/* ----------------------------------------------------------------------- * * Copyright 2011 Intel Corporation; author Matt Fleming * * This file is part of the Linux kernel, and is made available under * the terms of the GNU General Public License version 2. * * ----------------------------------------------------------------------- */ #include #include #include #include #include #include "eboot.h" static efi_system_table_t *sys_table; static void efi_printk(char *str) { char *s8; for (s8 = str; *s8; s8++) { struct efi_simple_text_output_protocol *out; efi_char16_t ch[2] = { 0 }; ch[0] = *s8; out = (struct efi_simple_text_output_protocol *)sys_table->con_out; if (*s8 == '\n') { efi_char16_t nl[2] = { '\r', 0 }; efi_call_phys2(out->output_string, out, nl); } efi_call_phys2(out->output_string, out, ch); } } static efi_status_t __get_map(efi_memory_desc_t **map, unsigned long *map_size, unsigned long *desc_size) { efi_memory_desc_t *m = NULL; efi_status_t status; unsigned long key; u32 desc_version; *map_size = sizeof(*m) * 32; again: /* * Add an additional efi_memory_desc_t because we're doing an * allocation which may be in a new descriptor region. */ *map_size += sizeof(*m); status = efi_call_phys3(sys_table->boottime->allocate_pool, EFI_LOADER_DATA, *map_size, (void **)&m); if (status != EFI_SUCCESS) goto fail; status = efi_call_phys5(sys_table->boottime->get_memory_map, map_size, m, &key, desc_size, &desc_version); if (status == EFI_BUFFER_TOO_SMALL) { efi_call_phys1(sys_table->boottime->free_pool, m); goto again; } if (status != EFI_SUCCESS) efi_call_phys1(sys_table->boottime->free_pool, m); fail: *map = m; return status; } /* * Allocate at the highest possible address that is not above 'max'. */ static efi_status_t high_alloc(unsigned long size, unsigned long align, unsigned long *addr, unsigned long max) { unsigned long map_size, desc_size; efi_memory_desc_t *map; efi_status_t status; unsigned long nr_pages; u64 max_addr = 0; int i; status = __get_map(&map, &map_size, &desc_size); if (status != EFI_SUCCESS) goto fail; nr_pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE; again: for (i = 0; i < map_size / desc_size; i++) { efi_memory_desc_t *desc; unsigned long m = (unsigned long)map; u64 start, end; desc = (efi_memory_desc_t *)(m + (i * desc_size)); if (desc->type != EFI_CONVENTIONAL_MEMORY) continue; if (desc->num_pages < nr_pages) continue; start = desc->phys_addr; end = start + desc->num_pages * (1UL << EFI_PAGE_SHIFT); if ((start + size) > end || (start + size) > max) continue; if (end - size > max) end = max; if (round_down(end - size, align) < start) continue; start = round_down(end - size, align); /* * Don't allocate at 0x0. It will confuse code that * checks pointers against NULL. */ if (start == 0x0) continue; if (start > max_addr) max_addr = start; } if (!max_addr) status = EFI_NOT_FOUND; else { status = efi_call_phys4(sys_table->boottime->allocate_pages, EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA, nr_pages, &max_addr); if (status != EFI_SUCCESS) { max = max_addr; max_addr = 0; goto again; } *addr = max_addr; } free_pool: efi_call_phys1(sys_table->boottime->free_pool, map); fail: return status; } /* * Allocate at the lowest possible address. */ static efi_status_t low_alloc(unsigned long size, unsigned long align, unsigned long *addr) { unsigned long map_size, desc_size; efi_memory_desc_t *map; efi_status_t status; unsigned long nr_pages; int i; status = __get_map(&map, &map_size, &desc_size); if (status != EFI_SUCCESS) goto fail; nr_pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE; for (i = 0; i < map_size / desc_size; i++) { efi_memory_desc_t *desc; unsigned long m = (unsigned long)map; u64 start, end; desc = (efi_memory_desc_t *)(m + (i * desc_size)); if (desc->type != EFI_CONVENTIONAL_MEMORY) continue; if (desc->num_pages < nr_pages) continue; start = desc->phys_addr; end = start + desc->num_pages * (1UL << EFI_PAGE_SHIFT); /* * Don't allocate at 0x0. It will confuse code that * checks pointers against NULL. Skip the first 8 * bytes so we start at a nice even number. */ if (start == 0x0) start += 8; start = round_up(start, align); if ((start + size) > end) continue; status = efi_call_phys4(sys_table->boottime->allocate_pages, EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA, nr_pages, &start); if (status == EFI_SUCCESS) { *addr = start; break; } } if (i == map_size / desc_size) status = EFI_NOT_FOUND; free_pool: efi_call_phys1(sys_table->boottime->free_pool, map); fail: return status; } static void low_free(unsigned long size, unsigned long addr) { unsigned long nr_pages; nr_pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE; efi_call_phys2(sys_table->boottime->free_pages, addr, size); } static void find_bits(unsigned long mask, u8 *pos, u8 *size) { u8 first, len; first = 0; len = 0; if (mask) { while (!(mask & 0x1)) { mask = mask >> 1; first++; } while (mask & 0x1) { mask = mask >> 1; len++; } } *pos = first; *size = len; } static efi_status_t setup_efi_pci(struct boot_params *params) { efi_pci_io_protocol *pci; efi_status_t status; void **pci_handle; efi_guid_t pci_proto = EFI_PCI_IO_PROTOCOL_GUID; unsigned long nr_pci, size = 0; int i; struct setup_data *data; data = (struct setup_data *)params->hdr.setup_data; while (data && data->next) data = (struct setup_data *)data->next; status = efi_call_phys5(sys_table->boottime->locate_handle, EFI_LOCATE_BY_PROTOCOL, &pci_proto, NULL, &size, pci_handle); if (status == EFI_BUFFER_TOO_SMALL) { status = efi_call_phys3(sys_table->boottime->allocate_pool, EFI_LOADER_DATA, size, &pci_handle); if (status != EFI_SUCCESS) return status; status = efi_call_phys5(sys_table->boottime->locate_handle, EFI_LOCATE_BY_PROTOCOL, &pci_proto, NULL, &size, pci_handle); } if (status != EFI_SUCCESS) goto free_handle; nr_pci = size / sizeof(void *); for (i = 0; i < nr_pci; i++) { void *h = pci_handle[i]; uint64_t attributes; struct pci_setup_rom *rom; status = efi_call_phys3(sys_table->boottime->handle_protocol, h, &pci_proto, &pci); if (status != EFI_SUCCESS) continue; if (!pci) continue; status = efi_call_phys4(pci->attributes, pci, EfiPciIoAttributeOperationGet, 0, &attributes); if (status != EFI_SUCCESS) continue; if (!attributes & EFI_PCI_IO_ATTRIBUTE_EMBEDDED_ROM) continue; if (!pci->romimage || !pci->romsize) continue; size = pci->romsize + sizeof(*rom); status = efi_call_phys3(sys_table->boottime->allocate_pool, EFI_LOADER_DATA, size, &rom); if (status != EFI_SUCCESS) continue; rom->data.type = SETUP_PCI; rom->data.len = size - sizeof(struct setup_data); rom->data.next = 0; rom->pcilen = pci->romsize; status = efi_call_phys5(pci->pci.read, pci, EfiPciIoWidthUint16, PCI_VENDOR_ID, 1, &(rom->vendor)); if (status != EFI_SUCCESS) goto free_struct; status = efi_call_phys5(pci->pci.read, pci, EfiPciIoWidthUint16, PCI_DEVICE_ID, 1, &(rom->devid)); if (status != EFI_SUCCESS) goto free_struct; status = efi_call_phys5(pci->get_location, pci, &(rom->segment), &(rom->bus), &(rom->device), &(rom->function)); if (status != EFI_SUCCESS) goto free_struct; memcpy(rom->romdata, pci->romimage, pci->romsize); if (data) data->next = (uint64_t)rom; else params->hdr.setup_data = (uint64_t)rom; data = (struct setup_data *)rom; continue; free_struct: efi_call_phys1(sys_table->boottime->free_pool, rom); } free_handle: efi_call_phys1(sys_table->boottime->free_pool, pci_handle); return status; } /* * See if we have Graphics Output Protocol */ static efi_status_t setup_gop(struct screen_info *si, efi_guid_t *proto, unsigned long size) { struct efi_graphics_output_protocol *gop, *first_gop; struct efi_pixel_bitmask pixel_info; unsigned long nr_gops; efi_status_t status; void **gop_handle; u16 width, height; u32 fb_base, fb_size; u32 pixels_per_scan_line; int pixel_format; int i; status = efi_call_phys3(sys_table->boottime->allocate_pool, EFI_LOADER_DATA, size, &gop_handle); if (status != EFI_SUCCESS) return status; status = efi_call_phys5(sys_table->boottime->locate_handle, EFI_LOCATE_BY_PROTOCOL, proto, NULL, &size, gop_handle); if (status != EFI_SUCCESS) goto free_handle; first_gop = NULL; nr_gops = size / sizeof(void *); for (i = 0; i < nr_gops; i++) { struct efi_graphics_output_mode_info *info; efi_guid_t conout_proto = EFI_CONSOLE_OUT_DEVICE_GUID; bool conout_found = false; void *dummy; void *h = gop_handle[i]; status = efi_call_phys3(sys_table->boottime->handle_protocol, h, proto, &gop); if (status != EFI_SUCCESS) continue; status = efi_call_phys3(sys_table->boottime->handle_protocol, h, &conout_proto, &dummy); if (status == EFI_SUCCESS) conout_found = true; status = efi_call_phys4(gop->query_mode, gop, gop->mode->mode, &size, &info); if (status == EFI_SUCCESS && (!first_gop || conout_found)) { /* * Systems that use the UEFI Console Splitter may * provide multiple GOP devices, not all of which are * backed by real hardware. The workaround is to search * for a GOP implementing the ConOut protocol, and if * one isn't found, to just fall back to the first GOP. */ width = info->horizontal_resolution; height = info->vertical_resolution; fb_base = gop->mode->frame_buffer_base; fb_size = gop->mode->frame_buffer_size; pixel_format = info->pixel_format; pixel_info = info->pixel_information; pixels_per_scan_line = info->pixels_per_scan_line; /* * Once we've found a GOP supporting ConOut, * don't bother looking any further. */ if (conout_found) break; first_gop = gop; } } /* Did we find any GOPs? */ if (!first_gop) goto free_handle; /* EFI framebuffer */ si->orig_video_isVGA = VIDEO_TYPE_EFI; si->lfb_width = width; si->lfb_height = height; si->lfb_base = fb_base; si->pages = 1; if (pixel_format == PIXEL_RGB_RESERVED_8BIT_PER_COLOR) { si->lfb_depth = 32; si->lfb_linelength = pixels_per_scan_line * 4; si->red_size = 8; si->red_pos = 0; si->green_size = 8; si->green_pos = 8; si->blue_size = 8; si->blue_pos = 16; si->rsvd_size = 8; si->rsvd_pos = 24; } else if (pixel_format == PIXEL_BGR_RESERVED_8BIT_PER_COLOR) { si->lfb_depth = 32; si->lfb_linelength = pixels_per_scan_line * 4; si->red_size = 8; si->red_pos = 16; si->green_size = 8; si->green_pos = 8; si->blue_size = 8; si->blue_pos = 0; si->rsvd_size = 8; si->rsvd_pos = 24; } else if (pixel_format == PIXEL_BIT_MASK) { find_bits(pixel_info.red_mask, &si->red_pos, &si->red_size); find_bits(pixel_info.green_mask, &si->green_pos, &si->green_size); find_bits(pixel_info.blue_mask, &si->blue_pos, &si->blue_size); find_bits(pixel_info.reserved_mask, &si->rsvd_pos, &si->rsvd_size); si->lfb_depth = si->red_size + si->green_size + si->blue_size + si->rsvd_size; si->lfb_linelength = (pixels_per_scan_line * si->lfb_depth) / 8; } else { si->lfb_depth = 4; si->lfb_linelength = si->lfb_width / 2; si->red_size = 0; si->red_pos = 0; si->green_size = 0; si->green_pos = 0; si->blue_size = 0; si->blue_pos = 0; si->rsvd_size = 0; si->rsvd_pos = 0; } si->lfb_size = si->lfb_linelength * si->lfb_height; si->capabilities |= VIDEO_CAPABILITY_SKIP_QUIRKS; free_handle: efi_call_phys1(sys_table->boottime->free_pool, gop_handle); return status; } /* * See if we have Universal Graphics Adapter (UGA) protocol */ static efi_status_t setup_uga(struct screen_info *si, efi_guid_t *uga_proto, unsigned long size) { struct efi_uga_draw_protocol *uga, *first_uga; unsigned long nr_ugas; efi_status_t status; u32 width, height; void **uga_handle = NULL; int i; status = efi_call_phys3(sys_table->boottime->allocate_pool, EFI_LOADER_DATA, size, &uga_handle); if (status != EFI_SUCCESS) return status; status = efi_call_phys5(sys_table->boottime->locate_handle, EFI_LOCATE_BY_PROTOCOL, uga_proto, NULL, &size, uga_handle); if (status != EFI_SUCCESS) goto free_handle; first_uga = NULL; nr_ugas = size / sizeof(void *); for (i = 0; i < nr_ugas; i++) { efi_guid_t pciio_proto = EFI_PCI_IO_PROTOCOL_GUID; void *handle = uga_handle[i]; u32 w, h, depth, refresh; void *pciio; status = efi_call_phys3(sys_table->boottime->handle_protocol, handle, uga_proto, &uga); if (status != EFI_SUCCESS) continue; efi_call_phys3(sys_table->boottime->handle_protocol, handle, &pciio_proto, &pciio); status = efi_call_phys5(uga->get_mode, uga, &w, &h, &depth, &refresh); if (status == EFI_SUCCESS && (!first_uga || pciio)) { width = w; height = h; /* * Once we've found a UGA supporting PCIIO, * don't bother looking any further. */ if (pciio) break; first_uga = uga; } } if (!first_uga) goto free_handle; /* EFI framebuffer */ si->orig_video_isVGA = VIDEO_TYPE_EFI; si->lfb_depth = 32; si->lfb_width = width; si->lfb_height = height; si->red_size = 8; si->red_pos = 16; si->green_size = 8; si->green_pos = 8; si->blue_size = 8; si->blue_pos = 0; si->rsvd_size = 8; si->rsvd_pos = 24; free_handle: efi_call_phys1(sys_table->boottime->free_pool, uga_handle); return status; } void setup_graphics(struct boot_params *boot_params) { efi_guid_t graphics_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID; struct screen_info *si; efi_guid_t uga_proto = EFI_UGA_PROTOCOL_GUID; efi_status_t status; unsigned long size; void **gop_handle = NULL; void **uga_handle = NULL; si = &boot_params->screen_info; memset(si, 0, sizeof(*si)); size = 0; status = efi_call_phys5(sys_table->boottime->locate_handle, EFI_LOCATE_BY_PROTOCOL, &graphics_proto, NULL, &size, gop_handle); if (status == EFI_BUFFER_TOO_SMALL) status = setup_gop(si, &graphics_proto, size); if (status != EFI_SUCCESS) { size = 0; status = efi_call_phys5(sys_table->boottime->locate_handle, EFI_LOCATE_BY_PROTOCOL, &uga_proto, NULL, &size, uga_handle); if (status == EFI_BUFFER_TOO_SMALL) setup_uga(si, &uga_proto, size); } } struct initrd { efi_file_handle_t *handle; u64 size; }; /* * Check the cmdline for a LILO-style initrd= arguments. * * We only support loading an initrd from the same filesystem as the * kernel image. */ static efi_status_t handle_ramdisks(efi_loaded_image_t *image, struct setup_header *hdr) { struct initrd *initrds; unsigned long initrd_addr; efi_guid_t fs_proto = EFI_FILE_SYSTEM_GUID; u64 initrd_total; efi_file_io_interface_t *io; efi_file_handle_t *fh; efi_status_t status; int nr_initrds; char *str; int i, j, k; initrd_addr = 0; initrd_total = 0; str = (char *)(unsigned long)hdr->cmd_line_ptr; j = 0; /* See close_handles */ if (!str || !*str) return EFI_SUCCESS; for (nr_initrds = 0; *str; nr_initrds++) { str = strstr(str, "initrd="); if (!str) break; str += 7; /* Skip any leading slashes */ while (*str == '/' || *str == '\\') str++; while (*str && *str != ' ' && *str != '\n') str++; } if (!nr_initrds) return EFI_SUCCESS; status = efi_call_phys3(sys_table->boottime->allocate_pool, EFI_LOADER_DATA, nr_initrds * sizeof(*initrds), &initrds); if (status != EFI_SUCCESS) { efi_printk("Failed to alloc mem for initrds\n"); goto fail; } str = (char *)(unsigned long)hdr->cmd_line_ptr; for (i = 0; i < nr_initrds; i++) { struct initrd *initrd; efi_file_handle_t *h; efi_file_info_t *info; efi_char16_t filename_16[256]; unsigned long info_sz; efi_guid_t info_guid = EFI_FILE_INFO_ID; efi_char16_t *p; u64 file_sz; str = strstr(str, "initrd="); if (!str) break; str += 7; initrd = &initrds[i]; p = filename_16; /* Skip any leading slashes */ while (*str == '/' || *str == '\\') str++; while (*str && *str != ' ' && *str != '\n') { if ((u8 *)p >= (u8 *)filename_16 + sizeof(filename_16)) break; *p++ = *str++; } *p = '\0'; /* Only open the volume once. */ if (!i) { efi_boot_services_t *boottime; boottime = sys_table->boottime; status = efi_call_phys3(boottime->handle_protocol, image->device_handle, &fs_proto, &io); if (status != EFI_SUCCESS) { efi_printk("Failed to handle fs_proto\n"); goto free_initrds; } status = efi_call_phys2(io->open_volume, io, &fh); if (status != EFI_SUCCESS) { efi_printk("Failed to open volume\n"); goto free_initrds; } } status = efi_call_phys5(fh->open, fh, &h, filename_16, EFI_FILE_MODE_READ, (u64)0); if (status != EFI_SUCCESS) { efi_printk("Failed to open initrd file\n"); goto close_handles; } initrd->handle = h; info_sz = 0; status = efi_call_phys4(h->get_info, h, &info_guid, &info_sz, NULL); if (status != EFI_BUFFER_TOO_SMALL) { efi_printk("Failed to get initrd info size\n"); goto close_handles; } grow: status = efi_call_phys3(sys_table->boottime->allocate_pool, EFI_LOADER_DATA, info_sz, &info); if (status != EFI_SUCCESS) { efi_printk("Failed to alloc mem for initrd info\n"); goto close_handles; } status = efi_call_phys4(h->get_info, h, &info_guid, &info_sz, info); if (status == EFI_BUFFER_TOO_SMALL) { efi_call_phys1(sys_table->boottime->free_pool, info); goto grow; } file_sz = info->file_size; efi_call_phys1(sys_table->boottime->free_pool, info); if (status != EFI_SUCCESS) { efi_printk("Failed to get initrd info\n"); goto close_handles; } initrd->size = file_sz; initrd_total += file_sz; } if (initrd_total) { unsigned long addr; /* * Multiple initrd's need to be at consecutive * addresses in memory, so allocate enough memory for * all the initrd's. */ status = high_alloc(initrd_total, 0x1000, &initrd_addr, hdr->initrd_addr_max); if (status != EFI_SUCCESS) { efi_printk("Failed to alloc highmem for initrds\n"); goto close_handles; } /* We've run out of free low memory. */ if (initrd_addr > hdr->initrd_addr_max) { efi_printk("We've run out of free low memory\n"); status = EFI_INVALID_PARAMETER; goto free_initrd_total; } addr = initrd_addr; for (j = 0; j < nr_initrds; j++) { u64 size; size = initrds[j].size; while (size) { u64 chunksize; if (size > EFI_READ_CHUNK_SIZE) chunksize = EFI_READ_CHUNK_SIZE; else chunksize = size; status = efi_call_phys3(fh->read, initrds[j].handle, &chunksize, addr); if (status != EFI_SUCCESS) { efi_printk("Failed to read initrd\n"); goto free_initrd_total; } addr += chunksize; size -= chunksize; } efi_call_phys1(fh->close, initrds[j].handle); } } efi_call_phys1(sys_table->boottime->free_pool, initrds); hdr->ramdisk_image = initrd_addr; hdr->ramdisk_size = initrd_total; return status; free_initrd_total: low_free(initrd_total, initrd_addr); close_handles: for (k = j; k < i; k++) efi_call_phys1(fh->close, initrds[k].handle); free_initrds: efi_call_phys1(sys_table->boottime->free_pool, initrds); fail: hdr->ramdisk_image = 0; hdr->ramdisk_size = 0; return status; } /* * Because the x86 boot code expects to be passed a boot_params we * need to create one ourselves (usually the bootloader would create * one for us). */ struct boot_params *make_boot_params(void *handle, efi_system_table_t *_table) { struct boot_params *boot_params; struct sys_desc_table *sdt; struct apm_bios_info *bi; struct setup_header *hdr; struct efi_info *efi; efi_loaded_image_t *image; void *options; u32 load_options_size; efi_guid_t proto = LOADED_IMAGE_PROTOCOL_GUID; int options_size = 0; efi_status_t status; unsigned long cmdline; u16 *s2; u8 *s1; int i; sys_table = _table; /* Check if we were booted by the EFI firmware */ if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) return NULL; status = efi_call_phys3(sys_table->boottime->handle_protocol, handle, &proto, (void *)&image); if (status != EFI_SUCCESS) { efi_printk("Failed to get handle for LOADED_IMAGE_PROTOCOL\n"); return NULL; } status = low_alloc(0x4000, 1, (unsigned long *)&boot_params); if (status != EFI_SUCCESS) { efi_printk("Failed to alloc lowmem for boot params\n"); return NULL; } memset(boot_params, 0x0, 0x4000); hdr = &boot_params->hdr; efi = &boot_params->efi_info; bi = &boot_params->apm_bios_info; sdt = &boot_params->sys_desc_table; /* Copy the second sector to boot_params */ memcpy(&hdr->jump, image->image_base + 512, 512); /* * Fill out some of the header fields ourselves because the * EFI firmware loader doesn't load the first sector. */ hdr->root_flags = 1; hdr->vid_mode = 0xffff; hdr->boot_flag = 0xAA55; hdr->code32_start = (__u64)(unsigned long)image->image_base; hdr->type_of_loader = 0x21; /* Convert unicode cmdline to ascii */ options = image->load_options; load_options_size = image->load_options_size / 2; /* ASCII */ cmdline = 0; s2 = (u16 *)options; if (s2) { while (*s2 && *s2 != '\n' && options_size < load_options_size) { s2++; options_size++; } if (options_size) { if (options_size > hdr->cmdline_size) options_size = hdr->cmdline_size; options_size++; /* NUL termination */ status = low_alloc(options_size, 1, &cmdline); if (status != EFI_SUCCESS) { efi_printk("Failed to alloc mem for cmdline\n"); goto fail; } s1 = (u8 *)(unsigned long)cmdline; s2 = (u16 *)options; for (i = 0; i < options_size - 1; i++) *s1++ = *s2++; *s1 = '\0'; } } hdr->cmd_line_ptr = cmdline; hdr->ramdisk_image = 0; hdr->ramdisk_size = 0; /* Clear APM BIOS info */ memset(bi, 0, sizeof(*bi)); memset(sdt, 0, sizeof(*sdt)); status = handle_ramdisks(image, hdr); if (status != EFI_SUCCESS) goto fail2; return boot_params; fail2: if (options_size) low_free(options_size, hdr->cmd_line_ptr); fail: low_free(0x4000, (unsigned long)boot_params); return NULL; } static efi_status_t exit_boot(struct boot_params *boot_params, void *handle) { struct efi_info *efi = &boot_params->efi_info; struct e820entry *e820_map = &boot_params->e820_map[0]; struct e820entry *prev = NULL; unsigned long size, key, desc_size, _size; efi_memory_desc_t *mem_map; efi_status_t status; __u32 desc_version; u8 nr_entries; int i; size = sizeof(*mem_map) * 32; again: size += sizeof(*mem_map); _size = size; status = low_alloc(size, 1, (unsigned long *)&mem_map); if (status != EFI_SUCCESS) return status; status = efi_call_phys5(sys_table->boottime->get_memory_map, &size, mem_map, &key, &desc_size, &desc_version); if (status == EFI_BUFFER_TOO_SMALL) { low_free(_size, (unsigned long)mem_map); goto again; } if (status != EFI_SUCCESS) goto free_mem_map; memcpy(&efi->efi_loader_signature, EFI_LOADER_SIGNATURE, sizeof(__u32)); efi->efi_systab = (unsigned long)sys_table; efi->efi_memdesc_size = desc_size; efi->efi_memdesc_version = desc_version; efi->efi_memmap = (unsigned long)mem_map; efi->efi_memmap_size = size; #ifdef CONFIG_X86_64 efi->efi_systab_hi = (unsigned long)sys_table >> 32; efi->efi_memmap_hi = (unsigned long)mem_map >> 32; #endif /* Might as well exit boot services now */ status = efi_call_phys2(sys_table->boottime->exit_boot_services, handle, key); if (status != EFI_SUCCESS) goto free_mem_map; /* Historic? */ boot_params->alt_mem_k = 32 * 1024; /* * Convert the EFI memory map to E820. */ nr_entries = 0; for (i = 0; i < size / desc_size; i++) { efi_memory_desc_t *d; unsigned int e820_type = 0; unsigned long m = (unsigned long)mem_map; d = (efi_memory_desc_t *)(m + (i * desc_size)); switch (d->type) { case EFI_RESERVED_TYPE: case EFI_RUNTIME_SERVICES_CODE: case EFI_RUNTIME_SERVICES_DATA: case EFI_MEMORY_MAPPED_IO: case EFI_MEMORY_MAPPED_IO_PORT_SPACE: case EFI_PAL_CODE: e820_type = E820_RESERVED; break; case EFI_UNUSABLE_MEMORY: e820_type = E820_UNUSABLE; break; case EFI_ACPI_RECLAIM_MEMORY: e820_type = E820_ACPI; break; case EFI_LOADER_CODE: case EFI_LOADER_DATA: case EFI_BOOT_SERVICES_CODE: case EFI_BOOT_SERVICES_DATA: case EFI_CONVENTIONAL_MEMORY: e820_type = E820_RAM; break; case EFI_ACPI_MEMORY_NVS: e820_type = E820_NVS; break; default: continue; } /* Merge adjacent mappings */ if (prev && prev->type == e820_type && (prev->addr + prev->size) == d->phys_addr) prev->size += d->num_pages << 12; else { e820_map->addr = d->phys_addr; e820_map->size = d->num_pages << 12; e820_map->type = e820_type; prev = e820_map++; nr_entries++; } } boot_params->e820_entries = nr_entries; return EFI_SUCCESS; free_mem_map: low_free(_size, (unsigned long)mem_map); return status; } static efi_status_t relocate_kernel(struct setup_header *hdr) { unsigned long start, nr_pages; efi_status_t status; /* * The EFI firmware loader could have placed the kernel image * anywhere in memory, but the kernel has various restrictions * on the max physical address it can run at. Attempt to move * the kernel to boot_params.pref_address, or as low as * possible. */ start = hdr->pref_address; nr_pages = round_up(hdr->init_size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE; status = efi_call_phys4(sys_table->boottime->allocate_pages, EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA, nr_pages, &start); if (status != EFI_SUCCESS) { status = low_alloc(hdr->init_size, hdr->kernel_alignment, &start); if (status != EFI_SUCCESS) efi_printk("Failed to alloc mem for kernel\n"); } if (status == EFI_SUCCESS) memcpy((void *)start, (void *)(unsigned long)hdr->code32_start, hdr->init_size); hdr->pref_address = hdr->code32_start; hdr->code32_start = (__u32)start; return status; } /* * On success we return a pointer to a boot_params structure, and NULL * on failure. */ struct boot_params *efi_main(void *handle, efi_system_table_t *_table, struct boot_params *boot_params) { struct desc_ptr *gdt, *idt; efi_loaded_image_t *image; struct setup_header *hdr = &boot_params->hdr; efi_status_t status; struct desc_struct *desc; sys_table = _table; /* Check if we were booted by the EFI firmware */ if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) goto fail; setup_graphics(boot_params); setup_efi_pci(boot_params); status = efi_call_phys3(sys_table->boottime->allocate_pool, EFI_LOADER_DATA, sizeof(*gdt), (void **)&gdt); if (status != EFI_SUCCESS) { efi_printk("Failed to alloc mem for gdt structure\n"); goto fail; } gdt->size = 0x800; status = low_alloc(gdt->size, 8, (unsigned long *)&gdt->address); if (status != EFI_SUCCESS) { efi_printk("Failed to alloc mem for gdt\n"); goto fail; } status = efi_call_phys3(sys_table->boottime->allocate_pool, EFI_LOADER_DATA, sizeof(*idt), (void **)&idt); if (status != EFI_SUCCESS) { efi_printk("Failed to alloc mem for idt structure\n"); goto fail; } idt->size = 0; idt->address = 0; /* * If the kernel isn't already loaded at the preferred load * address, relocate it. */ if (hdr->pref_address != hdr->code32_start) { status = relocate_kernel(hdr); if (status != EFI_SUCCESS) goto fail; } status = exit_boot(boot_params, handle); if (status != EFI_SUCCESS) goto fail; memset((char *)gdt->address, 0x0, gdt->size); desc = (struct desc_struct *)gdt->address; /* The first GDT is a dummy and the second is unused. */ desc += 2; desc->limit0 = 0xffff; desc->base0 = 0x0000; desc->base1 = 0x0000; desc->type = SEG_TYPE_CODE | SEG_TYPE_EXEC_READ; desc->s = DESC_TYPE_CODE_DATA; desc->dpl = 0; desc->p = 1; desc->limit = 0xf; desc->avl = 0; desc->l = 0; desc->d = SEG_OP_SIZE_32BIT; desc->g = SEG_GRANULARITY_4KB; desc->base2 = 0x00; desc++; desc->limit0 = 0xffff; desc->base0 = 0x0000; desc->base1 = 0x0000; desc->type = SEG_TYPE_DATA | SEG_TYPE_READ_WRITE; desc->s = DESC_TYPE_CODE_DATA; desc->dpl = 0; desc->p = 1; desc->limit = 0xf; desc->avl = 0; desc->l = 0; desc->d = SEG_OP_SIZE_32BIT; desc->g = SEG_GRANULARITY_4KB; desc->base2 = 0x00; #ifdef CONFIG_X86_64 /* Task segment value */ desc++; desc->limit0 = 0x0000; desc->base0 = 0x0000; desc->base1 = 0x0000; desc->type = SEG_TYPE_TSS; desc->s = 0; desc->dpl = 0; desc->p = 1; desc->limit = 0x0; desc->avl = 0; desc->l = 0; desc->d = 0; desc->g = SEG_GRANULARITY_4KB; desc->base2 = 0x00; #endif /* CONFIG_X86_64 */ asm volatile ("lidt %0" : : "m" (*idt)); asm volatile ("lgdt %0" : : "m" (*gdt)); asm volatile("cli"); return boot_params; fail: return NULL; }