/* * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar * * This file contains the lowest level x86-specific interrupt * entry, irq-stacks and irq statistics code. All the remaining * irq logic is done by the generic kernel/irq/ code and * by the x86-specific irq controller code. (e.g. i8259.c and * io_apic.c.) */ #include #include #include #include #include #include #include #include #include DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat); EXPORT_PER_CPU_SYMBOL(irq_stat); DEFINE_PER_CPU(struct pt_regs *, irq_regs); EXPORT_PER_CPU_SYMBOL(irq_regs); /* * 'what should we do if we get a hw irq event on an illegal vector'. * each architecture has to answer this themselves. */ void ack_bad_irq(unsigned int irq) { printk(KERN_ERR "unexpected IRQ trap at vector %02x\n", irq); #ifdef CONFIG_X86_LOCAL_APIC /* * Currently unexpected vectors happen only on SMP and APIC. * We _must_ ack these because every local APIC has only N * irq slots per priority level, and a 'hanging, unacked' IRQ * holds up an irq slot - in excessive cases (when multiple * unexpected vectors occur) that might lock up the APIC * completely. * But only ack when the APIC is enabled -AK */ if (cpu_has_apic) ack_APIC_irq(); #endif } #ifdef CONFIG_DEBUG_STACKOVERFLOW /* Debugging check for stack overflow: is there less than 1KB free? */ static int check_stack_overflow(void) { long sp; __asm__ __volatile__("andl %%esp,%0" : "=r" (sp) : "0" (THREAD_SIZE - 1)); return sp < (sizeof(struct thread_info) + STACK_WARN); } static void print_stack_overflow(void) { printk(KERN_WARNING "low stack detected by irq handler\n"); dump_stack(); } #else static inline int check_stack_overflow(void) { return 0; } static inline void print_stack_overflow(void) { } #endif #ifdef CONFIG_4KSTACKS /* * per-CPU IRQ handling contexts (thread information and stack) */ union irq_ctx { struct thread_info tinfo; u32 stack[THREAD_SIZE/sizeof(u32)]; }; static union irq_ctx *hardirq_ctx[NR_CPUS] __read_mostly; static union irq_ctx *softirq_ctx[NR_CPUS] __read_mostly; static inline void call_on_stack(void *func, void *stack, unsigned long arg1, void *arg2) { unsigned long bx; asm volatile( " xchgl %%ebx,%%esp \n" " call *%%edi \n" " movl %%ebx,%%esp \n" : "=a" (arg1), "=d" (arg2), "=b" (bx) : "0" (arg1), "1" (arg2), "2" (stack), "D" (func) : "memory", "cc", "ecx"); } static inline int execute_on_irq_stack(int overflow, struct irq_desc *desc, int irq) { union irq_ctx *curctx, *irqctx; u32 *isp; curctx = (union irq_ctx *) current_thread_info(); irqctx = hardirq_ctx[smp_processor_id()]; /* * this is where we switch to the IRQ stack. However, if we are * already using the IRQ stack (because we interrupted a hardirq * handler) we can't do that and just have to keep using the * current stack (which is the irq stack already after all) */ if (unlikely(curctx == irqctx)) return 0; /* build the stack frame on the IRQ stack */ isp = (u32 *) ((char*)irqctx + sizeof(*irqctx)); irqctx->tinfo.task = curctx->tinfo.task; irqctx->tinfo.previous_esp = current_stack_pointer; /* * Copy the softirq bits in preempt_count so that the * softirq checks work in the hardirq context. */ irqctx->tinfo.preempt_count = (irqctx->tinfo.preempt_count & ~SOFTIRQ_MASK) | (curctx->tinfo.preempt_count & SOFTIRQ_MASK); if (unlikely(overflow)) call_on_stack(print_stack_overflow, isp, 0, NULL); call_on_stack(desc->handle_irq, isp, irq, desc); return 1; } #else static inline int execute_on_irq_stack(int overflow, struct irq_desc *desc, int irq) { return 0; } #endif /* * do_IRQ handles all normal device IRQ's (the special * SMP cross-CPU interrupts have their own specific * handlers). */ unsigned int do_IRQ(struct pt_regs *regs) { struct pt_regs *old_regs; /* high bit used in ret_from_ code */ int overflow, irq = ~regs->orig_ax; struct irq_desc *desc = irq_desc + irq; if (unlikely((unsigned)irq >= NR_IRQS)) { printk(KERN_EMERG "%s: cannot handle IRQ %d\n", __func__, irq); BUG(); } old_regs = set_irq_regs(regs); irq_enter(); overflow = check_stack_overflow(); if (!execute_on_irq_stack(overflow, desc, irq)) { if (unlikely(overflow)) print_stack_overflow(); desc->handle_irq(irq, desc); } irq_exit(); set_irq_regs(old_regs); return 1; } #ifdef CONFIG_4KSTACKS static char softirq_stack[NR_CPUS * THREAD_SIZE] __attribute__((__section__(".bss.page_aligned"))); static char hardirq_stack[NR_CPUS * THREAD_SIZE] __attribute__((__section__(".bss.page_aligned"))); /* * allocate per-cpu stacks for hardirq and for softirq processing */ void irq_ctx_init(int cpu) { union irq_ctx *irqctx; if (hardirq_ctx[cpu]) return; irqctx = (union irq_ctx*) &hardirq_stack[cpu*THREAD_SIZE]; irqctx->tinfo.task = NULL; irqctx->tinfo.exec_domain = NULL; irqctx->tinfo.cpu = cpu; irqctx->tinfo.preempt_count = HARDIRQ_OFFSET; irqctx->tinfo.addr_limit = MAKE_MM_SEG(0); hardirq_ctx[cpu] = irqctx; irqctx = (union irq_ctx*) &softirq_stack[cpu*THREAD_SIZE]; irqctx->tinfo.task = NULL; irqctx->tinfo.exec_domain = NULL; irqctx->tinfo.cpu = cpu; irqctx->tinfo.preempt_count = 0; irqctx->tinfo.addr_limit = MAKE_MM_SEG(0); softirq_ctx[cpu] = irqctx; printk("CPU %u irqstacks, hard=%p soft=%p\n", cpu,hardirq_ctx[cpu],softirq_ctx[cpu]); } void irq_ctx_exit(int cpu) { hardirq_ctx[cpu] = NULL; } asmlinkage void do_softirq(void) { unsigned long flags; struct thread_info *curctx; union irq_ctx *irqctx; u32 *isp; if (in_interrupt()) return; local_irq_save(flags); if (local_softirq_pending()) { curctx = current_thread_info(); irqctx = softirq_ctx[smp_processor_id()]; irqctx->tinfo.task = curctx->task; irqctx->tinfo.previous_esp = current_stack_pointer; /* build the stack frame on the softirq stack */ isp = (u32*) ((char*)irqctx + sizeof(*irqctx)); asm volatile( " xchgl %%ebx,%%esp \n" " call __do_softirq \n" " movl %%ebx,%%esp \n" : "=b"(isp) : "0"(isp) : "memory", "cc", "edx", "ecx", "eax" ); /* * Shouldnt happen, we returned above if in_interrupt(): */ WARN_ON_ONCE(softirq_count()); } local_irq_restore(flags); } #endif /* * Interrupt statistics: */ atomic_t irq_err_count; /* * /proc/interrupts printing: */ int show_interrupts(struct seq_file *p, void *v) { int i = *(loff_t *) v, j; struct irqaction * action; unsigned long flags; if (i == 0) { seq_printf(p, " "); for_each_online_cpu(j) seq_printf(p, "CPU%-8d",j); seq_putc(p, '\n'); } if (i < NR_IRQS) { unsigned any_count = 0; spin_lock_irqsave(&irq_desc[i].lock, flags); #ifndef CONFIG_SMP any_count = kstat_irqs(i); #else for_each_online_cpu(j) any_count |= kstat_cpu(j).irqs[i]; #endif action = irq_desc[i].action; if (!action && !any_count) goto skip; seq_printf(p, "%3d: ",i); #ifndef CONFIG_SMP seq_printf(p, "%10u ", kstat_irqs(i)); #else for_each_online_cpu(j) seq_printf(p, "%10u ", kstat_cpu(j).irqs[i]); #endif seq_printf(p, " %8s", irq_desc[i].chip->name); seq_printf(p, "-%-8s", irq_desc[i].name); if (action) { seq_printf(p, " %s", action->name); while ((action = action->next) != NULL) seq_printf(p, ", %s", action->name); } seq_putc(p, '\n'); skip: spin_unlock_irqrestore(&irq_desc[i].lock, flags); } else if (i == NR_IRQS) { seq_printf(p, "NMI: "); for_each_online_cpu(j) seq_printf(p, "%10u ", nmi_count(j)); seq_printf(p, " Non-maskable interrupts\n"); #ifdef CONFIG_X86_LOCAL_APIC seq_printf(p, "LOC: "); for_each_online_cpu(j) seq_printf(p, "%10u ", per_cpu(irq_stat,j).apic_timer_irqs); seq_printf(p, " Local timer interrupts\n"); #endif #ifdef CONFIG_SMP seq_printf(p, "RES: "); for_each_online_cpu(j) seq_printf(p, "%10u ", per_cpu(irq_stat,j).irq_resched_count); seq_printf(p, " Rescheduling interrupts\n"); seq_printf(p, "CAL: "); for_each_online_cpu(j) seq_printf(p, "%10u ", per_cpu(irq_stat,j).irq_call_count); seq_printf(p, " function call interrupts\n"); seq_printf(p, "TLB: "); for_each_online_cpu(j) seq_printf(p, "%10u ", per_cpu(irq_stat,j).irq_tlb_count); seq_printf(p, " TLB shootdowns\n"); #endif seq_printf(p, "TRM: "); for_each_online_cpu(j) seq_printf(p, "%10u ", per_cpu(irq_stat,j).irq_thermal_count); seq_printf(p, " Thermal event interrupts\n"); seq_printf(p, "SPU: "); for_each_online_cpu(j) seq_printf(p, "%10u ", per_cpu(irq_stat,j).irq_spurious_count); seq_printf(p, " Spurious interrupts\n"); seq_printf(p, "ERR: %10u\n", atomic_read(&irq_err_count)); #if defined(CONFIG_X86_IO_APIC) seq_printf(p, "MIS: %10u\n", atomic_read(&irq_mis_count)); #endif } return 0; } #ifdef CONFIG_HOTPLUG_CPU #include void fixup_irqs(cpumask_t map) { unsigned int irq; static int warned; for (irq = 0; irq < NR_IRQS; irq++) { cpumask_t mask; if (irq == 2) continue; cpus_and(mask, irq_desc[irq].affinity, map); if (any_online_cpu(mask) == NR_CPUS) { printk("Breaking affinity for irq %i\n", irq); mask = map; } if (irq_desc[irq].chip->set_affinity) irq_desc[irq].chip->set_affinity(irq, mask); else if (irq_desc[irq].action && !(warned++)) printk("Cannot set affinity for irq %i\n", irq); } #if 0 barrier(); /* Ingo Molnar says: "after the IO-APIC masks have been redirected [note the nop - the interrupt-enable boundary on x86 is two instructions from sti] - to flush out pending hardirqs and IPIs. After this point nothing is supposed to reach this CPU." */ __asm__ __volatile__("sti; nop; cli"); barrier(); #else /* That doesn't seem sufficient. Give it 1ms. */ local_irq_enable(); mdelay(1); local_irq_disable(); #endif } #endif