/* * Copyright (c) 2008 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Implementation of transmit path. */ #include "core.h" #define BITS_PER_BYTE 8 #define OFDM_PLCP_BITS 22 #define HT_RC_2_MCS(_rc) ((_rc) & 0x0f) #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1) #define L_STF 8 #define L_LTF 8 #define L_SIG 4 #define HT_SIG 8 #define HT_STF 4 #define HT_LTF(_ns) (4 * (_ns)) #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */ #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */ #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2) #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18) #define OFDM_SIFS_TIME 16 static u32 bits_per_symbol[][2] = { /* 20MHz 40MHz */ { 26, 54 }, /* 0: BPSK */ { 52, 108 }, /* 1: QPSK 1/2 */ { 78, 162 }, /* 2: QPSK 3/4 */ { 104, 216 }, /* 3: 16-QAM 1/2 */ { 156, 324 }, /* 4: 16-QAM 3/4 */ { 208, 432 }, /* 5: 64-QAM 2/3 */ { 234, 486 }, /* 6: 64-QAM 3/4 */ { 260, 540 }, /* 7: 64-QAM 5/6 */ { 52, 108 }, /* 8: BPSK */ { 104, 216 }, /* 9: QPSK 1/2 */ { 156, 324 }, /* 10: QPSK 3/4 */ { 208, 432 }, /* 11: 16-QAM 1/2 */ { 312, 648 }, /* 12: 16-QAM 3/4 */ { 416, 864 }, /* 13: 64-QAM 2/3 */ { 468, 972 }, /* 14: 64-QAM 3/4 */ { 520, 1080 }, /* 15: 64-QAM 5/6 */ }; #define IS_HT_RATE(_rate) ((_rate) & 0x80) /* * Insert a chain of ath_buf (descriptors) on a multicast txq * but do NOT start tx DMA on this queue. * NB: must be called with txq lock held */ static void ath_tx_mcastqaddbuf(struct ath_softc *sc, struct ath_txq *txq, struct list_head *head) { struct ath_hal *ah = sc->sc_ah; struct ath_buf *bf; if (list_empty(head)) return; /* * Insert the frame on the outbound list and * pass it on to the hardware. */ bf = list_first_entry(head, struct ath_buf, list); /* * The CAB queue is started from the SWBA handler since * frames only go out on DTIM and to avoid possible races. */ ath9k_hw_set_interrupts(ah, 0); /* * If there is anything in the mcastq, we want to set * the "more data" bit in the last item in the queue to * indicate that there is "more data". It makes sense to add * it here since you are *always* going to have * more data when adding to this queue, no matter where * you call from. */ if (txq->axq_depth) { struct ath_buf *lbf; struct ieee80211_hdr *hdr; /* * Add the "more data flag" to the last frame */ lbf = list_entry(txq->axq_q.prev, struct ath_buf, list); hdr = (struct ieee80211_hdr *) ((struct sk_buff *)(lbf->bf_mpdu))->data; hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA); } /* * Now, concat the frame onto the queue */ list_splice_tail_init(head, &txq->axq_q); txq->axq_depth++; txq->axq_totalqueued++; txq->axq_linkbuf = list_entry(txq->axq_q.prev, struct ath_buf, list); DPRINTF(sc, ATH_DBG_QUEUE, "%s: txq depth = %d\n", __func__, txq->axq_depth); if (txq->axq_link != NULL) { *txq->axq_link = bf->bf_daddr; DPRINTF(sc, ATH_DBG_XMIT, "%s: link[%u](%p)=%llx (%p)\n", __func__, txq->axq_qnum, txq->axq_link, ito64(bf->bf_daddr), bf->bf_desc); } txq->axq_link = &(bf->bf_lastbf->bf_desc->ds_link); ath9k_hw_set_interrupts(ah, sc->sc_imask); } /* * Insert a chain of ath_buf (descriptors) on a txq and * assume the descriptors are already chained together by caller. * NB: must be called with txq lock held */ static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, struct list_head *head) { struct ath_hal *ah = sc->sc_ah; struct ath_buf *bf; /* * Insert the frame on the outbound list and * pass it on to the hardware. */ if (list_empty(head)) return; bf = list_first_entry(head, struct ath_buf, list); list_splice_tail_init(head, &txq->axq_q); txq->axq_depth++; txq->axq_totalqueued++; txq->axq_linkbuf = list_entry(txq->axq_q.prev, struct ath_buf, list); DPRINTF(sc, ATH_DBG_QUEUE, "%s: txq depth = %d\n", __func__, txq->axq_depth); if (txq->axq_link == NULL) { ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); DPRINTF(sc, ATH_DBG_XMIT, "%s: TXDP[%u] = %llx (%p)\n", __func__, txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc); } else { *txq->axq_link = bf->bf_daddr; DPRINTF(sc, ATH_DBG_XMIT, "%s: link[%u] (%p)=%llx (%p)\n", __func__, txq->axq_qnum, txq->axq_link, ito64(bf->bf_daddr), bf->bf_desc); } txq->axq_link = &(bf->bf_lastbf->bf_desc->ds_link); ath9k_hw_txstart(ah, txq->axq_qnum); } /* Get transmit rate index using rate in Kbps */ static int ath_tx_findindex(const struct ath9k_rate_table *rt, int rate) { int i; int ndx = 0; for (i = 0; i < rt->rateCount; i++) { if (rt->info[i].rateKbps == rate) { ndx = i; break; } } return ndx; } /* Check if it's okay to send out aggregates */ static int ath_aggr_query(struct ath_softc *sc, struct ath_node *an, u8 tidno) { struct ath_atx_tid *tid; tid = ATH_AN_2_TID(an, tidno); if (tid->addba_exchangecomplete || tid->addba_exchangeinprogress) return 1; else return 0; } static enum ath9k_pkt_type get_hal_packet_type(struct ieee80211_hdr *hdr) { enum ath9k_pkt_type htype; __le16 fc; fc = hdr->frame_control; /* Calculate Atheros packet type from IEEE80211 packet header */ if (ieee80211_is_beacon(fc)) htype = ATH9K_PKT_TYPE_BEACON; else if (ieee80211_is_probe_resp(fc)) htype = ATH9K_PKT_TYPE_PROBE_RESP; else if (ieee80211_is_atim(fc)) htype = ATH9K_PKT_TYPE_ATIM; else if (ieee80211_is_pspoll(fc)) htype = ATH9K_PKT_TYPE_PSPOLL; else htype = ATH9K_PKT_TYPE_NORMAL; return htype; } static void fill_min_rates(struct sk_buff *skb, struct ath_tx_control *txctl) { struct ieee80211_hdr *hdr; struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); struct ath_tx_info_priv *tx_info_priv; __le16 fc; hdr = (struct ieee80211_hdr *)skb->data; fc = hdr->frame_control; tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0]; if (ieee80211_is_mgmt(fc) || ieee80211_is_ctl(fc)) { txctl->use_minrate = 1; txctl->min_rate = tx_info_priv->min_rate; } else if (ieee80211_is_data(fc)) { if (ieee80211_is_nullfunc(fc) || /* Port Access Entity (IEEE 802.1X) */ (skb->protocol == cpu_to_be16(0x888E))) { txctl->use_minrate = 1; txctl->min_rate = tx_info_priv->min_rate; } if (is_multicast_ether_addr(hdr->addr1)) txctl->mcast_rate = tx_info_priv->min_rate; } } /* This function will setup additional txctl information, mostly rate stuff */ /* FIXME: seqno, ps */ static int ath_tx_prepare(struct ath_softc *sc, struct sk_buff *skb, struct ath_tx_control *txctl) { struct ieee80211_hw *hw = sc->hw; struct ieee80211_hdr *hdr; struct ath_rc_series *rcs; struct ath_txq *txq = NULL; const struct ath9k_rate_table *rt; struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); struct ath_tx_info_priv *tx_info_priv; int hdrlen; u8 rix, antenna; __le16 fc; u8 *qc; memset(txctl, 0, sizeof(struct ath_tx_control)); txctl->dev = sc; hdr = (struct ieee80211_hdr *)skb->data; hdrlen = ieee80211_get_hdrlen_from_skb(skb); fc = hdr->frame_control; rt = sc->sc_currates; BUG_ON(!rt); /* Fill misc fields */ spin_lock_bh(&sc->node_lock); txctl->an = ath_node_get(sc, hdr->addr1); /* create a temp node, if the node is not there already */ if (!txctl->an) txctl->an = ath_node_attach(sc, hdr->addr1, 0); spin_unlock_bh(&sc->node_lock); if (ieee80211_is_data_qos(fc)) { qc = ieee80211_get_qos_ctl(hdr); txctl->tidno = qc[0] & 0xf; } txctl->if_id = 0; txctl->nextfraglen = 0; txctl->frmlen = skb->len + FCS_LEN - (hdrlen & 3); txctl->txpower = MAX_RATE_POWER; /* FIXME */ /* Fill Key related fields */ txctl->keytype = ATH9K_KEY_TYPE_CLEAR; txctl->keyix = ATH9K_TXKEYIX_INVALID; if (tx_info->control.hw_key) { txctl->keyix = tx_info->control.hw_key->hw_key_idx; txctl->frmlen += tx_info->control.icv_len; if (sc->sc_keytype == ATH9K_CIPHER_WEP) txctl->keytype = ATH9K_KEY_TYPE_WEP; else if (sc->sc_keytype == ATH9K_CIPHER_TKIP) txctl->keytype = ATH9K_KEY_TYPE_TKIP; else if (sc->sc_keytype == ATH9K_CIPHER_AES_CCM) txctl->keytype = ATH9K_KEY_TYPE_AES; } /* Fill packet type */ txctl->atype = get_hal_packet_type(hdr); /* Fill qnum */ txctl->qnum = ath_get_hal_qnum(skb_get_queue_mapping(skb), sc); txq = &sc->sc_txq[txctl->qnum]; spin_lock_bh(&txq->axq_lock); /* Try to avoid running out of descriptors */ if (txq->axq_depth >= (ATH_TXBUF - 20)) { DPRINTF(sc, ATH_DBG_FATAL, "%s: TX queue: %d is full, depth: %d\n", __func__, txctl->qnum, txq->axq_depth); ieee80211_stop_queue(hw, skb_get_queue_mapping(skb)); txq->stopped = 1; spin_unlock_bh(&txq->axq_lock); return -1; } spin_unlock_bh(&txq->axq_lock); /* Fill rate */ fill_min_rates(skb, txctl); /* Fill flags */ txctl->flags = ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */ if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) txctl->flags |= ATH9K_TXDESC_NOACK; if (tx_info->flags & IEEE80211_TX_CTL_USE_RTS_CTS) txctl->flags |= ATH9K_TXDESC_RTSENA; /* * Setup for rate calculations. */ tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0]; rcs = tx_info_priv->rcs; if (ieee80211_is_data(fc) && !txctl->use_minrate) { /* Enable HT only for DATA frames and not for EAPOL */ txctl->ht = (hw->conf.ht_conf.ht_supported && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)); if (is_multicast_ether_addr(hdr->addr1)) { rcs[0].rix = (u8) ath_tx_findindex(rt, txctl->mcast_rate); /* * mcast packets are not re-tried. */ rcs[0].tries = 1; } /* For HT capable stations, we save tidno for later use. * We also override seqno set by upper layer with the one * in tx aggregation state. * * First, the fragmentation stat is determined. * If fragmentation is on, the sequence number is * not overridden, since it has been * incremented by the fragmentation routine. */ if (likely(!(txctl->flags & ATH9K_TXDESC_FRAG_IS_ON)) && txctl->ht && (sc->sc_flags & SC_OP_TXAGGR)) { struct ath_atx_tid *tid; tid = ATH_AN_2_TID(txctl->an, txctl->tidno); hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT); txctl->seqno = tid->seq_next; INCR(tid->seq_next, IEEE80211_SEQ_MAX); } } else { /* for management and control frames, * or for NULL and EAPOL frames */ if (txctl->min_rate) rcs[0].rix = ath_rate_findrateix(sc, txctl->min_rate); else rcs[0].rix = 0; rcs[0].tries = ATH_MGT_TXMAXTRY; } rix = rcs[0].rix; /* * Calculate duration. This logically belongs in the 802.11 * layer but it lacks sufficient information to calculate it. */ if ((txctl->flags & ATH9K_TXDESC_NOACK) == 0 && !ieee80211_is_ctl(fc)) { u16 dur; /* * XXX not right with fragmentation. */ if (sc->sc_flags & SC_OP_PREAMBLE_SHORT) dur = rt->info[rix].spAckDuration; else dur = rt->info[rix].lpAckDuration; if (le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_MOREFRAGS) { dur += dur; /* Add additional 'SIFS + ACK' */ /* ** Compute size of next fragment in order to compute ** durations needed to update NAV. ** The last fragment uses the ACK duration only. ** Add time for next fragment. */ dur += ath9k_hw_computetxtime(sc->sc_ah, rt, txctl->nextfraglen, rix, (sc->sc_flags & SC_OP_PREAMBLE_SHORT)); } if (ieee80211_has_morefrags(fc) || (le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG)) { /* ** Force hardware to use computed duration for next ** fragment by disabling multi-rate retry, which ** updates duration based on the multi-rate ** duration table. */ rcs[1].tries = rcs[2].tries = rcs[3].tries = 0; rcs[1].rix = rcs[2].rix = rcs[3].rix = 0; /* reset tries but keep rate index */ rcs[0].tries = ATH_TXMAXTRY; } hdr->duration_id = cpu_to_le16(dur); } /* * Determine if a tx interrupt should be generated for * this descriptor. We take a tx interrupt to reap * descriptors when the h/w hits an EOL condition or * when the descriptor is specifically marked to generate * an interrupt. We periodically mark descriptors in this * way to insure timely replenishing of the supply needed * for sending frames. Defering interrupts reduces system * load and potentially allows more concurrent work to be * done but if done to aggressively can cause senders to * backup. * * NB: use >= to deal with sc_txintrperiod changing * dynamically through sysctl. */ spin_lock_bh(&txq->axq_lock); if ((++txq->axq_intrcnt >= sc->sc_txintrperiod)) { txctl->flags |= ATH9K_TXDESC_INTREQ; txq->axq_intrcnt = 0; } spin_unlock_bh(&txq->axq_lock); if (is_multicast_ether_addr(hdr->addr1)) { antenna = sc->sc_mcastantenna + 1; sc->sc_mcastantenna = (sc->sc_mcastantenna + 1) & 0x1; } return 0; } /* To complete a chain of buffers associated a frame */ static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, struct list_head *bf_q, int txok, int sendbar) { struct sk_buff *skb = bf->bf_mpdu; struct ath_xmit_status tx_status; dma_addr_t *pa; /* * Set retry information. * NB: Don't use the information in the descriptor, because the frame * could be software retried. */ tx_status.retries = bf->bf_retries; tx_status.flags = 0; if (sendbar) tx_status.flags = ATH_TX_BAR; if (!txok) { tx_status.flags |= ATH_TX_ERROR; if (bf_isxretried(bf)) tx_status.flags |= ATH_TX_XRETRY; } /* Unmap this frame */ pa = get_dma_mem_context(bf, bf_dmacontext); pci_unmap_single(sc->pdev, *pa, skb->len, PCI_DMA_TODEVICE); /* complete this frame */ ath_tx_complete(sc, skb, &tx_status, bf->bf_node); /* * Return the list of ath_buf of this mpdu to free queue */ spin_lock_bh(&sc->sc_txbuflock); list_splice_tail_init(bf_q, &sc->sc_txbuf); spin_unlock_bh(&sc->sc_txbuflock); } /* * queue up a dest/ac pair for tx scheduling * NB: must be called with txq lock held */ static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid) { struct ath_atx_ac *ac = tid->ac; /* * if tid is paused, hold off */ if (tid->paused) return; /* * add tid to ac atmost once */ if (tid->sched) return; tid->sched = true; list_add_tail(&tid->list, &ac->tid_q); /* * add node ac to txq atmost once */ if (ac->sched) return; ac->sched = true; list_add_tail(&ac->list, &txq->axq_acq); } /* pause a tid */ static void ath_tx_pause_tid(struct ath_softc *sc, struct ath_atx_tid *tid) { struct ath_txq *txq = &sc->sc_txq[tid->ac->qnum]; spin_lock_bh(&txq->axq_lock); tid->paused++; spin_unlock_bh(&txq->axq_lock); } /* resume a tid and schedule aggregate */ void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid) { struct ath_txq *txq = &sc->sc_txq[tid->ac->qnum]; ASSERT(tid->paused > 0); spin_lock_bh(&txq->axq_lock); tid->paused--; if (tid->paused > 0) goto unlock; if (list_empty(&tid->buf_q)) goto unlock; /* * Add this TID to scheduler and try to send out aggregates */ ath_tx_queue_tid(txq, tid); ath_txq_schedule(sc, txq); unlock: spin_unlock_bh(&txq->axq_lock); } /* Compute the number of bad frames */ static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf, int txok) { struct ath_node *an = bf->bf_node; int isnodegone = (an->an_flags & ATH_NODE_CLEAN); struct ath_buf *bf_last = bf->bf_lastbf; struct ath_desc *ds = bf_last->bf_desc; u16 seq_st = 0; u32 ba[WME_BA_BMP_SIZE >> 5]; int ba_index; int nbad = 0; int isaggr = 0; if (isnodegone || ds->ds_txstat.ts_flags == ATH9K_TX_SW_ABORTED) return 0; isaggr = bf_isaggr(bf); if (isaggr) { seq_st = ATH_DS_BA_SEQ(ds); memcpy(ba, ATH_DS_BA_BITMAP(ds), WME_BA_BMP_SIZE >> 3); } while (bf) { ba_index = ATH_BA_INDEX(seq_st, bf->bf_seqno); if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index))) nbad++; bf = bf->bf_next; } return nbad; } static void ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf) { struct sk_buff *skb; struct ieee80211_hdr *hdr; bf->bf_state.bf_type |= BUF_RETRY; bf->bf_retries++; skb = bf->bf_mpdu; hdr = (struct ieee80211_hdr *)skb->data; hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY); } /* Update block ack window */ static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, int seqno) { int index, cindex; index = ATH_BA_INDEX(tid->seq_start, seqno); cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); tid->tx_buf[cindex] = NULL; while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) { INCR(tid->seq_start, IEEE80211_SEQ_MAX); INCR(tid->baw_head, ATH_TID_MAX_BUFS); } } /* * ath_pkt_dur - compute packet duration (NB: not NAV) * * rix - rate index * pktlen - total bytes (delims + data + fcs + pads + pad delims) * width - 0 for 20 MHz, 1 for 40 MHz * half_gi - to use 4us v/s 3.6 us for symbol time */ static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, struct ath_buf *bf, int width, int half_gi, bool shortPreamble) { const struct ath9k_rate_table *rt = sc->sc_currates; u32 nbits, nsymbits, duration, nsymbols; u8 rc; int streams, pktlen; pktlen = bf_isaggr(bf) ? bf->bf_al : bf->bf_frmlen; rc = rt->info[rix].rateCode; /* * for legacy rates, use old function to compute packet duration */ if (!IS_HT_RATE(rc)) return ath9k_hw_computetxtime(sc->sc_ah, rt, pktlen, rix, shortPreamble); /* * find number of symbols: PLCP + data */ nbits = (pktlen << 3) + OFDM_PLCP_BITS; nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width]; nsymbols = (nbits + nsymbits - 1) / nsymbits; if (!half_gi) duration = SYMBOL_TIME(nsymbols); else duration = SYMBOL_TIME_HALFGI(nsymbols); /* * addup duration for legacy/ht training and signal fields */ streams = HT_RC_2_STREAMS(rc); duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); return duration; } /* Rate module function to set rate related fields in tx descriptor */ static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf) { struct ath_hal *ah = sc->sc_ah; const struct ath9k_rate_table *rt; struct ath_desc *ds = bf->bf_desc; struct ath_desc *lastds = bf->bf_lastbf->bf_desc; struct ath9k_11n_rate_series series[4]; int i, flags, rtsctsena = 0, dynamic_mimops = 0; u32 ctsduration = 0; u8 rix = 0, cix, ctsrate = 0; u32 aggr_limit_with_rts = ah->ah_caps.rts_aggr_limit; struct ath_node *an = (struct ath_node *) bf->bf_node; /* * get the cix for the lowest valid rix. */ rt = sc->sc_currates; for (i = 4; i--;) { if (bf->bf_rcs[i].tries) { rix = bf->bf_rcs[i].rix; break; } } flags = (bf->bf_flags & (ATH9K_TXDESC_RTSENA | ATH9K_TXDESC_CTSENA)); cix = rt->info[rix].controlRate; /* * If 802.11g protection is enabled, determine whether * to use RTS/CTS or just CTS. Note that this is only * done for OFDM/HT unicast frames. */ if (sc->sc_protmode != PROT_M_NONE && (rt->info[rix].phy == PHY_OFDM || rt->info[rix].phy == PHY_HT) && (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) { if (sc->sc_protmode == PROT_M_RTSCTS) flags = ATH9K_TXDESC_RTSENA; else if (sc->sc_protmode == PROT_M_CTSONLY) flags = ATH9K_TXDESC_CTSENA; cix = rt->info[sc->sc_protrix].controlRate; rtsctsena = 1; } /* For 11n, the default behavior is to enable RTS for * hw retried frames. We enable the global flag here and * let rate series flags determine which rates will actually * use RTS. */ if ((ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) && bf_isdata(bf)) { BUG_ON(!an); /* * 802.11g protection not needed, use our default behavior */ if (!rtsctsena) flags = ATH9K_TXDESC_RTSENA; /* * For dynamic MIMO PS, RTS needs to precede the first aggregate * and the second aggregate should have any protection at all. */ if (an->an_smmode == ATH_SM_PWRSAV_DYNAMIC) { if (!bf_isaggrburst(bf)) { flags = ATH9K_TXDESC_RTSENA; dynamic_mimops = 1; } else { flags = 0; } } } /* * Set protection if aggregate protection on */ if (sc->sc_config.ath_aggr_prot && (!bf_isaggr(bf) || (bf_isaggr(bf) && bf->bf_al < 8192))) { flags = ATH9K_TXDESC_RTSENA; cix = rt->info[sc->sc_protrix].controlRate; rtsctsena = 1; } /* * For AR5416 - RTS cannot be followed by a frame larger than 8K. */ if (bf_isaggr(bf) && (bf->bf_al > aggr_limit_with_rts)) { /* * Ensure that in the case of SM Dynamic power save * while we are bursting the second aggregate the * RTS is cleared. */ flags &= ~(ATH9K_TXDESC_RTSENA); } /* * CTS transmit rate is derived from the transmit rate * by looking in the h/w rate table. We must also factor * in whether or not a short preamble is to be used. */ /* NB: cix is set above where RTS/CTS is enabled */ BUG_ON(cix == 0xff); ctsrate = rt->info[cix].rateCode | (bf_isshpreamble(bf) ? rt->info[cix].shortPreamble : 0); /* * Setup HAL rate series */ memzero(series, sizeof(struct ath9k_11n_rate_series) * 4); for (i = 0; i < 4; i++) { if (!bf->bf_rcs[i].tries) continue; rix = bf->bf_rcs[i].rix; series[i].Rate = rt->info[rix].rateCode | (bf_isshpreamble(bf) ? rt->info[rix].shortPreamble : 0); series[i].Tries = bf->bf_rcs[i].tries; series[i].RateFlags = ( (bf->bf_rcs[i].flags & ATH_RC_RTSCTS_FLAG) ? ATH9K_RATESERIES_RTS_CTS : 0) | ((bf->bf_rcs[i].flags & ATH_RC_CW40_FLAG) ? ATH9K_RATESERIES_2040 : 0) | ((bf->bf_rcs[i].flags & ATH_RC_SGI_FLAG) ? ATH9K_RATESERIES_HALFGI : 0); series[i].PktDuration = ath_pkt_duration( sc, rix, bf, (bf->bf_rcs[i].flags & ATH_RC_CW40_FLAG) != 0, (bf->bf_rcs[i].flags & ATH_RC_SGI_FLAG), bf_isshpreamble(bf)); if ((an->an_smmode == ATH_SM_PWRSAV_STATIC) && (bf->bf_rcs[i].flags & ATH_RC_DS_FLAG) == 0) { /* * When sending to an HT node that has enabled static * SM/MIMO power save, send at single stream rates but * use maximum allowed transmit chains per user, * hardware, regulatory, or country limits for * better range. */ series[i].ChSel = sc->sc_tx_chainmask; } else { if (bf_isht(bf)) series[i].ChSel = ath_chainmask_sel_logic(sc, an); else series[i].ChSel = sc->sc_tx_chainmask; } if (rtsctsena) series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; /* * Set RTS for all rates if node is in dynamic powersave * mode and we are using dual stream rates. */ if (dynamic_mimops && (bf->bf_rcs[i].flags & ATH_RC_DS_FLAG)) series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; } /* * For non-HT devices, calculate RTS/CTS duration in software * and disable multi-rate retry. */ if (flags && !(ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT)) { /* * Compute the transmit duration based on the frame * size and the size of an ACK frame. We call into the * HAL to do the computation since it depends on the * characteristics of the actual PHY being used. * * NB: CTS is assumed the same size as an ACK so we can * use the precalculated ACK durations. */ if (flags & ATH9K_TXDESC_RTSENA) { /* SIFS + CTS */ ctsduration += bf_isshpreamble(bf) ? rt->info[cix].spAckDuration : rt->info[cix].lpAckDuration; } ctsduration += series[0].PktDuration; if ((bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) { /* SIFS + ACK */ ctsduration += bf_isshpreamble(bf) ? rt->info[rix].spAckDuration : rt->info[rix].lpAckDuration; } /* * Disable multi-rate retry when using RTS/CTS by clearing * series 1, 2 and 3. */ memzero(&series[1], sizeof(struct ath9k_11n_rate_series) * 3); } /* * set dur_update_en for l-sig computation except for PS-Poll frames */ ath9k_hw_set11n_ratescenario(ah, ds, lastds, !bf_ispspoll(bf), ctsrate, ctsduration, series, 4, flags); if (sc->sc_config.ath_aggr_prot && flags) ath9k_hw_set11n_burstduration(ah, ds, 8192); } /* * Function to send a normal HT (non-AMPDU) frame * NB: must be called with txq lock held */ static int ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, struct ath_atx_tid *tid, struct list_head *bf_head) { struct ath_buf *bf; struct sk_buff *skb; struct ieee80211_tx_info *tx_info; struct ath_tx_info_priv *tx_info_priv; BUG_ON(list_empty(bf_head)); bf = list_first_entry(bf_head, struct ath_buf, list); bf->bf_state.bf_type &= ~BUF_AMPDU; /* regular HT frame */ skb = (struct sk_buff *)bf->bf_mpdu; tx_info = IEEE80211_SKB_CB(skb); tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0]; memcpy(bf->bf_rcs, tx_info_priv->rcs, 4 * sizeof(tx_info_priv->rcs[0])); /* update starting sequence number for subsequent ADDBA request */ INCR(tid->seq_start, IEEE80211_SEQ_MAX); /* Queue to h/w without aggregation */ bf->bf_nframes = 1; bf->bf_lastbf = bf->bf_lastfrm; /* one single frame */ ath_buf_set_rate(sc, bf); ath_tx_txqaddbuf(sc, txq, bf_head); return 0; } /* flush tid's software queue and send frames as non-ampdu's */ static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid) { struct ath_txq *txq = &sc->sc_txq[tid->ac->qnum]; struct ath_buf *bf; struct list_head bf_head; INIT_LIST_HEAD(&bf_head); ASSERT(tid->paused > 0); spin_lock_bh(&txq->axq_lock); tid->paused--; if (tid->paused > 0) { spin_unlock_bh(&txq->axq_lock); return; } while (!list_empty(&tid->buf_q)) { bf = list_first_entry(&tid->buf_q, struct ath_buf, list); ASSERT(!bf_isretried(bf)); list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list); ath_tx_send_normal(sc, txq, tid, &bf_head); } spin_unlock_bh(&txq->axq_lock); } /* Completion routine of an aggregate */ static void ath_tx_complete_aggr_rifs(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf, struct list_head *bf_q, int txok) { struct ath_node *an = bf->bf_node; struct ath_atx_tid *tid = ATH_AN_2_TID(an, bf->bf_tidno); struct ath_buf *bf_last = bf->bf_lastbf; struct ath_desc *ds = bf_last->bf_desc; struct ath_buf *bf_next, *bf_lastq = NULL; struct list_head bf_head, bf_pending; u16 seq_st = 0; u32 ba[WME_BA_BMP_SIZE >> 5]; int isaggr, txfail, txpending, sendbar = 0, needreset = 0; int isnodegone = (an->an_flags & ATH_NODE_CLEAN); isaggr = bf_isaggr(bf); if (isaggr) { if (txok) { if (ATH_DS_TX_BA(ds)) { /* * extract starting sequence and * block-ack bitmap */ seq_st = ATH_DS_BA_SEQ(ds); memcpy(ba, ATH_DS_BA_BITMAP(ds), WME_BA_BMP_SIZE >> 3); } else { memzero(ba, WME_BA_BMP_SIZE >> 3); /* * AR5416 can become deaf/mute when BA * issue happens. Chip needs to be reset. * But AP code may have sychronization issues * when perform internal reset in this routine. * Only enable reset in STA mode for now. */ if (sc->sc_ah->ah_opmode == ATH9K_M_STA) needreset = 1; } } else { memzero(ba, WME_BA_BMP_SIZE >> 3); } } INIT_LIST_HEAD(&bf_pending); INIT_LIST_HEAD(&bf_head); while (bf) { txfail = txpending = 0; bf_next = bf->bf_next; if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, bf->bf_seqno))) { /* transmit completion, subframe is * acked by block ack */ } else if (!isaggr && txok) { /* transmit completion */ } else { if (!tid->cleanup_inprogress && !isnodegone && ds->ds_txstat.ts_flags != ATH9K_TX_SW_ABORTED) { if (bf->bf_retries < ATH_MAX_SW_RETRIES) { ath_tx_set_retry(sc, bf); txpending = 1; } else { bf->bf_state.bf_type |= BUF_XRETRY; txfail = 1; sendbar = 1; } } else { /* * cleanup in progress, just fail * the un-acked sub-frames */ txfail = 1; } } /* * Remove ath_buf's of this sub-frame from aggregate queue. */ if (bf_next == NULL) { /* last subframe in the aggregate */ ASSERT(bf->bf_lastfrm == bf_last); /* * The last descriptor of the last sub frame could be * a holding descriptor for h/w. If that's the case, * bf->bf_lastfrm won't be in the bf_q. * Make sure we handle bf_q properly here. */ if (!list_empty(bf_q)) { bf_lastq = list_entry(bf_q->prev, struct ath_buf, list); list_cut_position(&bf_head, bf_q, &bf_lastq->list); } else { /* * XXX: if the last subframe only has one * descriptor which is also being used as * a holding descriptor. Then the ath_buf * is not in the bf_q at all. */ INIT_LIST_HEAD(&bf_head); } } else { ASSERT(!list_empty(bf_q)); list_cut_position(&bf_head, bf_q, &bf->bf_lastfrm->list); } if (!txpending) { /* * complete the acked-ones/xretried ones; update * block-ack window */ spin_lock_bh(&txq->axq_lock); ath_tx_update_baw(sc, tid, bf->bf_seqno); spin_unlock_bh(&txq->axq_lock); /* complete this sub-frame */ ath_tx_complete_buf(sc, bf, &bf_head, !txfail, sendbar); } else { /* * retry the un-acked ones */ /* * XXX: if the last descriptor is holding descriptor, * in order to requeue the frame to software queue, we * need to allocate a new descriptor and * copy the content of holding descriptor to it. */ if (bf->bf_next == NULL && bf_last->bf_status & ATH_BUFSTATUS_STALE) { struct ath_buf *tbf; /* allocate new descriptor */ spin_lock_bh(&sc->sc_txbuflock); ASSERT(!list_empty((&sc->sc_txbuf))); tbf = list_first_entry(&sc->sc_txbuf, struct ath_buf, list); list_del(&tbf->list); spin_unlock_bh(&sc->sc_txbuflock); ATH_TXBUF_RESET(tbf); /* copy descriptor content */ tbf->bf_mpdu = bf_last->bf_mpdu; tbf->bf_node = bf_last->bf_node; tbf->bf_buf_addr = bf_last->bf_buf_addr; *(tbf->bf_desc) = *(bf_last->bf_desc); /* link it to the frame */ if (bf_lastq) { bf_lastq->bf_desc->ds_link = tbf->bf_daddr; bf->bf_lastfrm = tbf; ath9k_hw_cleartxdesc(sc->sc_ah, bf->bf_lastfrm->bf_desc); } else { tbf->bf_state = bf_last->bf_state; tbf->bf_lastfrm = tbf; ath9k_hw_cleartxdesc(sc->sc_ah, tbf->bf_lastfrm->bf_desc); /* copy the DMA context */ copy_dma_mem_context( get_dma_mem_context(tbf, bf_dmacontext), get_dma_mem_context(bf_last, bf_dmacontext)); } list_add_tail(&tbf->list, &bf_head); } else { /* * Clear descriptor status words for * software retry */ ath9k_hw_cleartxdesc(sc->sc_ah, bf->bf_lastfrm->bf_desc); } /* * Put this buffer to the temporary pending * queue to retain ordering */ list_splice_tail_init(&bf_head, &bf_pending); } bf = bf_next; } /* * node is already gone. no more assocication * with the node. the node might have been freed * any node acces can result in panic.note tid * is part of the node. */ if (isnodegone) return; if (tid->cleanup_inprogress) { /* check to see if we're done with cleaning the h/w queue */ spin_lock_bh(&txq->axq_lock); if (tid->baw_head == tid->baw_tail) { tid->addba_exchangecomplete = 0; tid->addba_exchangeattempts = 0; spin_unlock_bh(&txq->axq_lock); tid->cleanup_inprogress = false; /* send buffered frames as singles */ ath_tx_flush_tid(sc, tid); } else spin_unlock_bh(&txq->axq_lock); return; } /* * prepend un-acked frames to the beginning of the pending frame queue */ if (!list_empty(&bf_pending)) { spin_lock_bh(&txq->axq_lock); /* Note: we _prepend_, we _do_not_ at to * the end of the queue ! */ list_splice(&bf_pending, &tid->buf_q); ath_tx_queue_tid(txq, tid); spin_unlock_bh(&txq->axq_lock); } if (needreset) ath_reset(sc, false); return; } /* Process completed xmit descriptors from the specified queue */ static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) { struct ath_hal *ah = sc->sc_ah; struct ath_buf *bf, *lastbf, *bf_held = NULL; struct list_head bf_head; struct ath_desc *ds, *tmp_ds; struct sk_buff *skb; struct ieee80211_tx_info *tx_info; struct ath_tx_info_priv *tx_info_priv; int nacked, txok, nbad = 0, isrifs = 0; int status; DPRINTF(sc, ATH_DBG_QUEUE, "%s: tx queue %d (%x), link %p\n", __func__, txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum), txq->axq_link); nacked = 0; for (;;) { spin_lock_bh(&txq->axq_lock); txq->axq_intrcnt = 0; /* reset periodic desc intr count */ if (list_empty(&txq->axq_q)) { txq->axq_link = NULL; txq->axq_linkbuf = NULL; spin_unlock_bh(&txq->axq_lock); break; } bf = list_first_entry(&txq->axq_q, struct ath_buf, list); /* * There is a race condition that a BH gets scheduled * after sw writes TxE and before hw re-load the last * descriptor to get the newly chained one. * Software must keep the last DONE descriptor as a * holding descriptor - software does so by marking * it with the STALE flag. */ bf_held = NULL; if (bf->bf_status & ATH_BUFSTATUS_STALE) { bf_held = bf; if (list_is_last(&bf_held->list, &txq->axq_q)) { /* FIXME: * The holding descriptor is the last * descriptor in queue. It's safe to remove * the last holding descriptor in BH context. */ spin_unlock_bh(&txq->axq_lock); break; } else { /* Lets work with the next buffer now */ bf = list_entry(bf_held->list.next, struct ath_buf, list); } } lastbf = bf->bf_lastbf; ds = lastbf->bf_desc; /* NB: last decriptor */ status = ath9k_hw_txprocdesc(ah, ds); if (status == -EINPROGRESS) { spin_unlock_bh(&txq->axq_lock); break; } if (bf->bf_desc == txq->axq_lastdsWithCTS) txq->axq_lastdsWithCTS = NULL; if (ds == txq->axq_gatingds) txq->axq_gatingds = NULL; /* * Remove ath_buf's of the same transmit unit from txq, * however leave the last descriptor back as the holding * descriptor for hw. */ lastbf->bf_status |= ATH_BUFSTATUS_STALE; INIT_LIST_HEAD(&bf_head); if (!list_is_singular(&lastbf->list)) list_cut_position(&bf_head, &txq->axq_q, lastbf->list.prev); txq->axq_depth--; if (bf_isaggr(bf)) txq->axq_aggr_depth--; txok = (ds->ds_txstat.ts_status == 0); spin_unlock_bh(&txq->axq_lock); if (bf_held) { list_del(&bf_held->list); spin_lock_bh(&sc->sc_txbuflock); list_add_tail(&bf_held->list, &sc->sc_txbuf); spin_unlock_bh(&sc->sc_txbuflock); } if (!bf_isampdu(bf)) { /* * This frame is sent out as a single frame. * Use hardware retry status for this frame. */ bf->bf_retries = ds->ds_txstat.ts_longretry; if (ds->ds_txstat.ts_status & ATH9K_TXERR_XRETRY) bf->bf_state.bf_type |= BUF_XRETRY; nbad = 0; } else { nbad = ath_tx_num_badfrms(sc, bf, txok); } skb = bf->bf_mpdu; tx_info = IEEE80211_SKB_CB(skb); tx_info_priv = (struct ath_tx_info_priv *) tx_info->driver_data[0]; if (ds->ds_txstat.ts_status & ATH9K_TXERR_FILT) tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED; if ((ds->ds_txstat.ts_status & ATH9K_TXERR_FILT) == 0 && (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) { if (ds->ds_txstat.ts_status == 0) nacked++; if (bf_isdata(bf)) { if (isrifs) tmp_ds = bf->bf_rifslast->bf_desc; else tmp_ds = ds; memcpy(&tx_info_priv->tx, &tmp_ds->ds_txstat, sizeof(tx_info_priv->tx)); tx_info_priv->n_frames = bf->bf_nframes; tx_info_priv->n_bad_frames = nbad; } } /* * Complete this transmit unit */ if (bf_isampdu(bf)) ath_tx_complete_aggr_rifs(sc, txq, bf, &bf_head, txok); else ath_tx_complete_buf(sc, bf, &bf_head, txok, 0); /* Wake up mac80211 queue */ spin_lock_bh(&txq->axq_lock); if (txq->stopped && ath_txq_depth(sc, txq->axq_qnum) <= (ATH_TXBUF - 20)) { int qnum; qnum = ath_get_mac80211_qnum(txq->axq_qnum, sc); if (qnum != -1) { ieee80211_wake_queue(sc->hw, qnum); txq->stopped = 0; } } /* * schedule any pending packets if aggregation is enabled */ if (sc->sc_flags & SC_OP_TXAGGR) ath_txq_schedule(sc, txq); spin_unlock_bh(&txq->axq_lock); } return nacked; } static void ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) { struct ath_hal *ah = sc->sc_ah; (void) ath9k_hw_stoptxdma(ah, txq->axq_qnum); DPRINTF(sc, ATH_DBG_XMIT, "%s: tx queue [%u] %x, link %p\n", __func__, txq->axq_qnum, ath9k_hw_gettxbuf(ah, txq->axq_qnum), txq->axq_link); } /* Drain only the data queues */ static void ath_drain_txdataq(struct ath_softc *sc, bool retry_tx) { struct ath_hal *ah = sc->sc_ah; int i; int npend = 0; /* XXX return value */ if (!(sc->sc_flags & SC_OP_INVALID)) { for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { if (ATH_TXQ_SETUP(sc, i)) { ath_tx_stopdma(sc, &sc->sc_txq[i]); /* The TxDMA may not really be stopped. * Double check the hal tx pending count */ npend += ath9k_hw_numtxpending(ah, sc->sc_txq[i].axq_qnum); } } } if (npend) { int status; /* TxDMA not stopped, reset the hal */ DPRINTF(sc, ATH_DBG_XMIT, "%s: Unable to stop TxDMA. Reset HAL!\n", __func__); spin_lock_bh(&sc->sc_resetlock); if (!ath9k_hw_reset(ah, sc->sc_ah->ah_curchan, sc->sc_ht_info.tx_chan_width, sc->sc_tx_chainmask, sc->sc_rx_chainmask, sc->sc_ht_extprotspacing, true, &status)) { DPRINTF(sc, ATH_DBG_FATAL, "%s: unable to reset hardware; hal status %u\n", __func__, status); } spin_unlock_bh(&sc->sc_resetlock); } for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { if (ATH_TXQ_SETUP(sc, i)) ath_tx_draintxq(sc, &sc->sc_txq[i], retry_tx); } } /* Add a sub-frame to block ack window */ static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid, struct ath_buf *bf) { int index, cindex; if (bf_isretried(bf)) return; index = ATH_BA_INDEX(tid->seq_start, bf->bf_seqno); cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); ASSERT(tid->tx_buf[cindex] == NULL); tid->tx_buf[cindex] = bf; if (index >= ((tid->baw_tail - tid->baw_head) & (ATH_TID_MAX_BUFS - 1))) { tid->baw_tail = cindex; INCR(tid->baw_tail, ATH_TID_MAX_BUFS); } } /* * Function to send an A-MPDU * NB: must be called with txq lock held */ static int ath_tx_send_ampdu(struct ath_softc *sc, struct ath_txq *txq, struct ath_atx_tid *tid, struct list_head *bf_head, struct ath_tx_control *txctl) { struct ath_buf *bf; struct sk_buff *skb; struct ieee80211_tx_info *tx_info; struct ath_tx_info_priv *tx_info_priv; BUG_ON(list_empty(bf_head)); bf = list_first_entry(bf_head, struct ath_buf, list); bf->bf_state.bf_type |= BUF_AMPDU; bf->bf_seqno = txctl->seqno; /* save seqno and tidno in buffer */ bf->bf_tidno = txctl->tidno; /* * Do not queue to h/w when any of the following conditions is true: * - there are pending frames in software queue * - the TID is currently paused for ADDBA/BAR request * - seqno is not within block-ack window * - h/w queue depth exceeds low water mark */ if (!list_empty(&tid->buf_q) || tid->paused || !BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno) || txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) { /* * Add this frame to software queue for scheduling later * for aggregation. */ list_splice_tail_init(bf_head, &tid->buf_q); ath_tx_queue_tid(txq, tid); return 0; } skb = (struct sk_buff *)bf->bf_mpdu; tx_info = IEEE80211_SKB_CB(skb); tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0]; memcpy(bf->bf_rcs, tx_info_priv->rcs, 4 * sizeof(tx_info_priv->rcs[0])); /* Add sub-frame to BAW */ ath_tx_addto_baw(sc, tid, bf); /* Queue to h/w without aggregation */ bf->bf_nframes = 1; bf->bf_lastbf = bf->bf_lastfrm; /* one single frame */ ath_buf_set_rate(sc, bf); ath_tx_txqaddbuf(sc, txq, bf_head); return 0; } /* * looks up the rate * returns aggr limit based on lowest of the rates */ static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf) { const struct ath9k_rate_table *rt = sc->sc_currates; struct sk_buff *skb; struct ieee80211_tx_info *tx_info; struct ath_tx_info_priv *tx_info_priv; u32 max_4ms_framelen, frame_length; u16 aggr_limit, legacy = 0, maxampdu; int i; skb = (struct sk_buff *)bf->bf_mpdu; tx_info = IEEE80211_SKB_CB(skb); tx_info_priv = (struct ath_tx_info_priv *) tx_info->driver_data[0]; memcpy(bf->bf_rcs, tx_info_priv->rcs, 4 * sizeof(tx_info_priv->rcs[0])); /* * Find the lowest frame length among the rate series that will have a * 4ms transmit duration. * TODO - TXOP limit needs to be considered. */ max_4ms_framelen = ATH_AMPDU_LIMIT_MAX; for (i = 0; i < 4; i++) { if (bf->bf_rcs[i].tries) { frame_length = bf->bf_rcs[i].max_4ms_framelen; if (rt->info[bf->bf_rcs[i].rix].phy != PHY_HT) { legacy = 1; break; } max_4ms_framelen = min(max_4ms_framelen, frame_length); } } /* * limit aggregate size by the minimum rate if rate selected is * not a probe rate, if rate selected is a probe rate then * avoid aggregation of this packet. */ if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy) return 0; aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_DEFAULT); /* * h/w can accept aggregates upto 16 bit lengths (65535). * The IE, however can hold upto 65536, which shows up here * as zero. Ignore 65536 since we are constrained by hw. */ maxampdu = sc->sc_ht_info.maxampdu; if (maxampdu) aggr_limit = min(aggr_limit, maxampdu); return aggr_limit; } /* * returns the number of delimiters to be added to * meet the minimum required mpdudensity. * caller should make sure that the rate is HT rate . */ static int ath_compute_num_delims(struct ath_softc *sc, struct ath_buf *bf, u16 frmlen) { const struct ath9k_rate_table *rt = sc->sc_currates; u32 nsymbits, nsymbols, mpdudensity; u16 minlen; u8 rc, flags, rix; int width, half_gi, ndelim, mindelim; /* Select standard number of delimiters based on frame length alone */ ndelim = ATH_AGGR_GET_NDELIM(frmlen); /* * If encryption enabled, hardware requires some more padding between * subframes. * TODO - this could be improved to be dependent on the rate. * The hardware can keep up at lower rates, but not higher rates */ if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR) ndelim += ATH_AGGR_ENCRYPTDELIM; /* * Convert desired mpdu density from microeconds to bytes based * on highest rate in rate series (i.e. first rate) to determine * required minimum length for subframe. Take into account * whether high rate is 20 or 40Mhz and half or full GI. */ mpdudensity = sc->sc_ht_info.mpdudensity; /* * If there is no mpdu density restriction, no further calculation * is needed. */ if (mpdudensity == 0) return ndelim; rix = bf->bf_rcs[0].rix; flags = bf->bf_rcs[0].flags; rc = rt->info[rix].rateCode; width = (flags & ATH_RC_CW40_FLAG) ? 1 : 0; half_gi = (flags & ATH_RC_SGI_FLAG) ? 1 : 0; if (half_gi) nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(mpdudensity); else nsymbols = NUM_SYMBOLS_PER_USEC(mpdudensity); if (nsymbols == 0) nsymbols = 1; nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width]; minlen = (nsymbols * nsymbits) / BITS_PER_BYTE; /* Is frame shorter than required minimum length? */ if (frmlen < minlen) { /* Get the minimum number of delimiters required. */ mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ; ndelim = max(mindelim, ndelim); } return ndelim; } /* * For aggregation from software buffer queue. * NB: must be called with txq lock held */ static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc, struct ath_atx_tid *tid, struct list_head *bf_q, struct ath_buf **bf_last, struct aggr_rifs_param *param, int *prev_frames) { #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4) struct ath_buf *bf, *tbf, *bf_first, *bf_prev = NULL; struct list_head bf_head; int rl = 0, nframes = 0, ndelim; u16 aggr_limit = 0, al = 0, bpad = 0, al_delta, h_baw = tid->baw_size / 2; enum ATH_AGGR_STATUS status = ATH_AGGR_DONE; int prev_al = 0, is_ds_rate = 0; INIT_LIST_HEAD(&bf_head); BUG_ON(list_empty(&tid->buf_q)); bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list); do { bf = list_first_entry(&tid->buf_q, struct ath_buf, list); /* * do not step over block-ack window */ if (!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno)) { status = ATH_AGGR_BAW_CLOSED; break; } if (!rl) { aggr_limit = ath_lookup_rate(sc, bf); rl = 1; /* * Is rate dual stream */ is_ds_rate = (bf->bf_rcs[0].flags & ATH_RC_DS_FLAG) ? 1 : 0; } /* * do not exceed aggregation limit */ al_delta = ATH_AGGR_DELIM_SZ + bf->bf_frmlen; if (nframes && (aggr_limit < (al + bpad + al_delta + prev_al))) { status = ATH_AGGR_LIMITED; break; } /* * do not exceed subframe limit */ if ((nframes + *prev_frames) >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) { status = ATH_AGGR_LIMITED; break; } /* * add padding for previous frame to aggregation length */ al += bpad + al_delta; /* * Get the delimiters needed to meet the MPDU * density for this node. */ ndelim = ath_compute_num_delims(sc, bf_first, bf->bf_frmlen); bpad = PADBYTES(al_delta) + (ndelim << 2); bf->bf_next = NULL; bf->bf_lastfrm->bf_desc->ds_link = 0; /* * this packet is part of an aggregate * - remove all descriptors belonging to this frame from * software queue * - add it to block ack window * - set up descriptors for aggregation */ list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list); ath_tx_addto_baw(sc, tid, bf); list_for_each_entry(tbf, &bf_head, list) { ath9k_hw_set11n_aggr_middle(sc->sc_ah, tbf->bf_desc, ndelim); } /* * link buffers of this frame to the aggregate */ list_splice_tail_init(&bf_head, bf_q); nframes++; if (bf_prev) { bf_prev->bf_next = bf; bf_prev->bf_lastfrm->bf_desc->ds_link = bf->bf_daddr; } bf_prev = bf; #ifdef AGGR_NOSHORT /* * terminate aggregation on a small packet boundary */ if (bf->bf_frmlen < ATH_AGGR_MINPLEN) { status = ATH_AGGR_SHORTPKT; break; } #endif } while (!list_empty(&tid->buf_q)); bf_first->bf_al = al; bf_first->bf_nframes = nframes; *bf_last = bf_prev; return status; #undef PADBYTES } /* * process pending frames possibly doing a-mpdu aggregation * NB: must be called with txq lock held */ static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq, struct ath_atx_tid *tid) { struct ath_buf *bf, *tbf, *bf_last, *bf_lastaggr = NULL; enum ATH_AGGR_STATUS status; struct list_head bf_q; struct aggr_rifs_param param = {0, 0, 0, 0, NULL}; int prev_frames = 0; do { if (list_empty(&tid->buf_q)) return; INIT_LIST_HEAD(&bf_q); status = ath_tx_form_aggr(sc, tid, &bf_q, &bf_lastaggr, ¶m, &prev_frames); /* * no frames picked up to be aggregated; block-ack * window is not open */ if (list_empty(&bf_q)) break; bf = list_first_entry(&bf_q, struct ath_buf, list); bf_last = list_entry(bf_q.prev, struct ath_buf, list); bf->bf_lastbf = bf_last; /* * if only one frame, send as non-aggregate */ if (bf->bf_nframes == 1) { ASSERT(bf->bf_lastfrm == bf_last); bf->bf_state.bf_type &= ~BUF_AGGR; /* * clear aggr bits for every descriptor * XXX TODO: is there a way to optimize it? */ list_for_each_entry(tbf, &bf_q, list) { ath9k_hw_clr11n_aggr(sc->sc_ah, tbf->bf_desc); } ath_buf_set_rate(sc, bf); ath_tx_txqaddbuf(sc, txq, &bf_q); continue; } /* * setup first desc with rate and aggr info */ bf->bf_state.bf_type |= BUF_AGGR; ath_buf_set_rate(sc, bf); ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, bf->bf_al); /* * anchor last frame of aggregate correctly */ ASSERT(bf_lastaggr); ASSERT(bf_lastaggr->bf_lastfrm == bf_last); tbf = bf_lastaggr; ath9k_hw_set11n_aggr_last(sc->sc_ah, tbf->bf_desc); /* XXX: We don't enter into this loop, consider removing this */ while (!list_empty(&bf_q) && !list_is_last(&tbf->list, &bf_q)) { tbf = list_entry(tbf->list.next, struct ath_buf, list); ath9k_hw_set11n_aggr_last(sc->sc_ah, tbf->bf_desc); } txq->axq_aggr_depth++; /* * Normal aggregate, queue to hardware */ ath_tx_txqaddbuf(sc, txq, &bf_q); } while (txq->axq_depth < ATH_AGGR_MIN_QDEPTH && status != ATH_AGGR_BAW_CLOSED); } /* Called with txq lock held */ static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq, struct ath_atx_tid *tid, bool bh_flag) { struct ath_buf *bf; struct list_head bf_head; INIT_LIST_HEAD(&bf_head); for (;;) { if (list_empty(&tid->buf_q)) break; bf = list_first_entry(&tid->buf_q, struct ath_buf, list); list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list); /* update baw for software retried frame */ if (bf_isretried(bf)) ath_tx_update_baw(sc, tid, bf->bf_seqno); /* * do not indicate packets while holding txq spinlock. * unlock is intentional here */ if (likely(bh_flag)) spin_unlock_bh(&txq->axq_lock); else spin_unlock(&txq->axq_lock); /* complete this sub-frame */ ath_tx_complete_buf(sc, bf, &bf_head, 0, 0); if (likely(bh_flag)) spin_lock_bh(&txq->axq_lock); else spin_lock(&txq->axq_lock); } /* * TODO: For frame(s) that are in the retry state, we will reuse the * sequence number(s) without setting the retry bit. The * alternative is to give up on these and BAR the receiver's window * forward. */ tid->seq_next = tid->seq_start; tid->baw_tail = tid->baw_head; } /* * Drain all pending buffers * NB: must be called with txq lock held */ static void ath_txq_drain_pending_buffers(struct ath_softc *sc, struct ath_txq *txq, bool bh_flag) { struct ath_atx_ac *ac, *ac_tmp; struct ath_atx_tid *tid, *tid_tmp; list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) { list_del(&ac->list); ac->sched = false; list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) { list_del(&tid->list); tid->sched = false; ath_tid_drain(sc, txq, tid, bh_flag); } } } static int ath_tx_start_dma(struct ath_softc *sc, struct sk_buff *skb, struct scatterlist *sg, u32 n_sg, struct ath_tx_control *txctl) { struct ath_node *an = txctl->an; struct ath_buf *bf = NULL; struct list_head bf_head; struct ath_desc *ds; struct ath_hal *ah = sc->sc_ah; struct ath_txq *txq = &sc->sc_txq[txctl->qnum]; struct ath_tx_info_priv *tx_info_priv; struct ath_rc_series *rcs; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); __le16 fc = hdr->frame_control; /* For each sglist entry, allocate an ath_buf for DMA */ INIT_LIST_HEAD(&bf_head); spin_lock_bh(&sc->sc_txbuflock); if (unlikely(list_empty(&sc->sc_txbuf))) { spin_unlock_bh(&sc->sc_txbuflock); return -ENOMEM; } bf = list_first_entry(&sc->sc_txbuf, struct ath_buf, list); list_del(&bf->list); spin_unlock_bh(&sc->sc_txbuflock); list_add_tail(&bf->list, &bf_head); /* set up this buffer */ ATH_TXBUF_RESET(bf); bf->bf_frmlen = txctl->frmlen; ieee80211_is_data(fc) ? (bf->bf_state.bf_type |= BUF_DATA) : (bf->bf_state.bf_type &= ~BUF_DATA); ieee80211_is_back_req(fc) ? (bf->bf_state.bf_type |= BUF_BAR) : (bf->bf_state.bf_type &= ~BUF_BAR); ieee80211_is_pspoll(fc) ? (bf->bf_state.bf_type |= BUF_PSPOLL) : (bf->bf_state.bf_type &= ~BUF_PSPOLL); (sc->sc_flags & SC_OP_PREAMBLE_SHORT) ? (bf->bf_state.bf_type |= BUF_SHORT_PREAMBLE) : (bf->bf_state.bf_type &= ~BUF_SHORT_PREAMBLE); bf->bf_flags = txctl->flags; bf->bf_keytype = txctl->keytype; tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0]; rcs = tx_info_priv->rcs; bf->bf_rcs[0] = rcs[0]; bf->bf_rcs[1] = rcs[1]; bf->bf_rcs[2] = rcs[2]; bf->bf_rcs[3] = rcs[3]; bf->bf_node = an; bf->bf_mpdu = skb; bf->bf_buf_addr = sg_dma_address(sg); /* setup descriptor */ ds = bf->bf_desc; ds->ds_link = 0; ds->ds_data = bf->bf_buf_addr; /* * Save the DMA context in the first ath_buf */ copy_dma_mem_context(get_dma_mem_context(bf, bf_dmacontext), get_dma_mem_context(txctl, dmacontext)); /* * Formulate first tx descriptor with tx controls. */ ath9k_hw_set11n_txdesc(ah, ds, bf->bf_frmlen, /* frame length */ txctl->atype, /* Atheros packet type */ min(txctl->txpower, (u16)60), /* txpower */ txctl->keyix, /* key cache index */ txctl->keytype, /* key type */ txctl->flags); /* flags */ ath9k_hw_filltxdesc(ah, ds, sg_dma_len(sg), /* segment length */ true, /* first segment */ (n_sg == 1) ? true : false, /* last segment */ ds); /* first descriptor */ bf->bf_lastfrm = bf; (txctl->ht) ? (bf->bf_state.bf_type |= BUF_HT) : (bf->bf_state.bf_type &= ~BUF_HT); spin_lock_bh(&txq->axq_lock); if (txctl->ht && (sc->sc_flags & SC_OP_TXAGGR)) { struct ath_atx_tid *tid = ATH_AN_2_TID(an, txctl->tidno); if (ath_aggr_query(sc, an, txctl->tidno)) { /* * Try aggregation if it's a unicast data frame * and the destination is HT capable. */ ath_tx_send_ampdu(sc, txq, tid, &bf_head, txctl); } else { /* * Send this frame as regular when ADDBA exchange * is neither complete nor pending. */ ath_tx_send_normal(sc, txq, tid, &bf_head); } } else { bf->bf_lastbf = bf; bf->bf_nframes = 1; ath_buf_set_rate(sc, bf); if (ieee80211_is_back_req(fc)) { /* This is required for resuming tid * during BAR completion */ bf->bf_tidno = txctl->tidno; } if (is_multicast_ether_addr(hdr->addr1)) { struct ath_vap *avp = sc->sc_vaps[txctl->if_id]; /* * When servicing one or more stations in power-save * mode (or) if there is some mcast data waiting on * mcast queue (to prevent out of order delivery of * mcast,bcast packets) multicast frames must be * buffered until after the beacon. We use the private * mcast queue for that. */ /* XXX? more bit in 802.11 frame header */ spin_lock_bh(&avp->av_mcastq.axq_lock); if (txctl->ps || avp->av_mcastq.axq_depth) ath_tx_mcastqaddbuf(sc, &avp->av_mcastq, &bf_head); else ath_tx_txqaddbuf(sc, txq, &bf_head); spin_unlock_bh(&avp->av_mcastq.axq_lock); } else ath_tx_txqaddbuf(sc, txq, &bf_head); } spin_unlock_bh(&txq->axq_lock); return 0; } static void xmit_map_sg(struct ath_softc *sc, struct sk_buff *skb, dma_addr_t *pa, struct ath_tx_control *txctl) { struct ath_xmit_status tx_status; struct ath_atx_tid *tid; struct scatterlist sg; *pa = pci_map_single(sc->pdev, skb->data, skb->len, PCI_DMA_TODEVICE); /* setup S/G list */ memset(&sg, 0, sizeof(struct scatterlist)); sg_dma_address(&sg) = *pa; sg_dma_len(&sg) = skb->len; if (ath_tx_start_dma(sc, skb, &sg, 1, txctl) != 0) { /* * We have to do drop frame here. */ pci_unmap_single(sc->pdev, *pa, skb->len, PCI_DMA_TODEVICE); tx_status.retries = 0; tx_status.flags = ATH_TX_ERROR; if (txctl->ht && (sc->sc_flags & SC_OP_TXAGGR)) { /* Reclaim the seqno. */ tid = ATH_AN_2_TID((struct ath_node *) txctl->an, txctl->tidno); DECR(tid->seq_next, IEEE80211_SEQ_MAX); } ath_tx_complete(sc, skb, &tx_status, txctl->an); } } /* Initialize TX queue and h/w */ int ath_tx_init(struct ath_softc *sc, int nbufs) { int error = 0; do { spin_lock_init(&sc->sc_txbuflock); /* Setup tx descriptors */ error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, "tx", nbufs, 1); if (error != 0) { DPRINTF(sc, ATH_DBG_FATAL, "%s: failed to allocate tx descriptors: %d\n", __func__, error); break; } /* XXX allocate beacon state together with vap */ error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, "beacon", ATH_BCBUF, 1); if (error != 0) { DPRINTF(sc, ATH_DBG_FATAL, "%s: failed to allocate " "beacon descripotrs: %d\n", __func__, error); break; } } while (0); if (error != 0) ath_tx_cleanup(sc); return error; } /* Reclaim all tx queue resources */ int ath_tx_cleanup(struct ath_softc *sc) { /* cleanup beacon descriptors */ if (sc->sc_bdma.dd_desc_len != 0) ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); /* cleanup tx descriptors */ if (sc->sc_txdma.dd_desc_len != 0) ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); return 0; } /* Setup a h/w transmit queue */ struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) { struct ath_hal *ah = sc->sc_ah; struct ath9k_tx_queue_info qi; int qnum; memzero(&qi, sizeof(qi)); qi.tqi_subtype = subtype; qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT; qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT; qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT; qi.tqi_physCompBuf = 0; /* * Enable interrupts only for EOL and DESC conditions. * We mark tx descriptors to receive a DESC interrupt * when a tx queue gets deep; otherwise waiting for the * EOL to reap descriptors. Note that this is done to * reduce interrupt load and this only defers reaping * descriptors, never transmitting frames. Aside from * reducing interrupts this also permits more concurrency. * The only potential downside is if the tx queue backs * up in which case the top half of the kernel may backup * due to a lack of tx descriptors. * * The UAPSD queue is an exception, since we take a desc- * based intr on the EOSP frames. */ if (qtype == ATH9K_TX_QUEUE_UAPSD) qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE; else qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE; qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi); if (qnum == -1) { /* * NB: don't print a message, this happens * normally on parts with too few tx queues */ return NULL; } if (qnum >= ARRAY_SIZE(sc->sc_txq)) { DPRINTF(sc, ATH_DBG_FATAL, "%s: hal qnum %u out of range, max %u!\n", __func__, qnum, (unsigned int)ARRAY_SIZE(sc->sc_txq)); ath9k_hw_releasetxqueue(ah, qnum); return NULL; } if (!ATH_TXQ_SETUP(sc, qnum)) { struct ath_txq *txq = &sc->sc_txq[qnum]; txq->axq_qnum = qnum; txq->axq_link = NULL; INIT_LIST_HEAD(&txq->axq_q); INIT_LIST_HEAD(&txq->axq_acq); spin_lock_init(&txq->axq_lock); txq->axq_depth = 0; txq->axq_aggr_depth = 0; txq->axq_totalqueued = 0; txq->axq_intrcnt = 0; txq->axq_linkbuf = NULL; sc->sc_txqsetup |= 1<sc_txq[qnum]; } /* Reclaim resources for a setup queue */ void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) { ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum); sc->sc_txqsetup &= ~(1<axq_qnum); } /* * Setup a hardware data transmit queue for the specified * access control. The hal may not support all requested * queues in which case it will return a reference to a * previously setup queue. We record the mapping from ac's * to h/w queues for use by ath_tx_start and also track * the set of h/w queues being used to optimize work in the * transmit interrupt handler and related routines. */ int ath_tx_setup(struct ath_softc *sc, int haltype) { struct ath_txq *txq; if (haltype >= ARRAY_SIZE(sc->sc_haltype2q)) { DPRINTF(sc, ATH_DBG_FATAL, "%s: HAL AC %u out of range, max %zu!\n", __func__, haltype, ARRAY_SIZE(sc->sc_haltype2q)); return 0; } txq = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, haltype); if (txq != NULL) { sc->sc_haltype2q[haltype] = txq->axq_qnum; return 1; } else return 0; } int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype) { int qnum; switch (qtype) { case ATH9K_TX_QUEUE_DATA: if (haltype >= ARRAY_SIZE(sc->sc_haltype2q)) { DPRINTF(sc, ATH_DBG_FATAL, "%s: HAL AC %u out of range, max %zu!\n", __func__, haltype, ARRAY_SIZE(sc->sc_haltype2q)); return -1; } qnum = sc->sc_haltype2q[haltype]; break; case ATH9K_TX_QUEUE_BEACON: qnum = sc->sc_bhalq; break; case ATH9K_TX_QUEUE_CAB: qnum = sc->sc_cabq->axq_qnum; break; default: qnum = -1; } return qnum; } /* Update parameters for a transmit queue */ int ath_txq_update(struct ath_softc *sc, int qnum, struct ath9k_tx_queue_info *qinfo) { struct ath_hal *ah = sc->sc_ah; int error = 0; struct ath9k_tx_queue_info qi; if (qnum == sc->sc_bhalq) { /* * XXX: for beacon queue, we just save the parameter. * It will be picked up by ath_beaconq_config when * it's necessary. */ sc->sc_beacon_qi = *qinfo; return 0; } ASSERT(sc->sc_txq[qnum].axq_qnum == qnum); ath9k_hw_get_txq_props(ah, qnum, &qi); qi.tqi_aifs = qinfo->tqi_aifs; qi.tqi_cwmin = qinfo->tqi_cwmin; qi.tqi_cwmax = qinfo->tqi_cwmax; qi.tqi_burstTime = qinfo->tqi_burstTime; qi.tqi_readyTime = qinfo->tqi_readyTime; if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) { DPRINTF(sc, ATH_DBG_FATAL, "%s: unable to update hardware queue %u!\n", __func__, qnum); error = -EIO; } else { ath9k_hw_resettxqueue(ah, qnum); /* push to h/w */ } return error; } int ath_cabq_update(struct ath_softc *sc) { struct ath9k_tx_queue_info qi; int qnum = sc->sc_cabq->axq_qnum; struct ath_beacon_config conf; ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi); /* * Ensure the readytime % is within the bounds. */ if (sc->sc_config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND) sc->sc_config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND; else if (sc->sc_config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND) sc->sc_config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND; ath_get_beaconconfig(sc, ATH_IF_ID_ANY, &conf); qi.tqi_readyTime = (conf.beacon_interval * sc->sc_config.cabqReadytime) / 100; ath_txq_update(sc, qnum, &qi); return 0; } int ath_tx_start(struct ath_softc *sc, struct sk_buff *skb) { struct ath_tx_control txctl; int error = 0; error = ath_tx_prepare(sc, skb, &txctl); if (error == 0) /* * Start DMA mapping. * ath_tx_start_dma() will be called either synchronously * or asynchrounsly once DMA is complete. */ xmit_map_sg(sc, skb, get_dma_mem_context(&txctl, dmacontext), &txctl); else ath_node_put(sc, txctl.an, ATH9K_BH_STATUS_CHANGE); /* failed packets will be dropped by the caller */ return error; } /* Deferred processing of transmit interrupt */ void ath_tx_tasklet(struct ath_softc *sc) { u64 tsf = ath9k_hw_gettsf64(sc->sc_ah); int i, nacked = 0; u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1); ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask); /* * Process each active queue. */ for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i))) nacked += ath_tx_processq(sc, &sc->sc_txq[i]); } if (nacked) sc->sc_lastrx = tsf; } void ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx) { struct ath_buf *bf, *lastbf; struct list_head bf_head; INIT_LIST_HEAD(&bf_head); /* * NB: this assumes output has been stopped and * we do not need to block ath_tx_tasklet */ for (;;) { spin_lock_bh(&txq->axq_lock); if (list_empty(&txq->axq_q)) { txq->axq_link = NULL; txq->axq_linkbuf = NULL; spin_unlock_bh(&txq->axq_lock); break; } bf = list_first_entry(&txq->axq_q, struct ath_buf, list); if (bf->bf_status & ATH_BUFSTATUS_STALE) { list_del(&bf->list); spin_unlock_bh(&txq->axq_lock); spin_lock_bh(&sc->sc_txbuflock); list_add_tail(&bf->list, &sc->sc_txbuf); spin_unlock_bh(&sc->sc_txbuflock); continue; } lastbf = bf->bf_lastbf; if (!retry_tx) lastbf->bf_desc->ds_txstat.ts_flags = ATH9K_TX_SW_ABORTED; /* remove ath_buf's of the same mpdu from txq */ list_cut_position(&bf_head, &txq->axq_q, &lastbf->list); txq->axq_depth--; spin_unlock_bh(&txq->axq_lock); if (bf_isampdu(bf)) ath_tx_complete_aggr_rifs(sc, txq, bf, &bf_head, 0); else ath_tx_complete_buf(sc, bf, &bf_head, 0, 0); } /* flush any pending frames if aggregation is enabled */ if (sc->sc_flags & SC_OP_TXAGGR) { if (!retry_tx) { spin_lock_bh(&txq->axq_lock); ath_txq_drain_pending_buffers(sc, txq, ATH9K_BH_STATUS_CHANGE); spin_unlock_bh(&txq->axq_lock); } } } /* Drain the transmit queues and reclaim resources */ void ath_draintxq(struct ath_softc *sc, bool retry_tx) { /* stop beacon queue. The beacon will be freed when * we go to INIT state */ if (!(sc->sc_flags & SC_OP_INVALID)) { (void) ath9k_hw_stoptxdma(sc->sc_ah, sc->sc_bhalq); DPRINTF(sc, ATH_DBG_XMIT, "%s: beacon queue %x\n", __func__, ath9k_hw_gettxbuf(sc->sc_ah, sc->sc_bhalq)); } ath_drain_txdataq(sc, retry_tx); } u32 ath_txq_depth(struct ath_softc *sc, int qnum) { return sc->sc_txq[qnum].axq_depth; } u32 ath_txq_aggr_depth(struct ath_softc *sc, int qnum) { return sc->sc_txq[qnum].axq_aggr_depth; } /* Check if an ADDBA is required. A valid node must be passed. */ enum ATH_AGGR_CHECK ath_tx_aggr_check(struct ath_softc *sc, struct ath_node *an, u8 tidno) { struct ath_atx_tid *txtid; DECLARE_MAC_BUF(mac); if (!(sc->sc_flags & SC_OP_TXAGGR)) return AGGR_NOT_REQUIRED; /* ADDBA exchange must be completed before sending aggregates */ txtid = ATH_AN_2_TID(an, tidno); if (txtid->addba_exchangecomplete) return AGGR_EXCHANGE_DONE; if (txtid->cleanup_inprogress) return AGGR_CLEANUP_PROGRESS; if (txtid->addba_exchangeinprogress) return AGGR_EXCHANGE_PROGRESS; if (!txtid->addba_exchangecomplete) { if (!txtid->addba_exchangeinprogress && (txtid->addba_exchangeattempts < ADDBA_EXCHANGE_ATTEMPTS)) { txtid->addba_exchangeattempts++; return AGGR_REQUIRED; } } return AGGR_NOT_REQUIRED; } /* Start TX aggregation */ int ath_tx_aggr_start(struct ath_softc *sc, const u8 *addr, u16 tid, u16 *ssn) { struct ath_atx_tid *txtid; struct ath_node *an; spin_lock_bh(&sc->node_lock); an = ath_node_find(sc, (u8 *) addr); spin_unlock_bh(&sc->node_lock); if (!an) { DPRINTF(sc, ATH_DBG_AGGR, "%s: Node not found to initialize " "TX aggregation\n", __func__); return -1; } if (sc->sc_flags & SC_OP_TXAGGR) { txtid = ATH_AN_2_TID(an, tid); txtid->addba_exchangeinprogress = 1; ath_tx_pause_tid(sc, txtid); } return 0; } /* Stop tx aggregation */ int ath_tx_aggr_stop(struct ath_softc *sc, const u8 *addr, u16 tid) { struct ath_node *an; spin_lock_bh(&sc->node_lock); an = ath_node_find(sc, (u8 *) addr); spin_unlock_bh(&sc->node_lock); if (!an) { DPRINTF(sc, ATH_DBG_AGGR, "%s: TX aggr stop for non-existent node\n", __func__); return -1; } ath_tx_aggr_teardown(sc, an, tid); return 0; } /* * Performs transmit side cleanup when TID changes from aggregated to * unaggregated. * - Pause the TID and mark cleanup in progress * - Discard all retry frames from the s/w queue. */ void ath_tx_aggr_teardown(struct ath_softc *sc, struct ath_node *an, u8 tid) { struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid); struct ath_txq *txq = &sc->sc_txq[txtid->ac->qnum]; struct ath_buf *bf; struct list_head bf_head; INIT_LIST_HEAD(&bf_head); DPRINTF(sc, ATH_DBG_AGGR, "%s: teardown TX aggregation\n", __func__); if (txtid->cleanup_inprogress) /* cleanup is in progress */ return; if (!txtid->addba_exchangecomplete) { txtid->addba_exchangeattempts = 0; return; } /* TID must be paused first */ ath_tx_pause_tid(sc, txtid); /* drop all software retried frames and mark this TID */ spin_lock_bh(&txq->axq_lock); while (!list_empty(&txtid->buf_q)) { bf = list_first_entry(&txtid->buf_q, struct ath_buf, list); if (!bf_isretried(bf)) { /* * NB: it's based on the assumption that * software retried frame will always stay * at the head of software queue. */ break; } list_cut_position(&bf_head, &txtid->buf_q, &bf->bf_lastfrm->list); ath_tx_update_baw(sc, txtid, bf->bf_seqno); /* complete this sub-frame */ ath_tx_complete_buf(sc, bf, &bf_head, 0, 0); } if (txtid->baw_head != txtid->baw_tail) { spin_unlock_bh(&txq->axq_lock); txtid->cleanup_inprogress = true; } else { txtid->addba_exchangecomplete = 0; txtid->addba_exchangeattempts = 0; spin_unlock_bh(&txq->axq_lock); ath_tx_flush_tid(sc, txtid); } } /* * Tx scheduling logic * NB: must be called with txq lock held */ void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq) { struct ath_atx_ac *ac; struct ath_atx_tid *tid; /* nothing to schedule */ if (list_empty(&txq->axq_acq)) return; /* * get the first node/ac pair on the queue */ ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list); list_del(&ac->list); ac->sched = false; /* * process a single tid per destination */ do { /* nothing to schedule */ if (list_empty(&ac->tid_q)) return; tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list); list_del(&tid->list); tid->sched = false; if (tid->paused) /* check next tid to keep h/w busy */ continue; if (!(tid->an->an_smmode == ATH_SM_PWRSAV_DYNAMIC) || ((txq->axq_depth % 2) == 0)) { ath_tx_sched_aggr(sc, txq, tid); } /* * add tid to round-robin queue if more frames * are pending for the tid */ if (!list_empty(&tid->buf_q)) ath_tx_queue_tid(txq, tid); /* only schedule one TID at a time */ break; } while (!list_empty(&ac->tid_q)); /* * schedule AC if more TIDs need processing */ if (!list_empty(&ac->tid_q)) { /* * add dest ac to txq if not already added */ if (!ac->sched) { ac->sched = true; list_add_tail(&ac->list, &txq->axq_acq); } } } /* Initialize per-node transmit state */ void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an) { if (sc->sc_flags & SC_OP_TXAGGR) { struct ath_atx_tid *tid; struct ath_atx_ac *ac; int tidno, acno; sc->sc_ht_info.maxampdu = ATH_AMPDU_LIMIT_DEFAULT; /* * Init per tid tx state */ for (tidno = 0, tid = &an->an_aggr.tx.tid[tidno]; tidno < WME_NUM_TID; tidno++, tid++) { tid->an = an; tid->tidno = tidno; tid->seq_start = tid->seq_next = 0; tid->baw_size = WME_MAX_BA; tid->baw_head = tid->baw_tail = 0; tid->sched = false; tid->paused = false; tid->cleanup_inprogress = false; INIT_LIST_HEAD(&tid->buf_q); acno = TID_TO_WME_AC(tidno); tid->ac = &an->an_aggr.tx.ac[acno]; /* ADDBA state */ tid->addba_exchangecomplete = 0; tid->addba_exchangeinprogress = 0; tid->addba_exchangeattempts = 0; } /* * Init per ac tx state */ for (acno = 0, ac = &an->an_aggr.tx.ac[acno]; acno < WME_NUM_AC; acno++, ac++) { ac->sched = false; INIT_LIST_HEAD(&ac->tid_q); switch (acno) { case WME_AC_BE: ac->qnum = ath_tx_get_qnum(sc, ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE); break; case WME_AC_BK: ac->qnum = ath_tx_get_qnum(sc, ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BK); break; case WME_AC_VI: ac->qnum = ath_tx_get_qnum(sc, ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VI); break; case WME_AC_VO: ac->qnum = ath_tx_get_qnum(sc, ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VO); break; } } } } /* Cleanupthe pending buffers for the node. */ void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an, bool bh_flag) { int i; struct ath_atx_ac *ac, *ac_tmp; struct ath_atx_tid *tid, *tid_tmp; struct ath_txq *txq; for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { if (ATH_TXQ_SETUP(sc, i)) { txq = &sc->sc_txq[i]; if (likely(bh_flag)) spin_lock_bh(&txq->axq_lock); else spin_lock(&txq->axq_lock); list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) { tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list); if (tid && tid->an != an) continue; list_del(&ac->list); ac->sched = false; list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) { list_del(&tid->list); tid->sched = false; ath_tid_drain(sc, txq, tid, bh_flag); tid->addba_exchangecomplete = 0; tid->addba_exchangeattempts = 0; tid->cleanup_inprogress = false; } } if (likely(bh_flag)) spin_unlock_bh(&txq->axq_lock); else spin_unlock(&txq->axq_lock); } } } /* Cleanup per node transmit state */ void ath_tx_node_free(struct ath_softc *sc, struct ath_node *an) { if (sc->sc_flags & SC_OP_TXAGGR) { struct ath_atx_tid *tid; int tidno, i; /* Init per tid rx state */ for (tidno = 0, tid = &an->an_aggr.tx.tid[tidno]; tidno < WME_NUM_TID; tidno++, tid++) { for (i = 0; i < ATH_TID_MAX_BUFS; i++) ASSERT(tid->tx_buf[i] == NULL); } } }