TX49XX_ICACHE_INDEX_INV_WAR) */ #define JUMP_TO_ALIGN(order) \ __asm__ __volatile__( \ "b\t1f\n\t" \ ".align\t" #order "\n\t" \ "1:\n\t" \ ) #define CACHE32_UNROLL32_ALIGN JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */ #define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11) static inline void blast_r4600_v1_icache32(void) { unsigned long flags; local_irq_save(flags); blast_icache32(); local_irq_restore(flags); } static inline void tx49_blast_icache32(void) { unsigned long start = INDEX_BASE; unsigned long end = start + current_cpu_data.icache.waysize; unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit; unsigned long ws_end = current_cpu_data.icache.ways << current_cpu_data.icache.waybit; unsigned long ws, addr; CACHE32_UNROLL32_ALIGN2; /* I'm in even chunk. blast odd chunks */ for (ws = 0; ws < ws_end; ws += ws_inc) for (addr = start + 0x400; addr < end; addr += 0x400 * 2) cache32_unroll32(addr|ws,Index_Invalidate_I); CACHE32_UNROLL32_ALIGN; /* I'm in odd chunk. blast even chunks */ for (ws = 0; ws < ws_end; ws += ws_inc) for (addr = start; addr < end; addr += 0x400 * 2) cache32_unroll32(addr|ws,Index_Invalidate_I); } static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page) { unsigned long flags; local_irq_save(flags); blast_icache32_page_indexed(page); local_irq_restore(flags); } static inline void tx49_blast_icache32_page_indexed(unsigned long page) { unsigned long indexmask = current_cpu_data.icache.waysize - 1; unsigned long start = INDEX_BASE + (page & indexmask); unsigned long end = start + PAGE_SIZE; unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit; unsigned long ws_end = current_cpu_data.icache.ways << current_cpu_data.icache.waybit; unsigned long ws, addr; CACHE32_UNROLL32_ALIGN2; /* I'm in even chunk. blast odd chunks */ for (ws = 0; ws < ws_end; ws += ws_inc) for (addr = start + 0x400; addr < end; addr += 0x400 * 2) cache32_unroll32(addr|ws,Index_Invalidate_I); CACHE32_UNROLL32_ALIGN; /* I'm in odd chunk. blast even chunks */ for (ws = 0; ws < ws_end; ws += ws_inc) for (addr = start; addr < end; addr += 0x400 * 2) cache32_unroll32(addr|ws,Index_Invalidate_I); } static void (* r4k_blast_icache_page)(unsigned long addr); static inline void r4k_blast_icache_page_setup(void) { unsigned long ic_lsize = cpu_icache_line_size(); if (ic_lsize == 0) r4k_blast_icache_page = (void *)cache_noop; else if (ic_lsize == 16) r4k_blast_icache_page = blast_icache16_page; else if (ic_lsize == 32) r4k_blast_icache_page = blast_icache32_page; else if (ic_lsize == 64) r4k_blast_icache_page = blast_icache64_page; } static void (* r4k_blast_icache_page_indexed)(unsigned long addr); static inline void r4k_blast_icache_page_indexed_setup(void) { unsigned long ic_lsize = cpu_icache_line_size(); if (ic_lsize == 0) r4k_blast_icache_page_indexed = (void *)cache_noop; else if (ic_lsize == 16) r4k_blast_icache_page_indexed = blast_icache16_page_indexed; else if (ic_lsize == 32) { if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x()) r4k_blast_icache_page_indexed = blast_icache32_r4600_v1_page_indexed; else if (TX49XX_ICACHE_INDEX_INV_WAR) r4k_blast_icache_page_indexed = tx49_blast_icache32_page_indexed; else r4k_blast_icache_page_indexed = blast_icache32_page_indexed; } else if (ic_lsize == 64) r4k_blast_icache_page_indexed = blast_icache64_page_indexed; } static void (* r4k_blast_icache)(void); static inline void r4k_blast_icache_setup(void) { unsigned long ic_lsize = cpu_icache_line_size(); if (ic_lsize == 0) r4k_blast_icache = (void *)cache_noop; else if (ic_lsize == 16) r4k_blast_icache = blast_icache16; else if (ic_lsize == 32) { if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x()) r4k_blast_icache = blast_r4600_v1_icache32; else if (TX49XX_ICACHE_INDEX_INV_WAR) r4k_blast_icache = tx49_blast_icache32; else r4k_blast_icache = blast_icache32; } else if (ic_lsize == 64) r4k_blast_icache = blast_icache64; } static void (* r4k_blast_scache_page)(unsigned long addr); static inline void r4k_blast_scache_page_setup(void) { unsigned long sc_lsize = cpu_scache_line_size(); if (scache_size == 0) r4k_blast_scache_page = (void *)cache_noop; else if (sc_lsize == 16) r4k_blast_scache_page = blast_scache16_page; else if (sc_lsize == 32) r4k_blast_scache_page = blast_scache32_page; else if (sc_lsize == 64) r4k_blast_scache_page = blast_scache64_page; else if (sc_lsize == 128) r4k_blast_scache_page = blast_scache128_page; } static void (* r4k_blast_scache_page_indexed)(unsigned long addr); static inline void r4k_blast_scache_page_indexed_setup(void) { unsigned long sc_lsize = cpu_scache_line_size(); if (scache_size == 0) r4k_blast_scache_page_indexed = (void *)cache_noop; else if (sc_lsize == 16) r4k_blast_scache_page_indexed = blast_scache16_page_indexed; else if (sc_lsize == 32) r4k_blast_scache_page_indexed = blast_scache32_page_indexed; else if (sc_lsize == 64) r4k_blast_scache_page_indexed = blast_scache64_page_indexed; else if (sc_lsize == 128) r4k_blast_scache_page_indexed = blast_scache128_page_indexed; } static void (* r4k_blast_scache)(void); static inline void r4k_blast_scache_setup(void) { unsigned long sc_lsize = cpu_scache_line_size(); if (scache_size == 0) r4k_blast_scache = (void *)cache_noop; else if (sc_lsize == 16) r4k_blast_scache = blast_scache16; else if (sc_lsize == 32) r4k_blast_scache = blast_scache32; else if (sc_lsize == 64) r4k_blast_scache = blast_scache64; else if (sc_lsize == 128) r4k_blast_scache = blast_scache128; } /* * This is former mm's flush_cache_all() which really should be * flush_cache_vunmap these days ... */ static inline void local_r4k_flush_cache_all(void * args) { r4k_blast_dcache(); r4k_blast_icache(); } static void r4k_flush_cache_all(void) { if (!cpu_has_dc_aliases) return; r4k_on_each_cpu(local_r4k_flush_cache_all, NULL, 1, 1); } static inline void local_r4k___flush_cache_all(void * args) { r4k_blast_dcache(); r4k_blast_icache(); switch (current_cpu_data.cputype) { case CPU_R4000SC: case CPU_R4000MC: case CPU_R4400SC: case CPU_R4400MC: case CPU_R10000: case CPU_R12000: case CPU_R14000: r4k_blast_scache(); } } static void r4k___flush_cache_all(void) { r4k_on_each_cpu(local_r4k___flush_cache_all, NULL, 1, 1); } static inline void local_r4k_flush_cache_range(void * args) { struct vm_area_struct *vma = args; int exec; if (!(cpu_context(smp_processor_id(), vma->vm_mm))) return; exec = vma->vm_flags & VM_EXEC; if (cpu_has_dc_aliases || exec) r4k_blast_dcache(); if (exec) r4k_blast_icache(); } static void r4k_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { r4k_on_each_cpu(local_r4k_flush_cache_range, vma, 1, 1); } static inline void local_r4k_flush_cache_mm(void * args) { struct mm_struct *mm = args; if (!cpu_context(smp_processor_id(), mm)) return; r4k_blast_dcache(); r4k_blast_icache(); /* * Kludge alert. For obscure reasons R4000SC and R4400SC go nuts if we * only flush the primary caches but R10000 and R12000 behave sane ... */ if (current_cpu_data.cputype == CPU_R4000SC || current_cpu_data.cputype == CPU_R4000MC || current_cpu_data.cputype == CPU_R4400SC || current_cpu_data.cputype == CPU_R4400MC) r4k_blast_scache(); } static void r4k_flush_cache_mm(struct mm_struct *mm) { if (!cpu_has_dc_aliases) return; r4k_on_each_cpu(local_r4k_flush_cache_mm, mm, 1, 1); } struct flush_cache_page_args { struct vm_area_struct *vma; unsigned long addr; unsigned long pfn; }; static inline void local_r4k_flush_cache_page(void *args) { struct flush_cache_page_args *fcp_args = args; struct vm_area_struct *vma = fcp_args->vma; unsigned long addr = fcp_args->addr; unsigned long paddr = fcp_args->pfn << PAGE_SHIFT; int exec = vma->vm_flags & VM_EXEC; struct mm_struct *mm = vma->vm_mm; pgd_t *pgdp; pud_t *pudp; pmd_t *pmdp; pte_t *ptep; /* * If ownes no valid ASID yet, cannot possibly have gotten * this page into the cache. */ if (cpu_context(smp_processor_id(), mm) == 0) return; addr &= PAGE_MASK; pgdp = pgd_offset(mm, addr); pudp = pud_offset(pgdp, addr); pmdp = pmd_offset(pudp, addr); ptep = pte_offset(pmdp, addr); /* * If the page isn't marked valid, the page cannot possibly be * in the cache. */ if (!(pte_val(*ptep) & _PAGE_PRESENT)) return; /* * Doing flushes for another ASID than the current one is * too difficult since stupid R4k caches do a TLB translation * for every cache flush operation. So we do indexed flushes * in that case, which doesn't overly flush the cache too much. */ if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID)) { if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) { r4k_blast_dcache_page(addr); if (exec && !cpu_icache_snoops_remote_store) r4k_blast_scache_page(addr); } if (exec) r4k_blast_icache_page(addr); return; } /* * Do indexed flush, too much work to get the (possible) TLB refills * to work correctly. */ if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) { r4k_blast_dcache_page_indexed(cpu_has_pindexed_dcache ? paddr : addr); if (exec && !cpu_icache_snoops_remote_store) { r4k_blast_scache_page_indexed(paddr); } } if (exec) { if (cpu_has_vtag_icache) { int cpu = smp_processor_id(); if (cpu_context(cpu, mm) != 0) drop_mmu_context(mm, cpu); } else r4k_blast_icache_page_indexed(addr); } } static void r4k_flush_cache_page(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn) { struct flush_cache_page_args args; args.vma = vma; args.addr = addr; args.pfn = pfn; r4k_on_each_cpu(local_r4k_flush_cache_page, &args, 1, 1); } static inline void local_r4k_flush_data_cache_page(void * addr) { r4k_blast_dcache_page((unsigned long) addr); } static void r4k_flush_data_cache_page(unsigned long addr) { r4k_on_each_cpu(local_r4k_flush_data_cache_page, (void *) addr, 1, 1); } struct flush_icache_range_args { unsigned long start; unsigned long end; }; static inline void local_r4k_flush_icache_range(void *args) { struct flush_icache_range_args *fir_args = args; unsigned long start = fir_args->start; unsigned long end = fir_args->end; if (!cpu_has_ic_fills_f_dc) { if (end - start >= dcache_size) { r4k_blast_dcache(); } else { R4600_HIT_CACHEOP_WAR_IMPL; protected_blast_dcache_range(start, end); } if (!cpu_icache_snoops_remote_store && scache_size) { if (end - start > scache_size) r4k_blast_scache(); else protected_blast_scache_range(start, end); } } if (end - start > icache_size) r4k_blast_icache(); else protected_blast_icache_range(start, end); } static void r4k_flush_icache_range(unsigned long start, unsigned long end) { struct flush_icache_range_args args; args.start = start; args.end = end; r4k_on_each_cpu(local_r4k_flush_icache_range, &args, 1, 1); instruction_hazard(); } /* * Ok, this seriously sucks. We use them to flush a user page but don't * know the virtual address, so we have to blast away the whole icache * which is significantly more expensive than the real thing. Otoh we at * least know the kernel address of the page so we can flush it * selectivly. */ struct flush_icache_page_args { struct vm_area_struct *vma; struct page *page; }; static inline void local_r4k_flush_icache_page(void *args) { struct flush_icache_page_args *fip_args = args; struct vm_area_struct *vma = fip_args->vma; struct page *page = fip_args->page; /* * Tricky ... Because we don't know the virtual address we've got the * choice of either invalidating the entire primary and secondary * caches or invalidating the secondary caches also. With the subset * enforcment on R4000SC, R4400SC, R10000 and R12000 invalidating the * secondary cache will result in any entries in the primary caches * also getting invalidated which hopefully is a bit more economical. */ if (cpu_has_inclusive_pcaches) { unsigned long addr = (unsigned long) page_address(page); r4k_blast_scache_page(addr); ClearPageDcacheDirty(page); return; } if (!cpu_has_ic_fills_f_dc) { unsigned long addr = (unsigned long) page_address(page); r4k_blast_dcache_page(addr); if (!cpu_icache_snoops_remote_store) r4k_blast_scache_page(addr); ClearPageDcacheDirty(page); } /* * We're not sure of the virtual address(es) involved here, so * we have to flush the entire I-cache. */ if (cpu_has_vtag_icache) { int cpu = smp_processor_id(); if (cpu_context(cpu, vma->vm_mm) != 0) drop_mmu_context(vma->vm_mm, cpu); } else r4k_blast_icache(); } static void r4k_flush_icache_page(struct vm_area_struct *vma, struct page *page) { struct flush_icache_page_args args; /* * If there's no context yet, or the page isn't executable, no I-cache * flush is needed. */ if (!(vma->vm_flags & VM_EXEC)) return; args.vma = vma; args.page = page; r4k_on_each_cpu(local_r4k_flush_icache_page, &args, 1, 1); } #ifdef CONFIG_DMA_NONCOHERENT static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size) { /* Catch bad driver code */ BUG_ON(size == 0); if (cpu_has_inclusive_pcaches) { if (size >= scache_size) r4k_blast_scache(); else blast_scache_range(addr, addr + size); return; } /* * Either no secondary cache or the available caches don't have the * subset property so we have to flush the primary caches * explicitly */ if (size >= dcache_size) { r4k_blast_dcache(); } else { R4600_HIT_CACHEOP_WAR_IMPL; blast_dcache_range(addr, addr + size); } bc_wback_inv(addr, size); } static void r4k_dma_cache_inv(unsigned long addr, unsigned long size) { /* Catch bad driver code */ BUG_ON(size == 0); if (cpu_has_inclusive_pcaches) { if (size >= scache_size) r4k_blast_scache(); else blast_scache_range(addr, addr + size); return; } if (size >= dcache_size) { r4k_blast_dcache(); } else { R4600_HIT_CACHEOP_WAR_IMPL; blast_dcache_range(addr, addr + size); } bc_inv(addr, size); } #endif /* CONFIG_DMA_NONCOHERENT */ /* * While we're protected against bad userland addresses we don't care * very much about what happens in that case. Usually a segmentation * fault will dump the process later on anyway ... */ static void local_r4k_flush_cache_sigtramp(void * arg) { unsigned long ic_lsize = cpu_icache_line_size(); unsigned long dc_lsize = cpu_dcache_line_size(); unsigned long sc_lsize = cpu_scache_line_size(); unsigned long addr = (unsigned long) arg; R4600_HIT_CACHEOP_WAR_IMPL; if (dc_lsize) protected_writeback_dcache_line(addr & ~(dc_lsize - 1)); if (!cpu_icache_snoops_remote_store && scache_size) protected_writeback_scache_line(addr & ~(sc_lsize - 1)); if (ic_lsize) protected_flush_icache_line(addr & ~(ic_lsize - 1)); if (MIPS4K_ICACHE_REFILL_WAR) { __asm__ __volatile__ ( ".set push\n\t" ".set noat\n\t" ".set mips3\n\t" #ifdef CONFIG_32BIT "la $at,1f\n\t" #endif #ifdef CONFIG_64BIT "dla $at,1f\n\t" #endif "cache %0,($at)\n\t" "nop; nop; nop\n" "1:\n\t" ".set pop" : : "i" (Hit_Invalidate_I)); } if (MIPS_CACHE_SYNC_WAR) __asm__ __volatile__ ("sync"); } static void r4k_flush_cache_sigtramp(unsigned long addr) { r4k_on_each_cpu(local_r4k_flush_cache_sigtramp, (void *) addr, 1, 1); } static void r4k_flush_icache_all(void) { if (cpu_has_vtag_icache) r4k_blast_icache(); } static inline void rm7k_erratum31(void) { const unsigned long ic_lsize = 32; unsigned long addr; /* RM7000 erratum #31. The icache is screwed at startup. */ write_c0_taglo(0); write_c0_taghi(0); for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) { __asm__ __volatile__ ( ".set push\n\t" ".set noreorder\n\t" ".set mips3\n\t" "cache\t%1, 0(%0)\n\t" "cache\t%1, 0x1000(%0)\n\t" "cache\t%1, 0x2000(%0)\n\t" "cache\t%1, 0x3000(%0)\n\t" "cache\t%2, 0(%0)\n\t" "cache\t%2, 0x1000(%0)\n\t" "cache\t%2, 0x2000(%0)\n\t" "cache\t%2, 0x3000(%0)\n\t" "cache\t%1, 0(%0)\n\t" "cache\t%1, 0x1000(%0)\n\t" "cache\t%1, 0x2000(%0)\n\t" "cache\t%1, 0x3000(%0)\n\t" ".set pop\n" : : "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill)); } } static char *way_string[] __initdata = { NULL, "direct mapped", "2-way", "3-way", "4-way", "5-way", "6-way", "7-way", "8-way" }; static void __init probe_pcache(void) { struct cpuinfo_mips *c = ¤t_cpu_data; unsigned int config = read_c0_config(); unsigned int prid = read_c0_prid(); unsigned long config1; unsigned int lsize; switch (c->cputype) { case CPU_R4600: /* QED style two way caches? */ case CPU_R4700: case CPU_R5000: case CPU_NEVADA: icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); c->icache.linesz = 16 << ((config & CONF_IB) >> 5); c->icache.ways = 2; c->icache.waybit = __ffs(icache_size/2); dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); c->dcache.ways = 2; c->dcache.waybit= __ffs(dcache_size/2); c->options |= MIPS_CPU_CACHE_CDEX_P; break; case CPU_R5432: case CPU_R5500: icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); c->icache.linesz = 16 << ((config & CONF_IB) >> 5); c->icache.ways = 2; c->icache.waybit= 0; dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); c->dcache.ways = 2; c->dcache.waybit = 0; c->options |= MIPS_CPU_CACHE_CDEX_P; break; case CPU_TX49XX: icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); c->icache.linesz = 16 << ((config & CONF_IB) >> 5); c->icache.ways = 4; c->icache.waybit= 0; dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); c->dcache.ways = 4; c->dcache.waybit = 0; c->options |= MIPS_CPU_CACHE_CDEX_P; c->options |= MIPS_CPU_PREFETCH; break; case CPU_R4000PC: case CPU_R4000SC: case CPU_R4000MC: case CPU_R4400PC: case CPU_R4400SC: case CPU_R4400MC: case CPU_R4300: icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); c->icache.linesz = 16 << ((config & CONF_IB) >> 5); c->icache.ways = 1; c->icache.waybit = 0; /* doesn't matter */ dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); c->dcache.ways = 1; c->dcache.waybit = 0; /* does not matter */ c->options |= MIPS_CPU_CACHE_CDEX_P; break; case CPU_R10000: case CPU_R12000: case CPU_R14000: icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29)); c->icache.linesz = 64; c->icache.ways = 2; c->icache.waybit = 0; dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26)); c->dcache.linesz = 32; c->dcache.ways = 2; c->dcache.waybit = 0; c->options |= MIPS_CPU_PREFETCH; break; case CPU_VR4133: write_c0_config(config & ~VR41_CONF_P4K); case CPU_VR4131: /* Workaround for cache instruction bug of VR4131 */ if (c->processor_id == 0x0c80U || c->processor_id == 0x0c81U || c->processor_id == 0x0c82U) { config |= 0x00400000U; if (c->processor_id == 0x0c80U) config |= VR41_CONF_BP; write_c0_config(config); } else c->options |= MIPS_CPU_CACHE_CDEX_P; icache_size = 1 << (10 + ((config & CONF_IC) >> 9)); c->icache.linesz = 16 << ((config & CONF_IB) >> 5); c->icache.ways = 2; c->icache.waybit = __ffs(icache_size/2); dcache_size = 1 << (10 + ((config & CONF_DC) >> 6)); c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); c->dcache.ways = 2; c->dcache.waybit = __ffs(dcache_size/2); break; case CPU_VR41XX: case CPU_VR4111: case CPU_VR4121: case CPU_VR4122: case CPU_VR4181: case CPU_VR4181A: icache_size = 1 << (10 + ((config & CONF_IC) >> 9)); c->icache.linesz = 16 << ((config & CONF_IB) >> 5); c->icache.ways = 1; c->icache.waybit = 0; /* doesn't matter */ dcache_size = 1 << (10 + ((config & CONF_DC) >> 6)); c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); c->dcache.ways = 1; c->dcache.waybit = 0; /* does not matter */ c->options |= MIPS_CPU_CACHE_CDEX_P; break; case CPU_RM7000: rm7k_erratum31(); case CPU_RM9000: icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); c->icache.linesz = 16 << ((config & CONF_IB) >> 5); c->icache.ways = 4; c->icache.waybit = __ffs(icache_size / c->icache.ways); dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); c->dcache.ways = 4; c->dcache.waybit = __ffs(dcache_size / c->dcache.ways); #if !defined(CONFIG_SMP) || !defined(RM9000_CDEX_SMP_WAR) c->options |= MIPS_CPU_CACHE_CDEX_P; #endif c->options |= MIPS_CPU_PREFETCH; break; default: if (!(config & MIPS_CONF_M)) panic("Don't know how to probe P-caches on this cpu."); /* * So we seem to be a MIPS32 or MIPS64 CPU * So let's probe the I-cache ... */ config1 = read_c0_config1(); if ((lsize = ((config1 >> 19) & 7))) c->icache.linesz = 2 << lsize; else c->icache.linesz = lsize; c->icache.sets = 64 << ((config1 >> 22) & 7); c->icache.ways = 1 + ((config1 >> 16) & 7); icache_size = c->icache.sets * c->icache.ways * c->icache.linesz; c->icache.waybit = __ffs(icache_size/c->icache.ways); if (config & 0x8) /* VI bit */ c->icache.flags |= MIPS_CACHE_VTAG; /* * Now probe the MIPS32 / MIPS64 data cache. */ c->dcache.flags = 0; if ((lsize = ((config1 >> 10) & 7))) c->dcache.linesz = 2 << lsize; else c->dcache.linesz= lsize; c->dcache.sets = 64 << ((config1 >> 13) & 7); c->dcache.ways = 1 + ((config1 >> 7) & 7); dcache_size = c->dcache.sets * c->dcache.ways * c->dcache.linesz; c->dcache.waybit = __ffs(dcache_size/c->dcache.ways); c->options |= MIPS_CPU_PREFETCH; break; } /* * Processor configuration sanity check for the R4000SC erratum * #5. With page sizes larger than 32kB there is no possibility * to get a VCE exception anymore so we don't care about this * misconfiguration. The case is rather theoretical anyway; * presumably no vendor is shipping his hardware in the "bad" * configuration. */ if ((prid & 0xff00) == PRID_IMP_R4000 && (prid & 0xff) < 0x40 && !(config & CONF_SC) && c->icache.linesz != 16 && PAGE_SIZE <= 0x8000) panic("Improper R4000SC processor configuration detected"); /* compute a couple of other cache variables */ c->icache.waysize = icache_size / c->icache.ways; c->dcache.waysize = dcache_size / c->dcache.ways; c->icache.sets = c->icache.linesz ? icache_size / (c->icache.linesz * c->icache.ways) : 0; c->dcache.sets = c->dcache.linesz ? dcache_size / (c->dcache.linesz * c->dcache.ways) : 0; /* * R10000 and R12000 P-caches are odd in a positive way. They're 32kB * 2-way virtually indexed so normally would suffer from aliases. So * normally they'd suffer from aliases but magic in the hardware deals * with that for us so we don't need to take care ourselves. */ switch (c->cputype) { case CPU_20KC: case CPU_25KF: c->dcache.flags |= MIPS_CACHE_PINDEX; case CPU_R10000: case CPU_R12000: case CPU_R14000: case CPU_SB1: break; case CPU_24K: case CPU_34K: case CPU_74K: if ((read_c0_config7() & (1 << 16))) { /* effectively physically indexed dcache, thus no virtual aliases. */ c->dcache.flags |= MIPS_CACHE_PINDEX; break; } default: if (c->dcache.waysize > PAGE_SIZE) c->dcache.flags |= MIPS_CACHE_ALIASES; } switch (c->cputype) { case CPU_20KC: /* * Some older 20Kc chips doesn't have the 'VI' bit in * the config register. */ c->icache.flags |= MIPS_CACHE_VTAG; break; case CPU_AU1000: case CPU_AU1500: case CPU_AU1100: case CPU_AU1550: case CPU_AU1200: c->icache.flags |= MIPS_CACHE_IC_F_DC; break; } printk("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n", icache_size >> 10, cpu_has_vtag_icache ? "virtually tagged" : "physically tagged", way_string[c->icache.ways], c->icache.linesz); printk("Primary data cache %ldkB, %s, linesize %d bytes.\n", dcache_size >> 10, way_string[c->dcache.ways], c->dcache.linesz); } /* * If you even _breathe_ on this function, look at the gcc output and make sure * it does not pop things on and off the stack for the cache sizing loop that * executes in KSEG1 space or else you will crash and burn badly. You have * been warned. */ static int __init probe_scache(void) { extern unsigned long stext; unsigned long flags, addr, begin, end, pow2; unsigned int config = read_c0_config(); struct cpuinfo_mips *c = ¤t_cpu_data; int tmp; if (config & CONF_SC) return 0; begin = (unsigned long) &stext; begin &= ~((4 * 1024 * 1024) - 1); end = begin + (4 * 1024 * 1024); /* * This is such a bitch, you'd think they would make it easy to do * this. Away you daemons of stupidity! */ local_irq_save(flags); /* Fill each size-multiple cache line with a valid tag. */ pow2 = (64 * 1024); for (addr = begin; addr < end; addr = (begin + pow2)) { unsigned long *p = (unsigned long *) addr; __asm__ __volatile__("nop" : : "r" (*p)); /* whee... */ pow2 <<= 1; } /* Load first line with zero (therefore invalid) tag. */ write_c0_taglo(0); write_c0_taghi(0); __asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */ cache_op(Index_Store_Tag_I, begin); cache_op(Index_Store_Tag_D, begin); cache_op(Index_Store_Tag_SD, begin); /* Now search for the wrap around point. */ pow2 = (128 * 1024); tmp = 0; for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) { cache_op(Index_Load_Tag_SD, addr); __asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */ if (!read_c0_taglo()) break; pow2 <<= 1; } local_irq_restore(flags); addr -= begin; scache_size = addr; c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22); c->scache.ways = 1; c->dcache.waybit = 0; /* does not matter */ return 1; } extern int r5k_sc_init(void); extern int rm7k_sc_init(void); extern int mips_sc_init(void); static void __init setup_scache(void) { struct cpuinfo_mips *c = ¤t_cpu_data; unsigned int config = read_c0_config(); int sc_present = 0; /* * Do the probing thing on R4000SC and R4400SC processors. Other * processors don't have a S-cache that would be relevant to the * Linux memory managment. */ switch (c->cputype) { case CPU_R4000SC: case CPU_R4000MC: case CPU_R4400SC: case CPU_R4400MC: sc_present = run_uncached(probe_scache); if (sc_present) c->options |= MIPS_CPU_CACHE_CDEX_S; break; case CPU_R10000: case CPU_R12000: case CPU_R14000: scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16); c->scache.linesz = 64 << ((config >> 13) & 1); c->scache.ways = 2; c->scache.waybit= 0; sc_present = 1; break; case CPU_R5000: case CPU_NEVADA: #ifdef CONFIG_R5000_CPU_SCACHE r5k_sc_init(); #endif return; case CPU_RM7000: case CPU_RM9000: #ifdef CONFIG_RM7000_CPU_SCACHE rm7k_sc_init(); #endif return; default: if (c->isa_level == MIPS_CPU_ISA_M32R1 || c->isa_level == MIPS_CPU_ISA_M32R2 || c->isa_level == MIPS_CPU_ISA_M64R1 || c->isa_level == MIPS_CPU_ISA_M64R2) { #ifdef CONFIG_MIPS_CPU_SCACHE if (mips_sc_init ()) { scache_size = c->scache.ways * c->scache.sets * c->scache.linesz; printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n", scache_size >> 10, way_string[c->scache.ways], c->scache.linesz); } #else if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT)) panic("Dunno how to handle MIPS32 / MIPS64 second level cache"); #endif return; } sc_present = 0; } if (!sc_present) return; /* compute a couple of other cache variables */ c->scache.waysize = scache_size / c->scache.ways; c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways); printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n", scache_size >> 10, way_string[c->scache.ways], c->scache.linesz); c->options |= MIPS_CPU_INCLUSIVE_CACHES; } void au1x00_fixup_config_od(void) { /* * c0_config.od (bit 19) was write only (and read as 0) * on the early revisions of Alchemy SOCs. It disables the bus * transaction overlapping and needs to be set to fix various errata. */ switch (read_c0_prid()) { case 0x00030100: /* Au1000 DA */ case 0x00030201: /* Au1000 HA */ case 0x00030202: /* Au1000 HB */ case 0x01030200: /* Au1500 AB */ /* * Au1100 errata actually keeps silence about this bit, so we set it * just in case for those revisions that require it to be set according * to arch/mips/au1000/common/cputable.c */ case 0x02030200: /* Au1100 AB */ case 0x02030201: /* Au1100 BA */ case 0x02030202: /* Au1100 BC */ set_c0_config(1 << 19); break; } } static inline void coherency_setup(void) { change_c0_config(CONF_CM_CMASK, CONF_CM_DEFAULT); /* * c0_status.cu=0 specifies that updates by the sc instruction use * the coherency mode specified by the TLB; 1 means cachable * coherent update on write will be used. Not all processors have * this bit and; some wire it to zero, others like Toshiba had the * silly idea of putting something else there ... */ switch (current_cpu_data.cputype) { case CPU_R4000PC: case CPU_R4000SC: case CPU_R4000MC: case CPU_R4400PC: case CPU_R4400SC: case CPU_R4400MC: clear_c0_config(CONF_CU); break; /* * We need to catch the early Alchemy SOCs with * the write-only co_config.od bit and set it back to one... */ case CPU_AU1000: /* rev. DA, HA, HB */ case CPU_AU1100: /* rev. AB, BA, BC ?? */ case CPU_AU1500: /* rev. AB */ au1x00_fixup_config_od(); break; } } void __init r4k_cache_init(void) { extern void build_clear_page(void); extern void build_copy_page(void); extern char except_vec2_generic; struct cpuinfo_mips *c = ¤t_cpu_data; /* Default cache error handler for R4000 and R5000 family */ set_uncached_handler (0x100, &except_vec2_generic, 0x80); probe_pcache(); setup_scache(); r4k_blast_dcache_page_setup(); r4k_blast_dcache_page_indexed_setup(); r4k_blast_dcache_setup(); r4k_blast_icache_page_setup(); r4k_blast_icache_page_indexed_setup(); r4k_blast_icache_setup(); r4k_blast_scache_page_setup(); r4k_blast_scache_page_indexed_setup(); r4k_blast_scache_setup(); /* * Some MIPS32 and MIPS64 processors have physically indexed caches. * This code supports virtually indexed processors and will be * unnecessarily inefficient on physically indexed processors. */ if (c->dcache.linesz) shm_align_mask = max_t( unsigned long, c->dcache.sets * c->dcache.linesz - 1, PAGE_SIZE - 1); else shm_align_mask = PAGE_SIZE-1; flush_cache_all = r4k_flush_cache_all; __flush_cache_all = r4k___flush_cache_all; flush_cache_mm = r4k_flush_cache_mm; flush_cache_page = r4k_flush_cache_page; flush_icache_page = r4k_flush_icache_page; flush_cache_range = r4k_flush_cache_range; flush_cache_sigtramp = r4k_flush_cache_sigtramp; flush_icache_all = r4k_flush_icache_all; local_flush_data_cache_page = local_r4k_flush_data_cache_page; flush_data_cache_page = r4k_flush_data_cache_page; flush_icache_range = r4k_flush_icache_range; #ifdef CONFIG_DMA_NONCOHERENT _dma_cache_wback_inv = r4k_dma_cache_wback_inv; _dma_cache_wback = r4k_dma_cache_wback_inv; _dma_cache_inv = r4k_dma_cache_inv; #endif build_clear_page(); build_copy_page(); local_r4k___flush_cache_all(NULL); coherency_setup(); }